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Abstract

The Harary-Hill conjecture states that the minimum number of crossings in a draw-
ing of the complete graph Kn is Z(n) := 1
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. This conjecture

was recently proved for 2-page book drawings of Kn. As an extension of this tech-
nique, we prove the conjecture for monotone drawings of Kn, that is, drawings where
all vertices have different x-coordinates and the edges are x-monotone curves.
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1 Introduction

We consider drawings D of the complete graph Kn in the plane. A drawing
D is monotone if all its vertices have different x-coordinates and its edges
are x-monotone simple curves. D is a 2-page book drawing if all its vertices
are on a line ` and each edge is fully contained in one of the two half-planes
defined by `. The number of (pairwise) crossings in D is denoted by cr(D).
The crossing number of Kn, denoted by cr(Kn), is the minimum of cr(D) over
all drawings D of Kn. The Harary-Hill conjecture [6,7] states that

cr(Kn) = Z(n) :=
1
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For more on the history of this problem see [4]. There are drawings of Kn with
exactly Z(n) crossings. In fact, there are monotone and 2-page book drawings
of Kn with exactly Z(n) crossings [1,5]. So it is natural to conjecture that the
crossing number of Kn restricted to each of these classes of drawings is also
Z(n). The conjecture for 2-page book drawings of Kn was recently proved by
the authors [1,2]. Here we prove the conjecture for the monotone case. More
precisely, let mon-cr(Kn) be the minimum of cr(D) taken over all monotone
drawings D of Kn. (For more on the monotone crossing number of a graph
see [8].)

Theorem 1.1 For every positive integer n, mon-cr(Kn) = Z(n).

Since any 2-page book drawing of Kn can be drawn as a monotone drawing
preserving the number of crossings, Theorem 1.1 implies Theorem 10 in [1].

2 Proof of Theorem 1.1

As usual, it is enough to only consider good drawings of Kn (two incident
edges do not intersect and any two edges intersect each other at most once) as
the typical transformations to reduce to this case preserve monotonicity. Our
proof is a natural extension of that presented in [1] for 2-page book drawings
of Kn. We need the following definitions and results from [1]. In a good
drawing of Kn, the three edges connecting any three vertices x, y, z do not
intersect each other, forming a closed simple curve, a triangle. The triangle
xyz is positive if it is oriented counterclockwise and negative otherwise. The
edge xy is a k-edge if exactly k of the triangles xyz are positive or exactly k
are negative. For a drawing D of Kn, let Ek(D) be the number of k-edges of



D and

E≤≤k (D) =
k∑

j=0

(k + 1− j)Ej (D) . (1)

Theorem 2.1 [1] For any good drawing D of Kn in the plane,

cr(D) = 2

bn/2c−2∑
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E≤≤k(D)− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 1

2
(1 + (−1)n)E≤≤bn/2c−2(D).

Theorem 2.2 If n ≥ 3, 0 ≤ k < n/2− 1, and D a monotone drawing of Kn,
then

E≤≤k(D) ≥ 3
(
k+3
3

)
.

Proof. We proceed by induction on n. The case n = 3 holds trivially. For
n ≥ 4, consider a monotone drawing D of Kn with vertices, from left to right,
1, 2, . . . , n. Remove the point n and all incident edges to obtain a monotone
drawing D′ of Kn−1. A k-edge in D is invariant if it is also a k-edge in D′.
Let E≤k(D,D′) be the number of invariant ≤ k-edges. We compare (1) to

E≤≤k−1 (D′) =
k−1∑
j=0

(k − j)Ej (D′) . (2)

As shown in [1], for j ≤ k a j-edge incident to n contributes k − j to (1) and
nothing to (2), an invariant ≤ k-edge contributes 1 more to (1) than to (2),
and all other edges contribute the same to (1) and (2). Therefore

E≤≤k(D) = E≤≤k−1(D
′) +

k∑
i=0

(k + 1− j)ej(n) + E≤k(D,D′), (3)

where ej(n) is the number of j-edges incident to n in D. We show that
ej(n) = 2 for each 0 ≤ j ≤ k, and that E≤k(D,D′) ≥

(
k+2
2

)
. This, the

induction hypothesis E≤≤k−1(D
′) ≥ 3

(
k+2
3

)
, and (3) imply the result.

To prove that ej(n) = 2, we order the edges incident to n from top to
bottom according to the order in which they leave n. Note that the ith edge,
say vn is an (i− 1)-edge as it forms positive triangles with all edges above it
from n and negative triangles with all other edges from n. We now prove that
E≤k(D,D′) ≥

(
k+2
2

)
. In fact, we prove that for each 1 ≤ j ≤ k+ 1 there are at

least k+2−j invariant ≤ k-edges incident to j. Label the vertices to the right
of j by v1, v2, . . . , vn−j according to the order in which they leave j (from top



to bottom) and suppose n = vm. If the triangle jvix is positive, then x < j
or x = vl for some l < i. Hence there are at most j − 1 + i − 1 = j + i − 2
positive triangles jvix. Thus jvi is a ≤ k-edge whenever i ≤ k + 2− j and it
is invariant if i < m (so that triangle jvin = jvivm is negative). Similarly, the
ith edge from the bottom jvn−j+1−i is an invariant ≤ k-edge if i ≤ k + 2 − j
and n − j + 1 − i > m. Because k + 2 − j ≤ d1

2
n − j − 1e for k < n/2 − 1,

then there must be at least k + 2− j edges jvi above jn or at least k + 2− j
below jn near j. Those k + 2− j edges are invariant ≤ k-edges. 2

Theorems 2.1 and 2.2 imply mon-cr(Kn) ≥ Z(n) and thus Theorem 1.1.
The authors just learned of the recent work by Balko, Fulek, and Kynčl [3],
who also adapted our proof in [1] to the monotone case.
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