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Abstract

The following problem was posed by Erdés and Purdy: “What is the maximum number
of equilateral triangles determined by a set of n points in R??” New bounds for this
problem are obtained for dimensions 2, 4 and 5. In addition it is shown that for d = 2
the maximum is attained by subsets of the regular triangle lattice.

1 Introduction

In 1946 Paul Erdés [5] posed the seemingly innocent problem of finding the maximum
number of unit segments that can be determined by a set of n points in the plane. This
question turned out to be one of the most challenging unsolved problems ever proposed
by Erdés. Even though the solution has long been out of reach, the quest for solving the
problem generated a considerable amount of research in combinatorial geometry.

Since then many problems sharing the same spirit have been raised; problems concerning

“What is the maximum number of equilateral triangles that can be determined
by n points in the plane?”

This problem was proposed several times by Erdés and Purdy ([8],[9],[10],[11]), and it
is also mentioned in [3] not as a famous unsolved problem but as a problem that deserves
to be studied.

For an arbitrary finite set P denote by F(P) the number of triplets in P that are the
vertices of an equilateral triangle, we define

E(n) = max E(P).

|P|=n
PCR?

It is easy to see that E(n) < % (g) since every pair of points in the plane are the vertices of
at most two equilateral triangles; also by considering a suitable set of the regular triangular
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next we prove in Section 3 that E(n) is achieved by subsets of the equilateral triangle lattice.
Finally, in Section 4, we discuss the same problem on higher dimensions where we find lower
bounds for dimensions 4 and 5, and a new upper bound for the 5-dimensional space.

Throughout the paper we use the following notation. For any P finite set, G = (P, A(P))
denotes the 3-uniform hypergraph with vertex set P, where A(P) is the set of triplets in P
determining equilateral triangles. For z € P we denote by dega (x) the number of triangles
in A(P) with = as one of its vertices.
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Although the order of magnitude of the function F(n) is known to be quadratic, it is not
even known whether lim,,_, ETEnr) exists. The aim of this section is to give new bounds for
E(n). Theorem 1 gives a non trivial upper bound and its proof allows us to determine E(n)
for the first few values of n. On the other hand we obtain in Theorem 4 the best known
lower bound for E(n) which we believe is very close to the true value of E(n).

We start by pointing out the following simple but very useful observation: For every
x € P define N, = PN Ry (P)\ {x} where R, denotes the rotation of a § angle with center
at x. We have that

dega(®) = [Ne| = [P N Re(P)] - 1. (1)

Indeed, zyz is an equilateral triangle in P if and only if Ry(y) = 2, i.e. 2 € PN R, (P)\ {z}.
We make use of this observation to prove the next theorem.

Proof. It is enough to prove that any n-point set P has a point w with

dega (1) < {“ - 1J | @)

Assuming this we prove the theorem by induction on n. The theorem is clearly true for
n < 3. For n > 4 consider an n-point set P and let w be a point in P satisfying (2). Then
by induction hypothesis

E(P) = E(P\ {w}) + dega (1) < K”;?)QJ T {”glj - K”;l)QJ.

Now we prove (2). Consider points z,y € P whose distance realizes the diameter of P.
First assume there is a point z € P such that zyz is an equilateral triangle. By maximality
of the segment zy, P must be contained in the Reuledux triangle xyz. Then if XY, 7
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Figure 1: The regions X, Y and Z are intersections of Reuledux triangles.

Now suppose no point in P forms an equilateral triangle together with o and y. We
shall prove by contradiction that |[N, N N,| < 1. So we assume there are two points
uand v in Ny N N,. This means there are points s, vz, uy,vy € P such that all trian-
gles xuzu, vv,v, yuyu, yv, v are equilateral (see Figure 2). Notice that the segments wyu,
and v,v, are obtained from yz by a F-rotation with center in u and v respectively. So
vzvy and ugzu, are parallel and have the same length, i.e. wuzv vy u, is a parallelogram.
This gives us a contradiction since one of the diagonals of the parallelogram is longer than
any of it sides, including those which by assumption have maximal length in P. Hence
|IN, NNy | < 1.
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Figure 2: Proof of [N; N N,| < 1.

Finally since {u,v} N {x,y} = 0 by hypothesis, neither = nor y are in N, U N,.. Thus
’NI, + ’Ny’ -1< ‘Nx UNy‘ < ‘P\ {l‘,y}‘ =n — 27



so either |Ng| < [Z51] or |[Ny| < [%52], i.e. one of z or y satisfies degp < |25 ]. |

Using property (2) it is easy to determine the exact values of E(n) for 1 < n < 8, as
well as all the sets that achieve equality for 1 <n <7 (see Figure 3).
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Figure 3: Optimal sets for the first values of E(n).

When trying to find sets in the plane with large number of equilateral triangles, the
first examples that come to mind are subsets of the equilateral triangle lattice. Our goal for
the rest of the section is to prove right this intuitive idea, to do so we estimate the number

of equilateral triangles determined by specific examples. Denote by A the unit equilateral
i /3

triangle lattice generated by 1 and v = e""/°. We refer to the elements of A as lattice points.

Figure 4: Some equilateral triangles in T,.

Let us start by considering for each m € N the set T}, consisting of all lattice points in
a solid equilateral triangle of side m, and sides parallel to the lattice as shown on Figure 4.
The following is a well-known result.
Theorem 2 E(T,) = ("}?).

Proof. Notice that every equilateral triangle in 75, is inscribed in an equilateral triangle
with sides parallel to the original triangle. Since there are exactly ( m+22 -/ ) such triangles



with side 1 < j < m, and each inscribes exactly j triangles, we have that
1
— _ +3
E(Ty) —55_ (m+2—5)(m+1—-34)j= (m4 )

Since |Tr,| = (m;2), this result implies that E(n) > in? + O(n*?). Now, we study a
second example where we also obtain the precise number of equilateral triangles. Let Hy,
denote the set of lattice points contained in a regular hexagon of side m and sides parallel
to the lattice. We have the following.
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Figure 5: Intersection of Hy, and H(a + by).

Theorem 3 E(Hy,) = ym (Tm? + 14m? + 9m + 2) .

—

=3 2 Nal= L(!H N Ry(Hp)| = 1) (3)

atEHm erm

Proof. By observation (1) we have that
1

Assume 0 is the center of H,,, observe that R;(Hy,) is an hexagon with sides parallel to

the lattice and center Ral(x). Since the function Rgl : Hy, — Hy, is bijective we obtain
from (3)

B(Hn) =3 3 (Hn H(z)| = 1) @
xC€Hm

where H(x) is the set of lattice points in the hexagon of side m and center z. Now suppose
2 =a+by where v = ™3 and 1 < a <m, 0 <b < m—a. Then by completing
the corresponding intersection (see Figure 5) to an equilateral triangle with sides of length
3m —a — b, we find that

’Hm N H(IL‘)’ = ’TSm—a—b‘ - ’Tmfafl‘ - ’Tm—b—ﬂ - ’Tmfl‘

= (" = () = () = (),



Then after using the hexagonal symmetry of the sum in (4), and the fact that |Hp,| =

|H (0)] = 3m? + 3m + 1, we get the expression
Bl = (2 +m)+§ Y (4 - () - () - () —1)),
1<a<m
0<b<m—a
simplifying we obtain E(Hpy,) = im (7m3 + 14m? + 9m + 2). [ ]

We recall that |Hp,| = 3m? + 3m + 1, hence as a consequence we have E(n) > #n?® +
O(n®/ 2). This is already an improvement from our previous lower bound, and it suggests
that ‘round’ clusters of lattice points should give better bounds. This is in fact the case as
we see on the next theorem.

Theorem 4 E(n) > (% - §> n? + O(n3/?).

Proof. Consider the set C,, of all lattice points inside a circle of radius m centered at
the origin. From (1), we know that

Z |N| Z (|Cmme(Cm)|_1)' (5)

IGCm Iecm,

Notice that |Cp, N Rz(Cr,)| is equal to the number of lattice points in the intersection
of two circles of radius m, one centered at 0, and the other at z. Using a simple area
calculation we get that the area of such intersection is

2
2m? arccos |x| —M 4 — m .
2m 2 m

Now, since the number of lattice points in the region is roughly -2 7 of the area we obtain

Crn N Ry(C, —/4 (121 L=l (1)) o) 6
|Cn N Ry (Cr)| = k arccosk%)—g\/ _kﬁ) )%Jr (m) . (6)

Let f(y) = 4arccos () — y+/4 — 92, according to (5) and (6) we have that
2

mea=3 3 (5(5) o).

z€CH,

Since all the linear errors in (6) are uniformly bounded (all of them are less than 8m) we
get
2m* V3 (2] 3
E(Cp) = =5~ >y 2m2f< ) +O0(m?).
zECm
Let g : D1 — R be defined as g(x) = f(|z|), where D; stands for the unit disk in C.
Observe that by considering the dual lattice of %A (i.e. the lattice of regular hexagons

of side ﬁ whose set of centers is %A), we have that each hexagon has area 2%?5 and



the set {% 1T € Cm} consists precisely of the centers of the hexagons inside D;. Hence
— V3o o o o . . e
D zeC,, QVT‘;J‘ \%) is a Riemann sum for the function g on the unit disk, i.e.

\/g || i 1
> gt (8) 2 [ s@aero ().
Using a system of polar coordinates we calculate the integral

'/élg(.r)dx _ ./0‘27r (/(:rf(r)dr) do

~ 27T‘/0.1rf(r)dr

= 27 <7r7“2 — —477"2512”7"3) —2(r? — 1) arcsin (%))

1

0
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therefore

E(Cp) > (4%2 — @) m* +O0(m?)

and again, since the number of lattice points in C,, is approximately % of the area, we

have that if n = |C),| then n = %mQ + O(m). Hence

E(n) > (% - Z—f) n? +0(n%?)

and this inequality easily extends for arbitrary n. |

Summarizing the results from this section we have

(é B TG) n® +0(n*?) < E(n) <

TL2

N

and in fact we conjecture that

: m B0 ; o1 _ /3
Conjecture 1 Ji)nolo =z exists, and its value is 5 — 4=,

In other words we think that C), provides an asymptotically best example. We also
believe that the following stronger conjecture is true.

Conjecture 2 For any n-point set P, there is x € P with dega(x) < (§ - %) (n+/n).

The validity of this conjecture would immediately imply E(n) < (% - 4—‘/3) n?4+0(n%/?),

and together with Theorem 4 it would constitute a proof of Conjecture 1.



3 Extremal Sets

The best evidence supporting Conjecture 1 is the next theorem , where we prove that the
problem of determining E(n) is the same if, to compute the maximum, we just consider
subsets P of the equilateral triangle lattice A. This in turn indicates that the problem of
determining E(n) is discrete in nature, as it is stated in Corollary 1.

Theorem 5 E(n) is attained by subsets of the reqular triangular lattice.

Proof. Consider a system of coordinates with axis forming a % angle (see Figure 6).

Take a set P = {p1,p2,...,pn} of n points in the plane (p; = (x;,y;) forall j =1,2,...,n).
V3

Assume without loss of generality that the minimum distance between points of P is 2.

Figure 6: A and the shaded regions.

By Dirichlet Simultaneous Approximation Theorem, there is an integer 1 <t < 4™ such
that for every 1 < j <mn

[N

where {z} denotes the fractional part of x.

Let p}; = tp; + &,i) for 1 < j <mn, and set P' = {p},ph,...,p),}. By the choice of ¢
all points of P’ are in the shaded regions indicated in Figure 6. Moreover since any two
points in P’ are at distance at least @ (by assumption on the minimum distance in P),
then each connected region contains at most one point of P’. In particular, all points of
P’ lie in the interior of a minimal triangle of A pointing upwards. Now consider the set
Q= {q1,q,...,qa} of n points in the plane where q; = ([tz; + 1], [ty; + 1]). Notice that
all points of  lie on A.

To conclude the proof of the theorem we verify that E(Q) > E(P). Clearly E(P) =
E(P"). Now suppose that the points p’;, pj, pj are the vertices of an equilateral triangle. Let
T; and T} be the minimal triangles of A to which p;- and pj belong (see Figure 7). Then
the locus of all points of the plane forming an equilateral triangle with one interior point
of T; and one interior point of Ty is the union of the interiors of the triangles T and 7" in
Figure 7, where a and b are the unique two points forming equilateral triangles with g; and



Figure 7: Hlustration for the proof of Theorem 5.

gk Since p; must be in the interior of a minimal equilateral triangle of A pointing upwards,
then p] must lie on the interior of the shaded region indicated in Figure 7. Therefore either
q; = a or g = b, which means that the points q;, qx,q; are the vertices of an equilateral

triangle, and hence E(Q) > E(F'). [ |

Observe that we proved in fact the following stronger statement: For any set in the
plane P with n points, there is a lattice set @ € A and a bijective map h: P — @) so that

1. R(T) € A(Q) for every T € A(P)

2. d(h(p1),h(p2)) < (2—\/72 (4™ + 1)) d(p1,p2) for every p1,p2 € P. Here d(p1,p2) denotes
the euclidean distance between p; and ps, and m stands for the minimum distance
among points in P.

4 Higher Dimensions

In this section we consider a generalization of the function E (n) to higher dimensions. For
d > 2 let E4(n) denote the maximum number of equilateral triangles determined by n
points in RY, i.e.

E4(n) = max E(P).

PCR?
|Pl=n

Similarly we define the function

Fy(n) = Iglcaﬁgi F (P)
|P|l=n

where F'(P) denotes the number of triplets spanning a unit equilateral triangle.



Under this notation E (n
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Es(n) and trivially Eg (n) < Egy1(n),Fy(n) < Fyp1 (n).

d Fy(n) < Eq(n) < (3) for mld> 2. A generalized
or

rder of magnitude of

1@ raln) = Raln) =
Lenz’s construction (Erdés [8]) shows that n? is actually the correct
both functions Eg(n) and Fy (n) for d > 6.

To see this consider m = L J pairs x;,y; with m? + y?. = % Let P = |J A

d
2

where

A1 = {(z4,y4,0,0,0,0,...,0,0) : 1 < j <m}
Ay {(0,0,mj,yj,0,0,...,0,0) 1< < m}

A {(0,0,...,25,y;) : 1 <j <m} if d even
1£] {(0,0, ..., x;,y;,0) : 1 < j < m} if d odd.

Since any triangle with vertices in different A;’s is a unit equilateral triangle, we have that

(140 5 _ (14|
\ 3 3

hence

Fi(n)=06 (n3) and Eq(n) =0 (n3) for d > 6.

We conjecture that in fact Fy(n) ~ %3 <1 - ﬁ) (1 - ﬁ for d > 6. The similar
2 2
conjecture for the unit distance problem in dimension at least four was settled successfully
by Erdés [7], unfortunately the proof relies heavily on the so called Erdés-Stone Theorem
[12], and there is no similar Theorem for hypergraphs.

What are the best known bounds for 2 < d < 57 For d = 2 we proved

(1 - ﬁ) < liminf Bz (n) <

3 4r nooo  n2

ol

Concerning the unitary case
c 4
n1+loglogn S F2 (n) S n37

where the upper bound is a direct consequence of the Spencer, Szemerédi, Trotter Theorem
[14], and the lower bound is given by a subset of the regular triangle lattice (Erdés [5]).

For d = 3,4 the upper bounds E3(n) = O (n2'2) ,F35(n) = 0O (n1'8+6), and Fy(n) =
@] (n65/ 23) were proven by Akutsu, Tamaki and Tokuyama [1]. Purdy [13] proved as a
special case of a more general result that E4(n) = O(n?%),

Now we give an upper bound for Ej(n) which in turn improves Purdy’s result. A
special case of an Erdés’s Theorem [6] states that there is a positive integer ng satisfying
that any 3-uniform hypergraph with n > ng vertices and at least n3~5 triangles contains
a subhypergraph isomorphic to Kg(,g) (the 3-uniform hypergraph consisting of 9 vertices
partitioned into three equal size classes, and whose set of 3-edges is formed by all triangles
with exactly one vertex in each class). We use this result to prove the following theorem.

10



Theorem 6 Es(n) =0 (nS_%) .

Proof. Suppose that for some n > ng there is an n-point set P determining at least

n3-s equilateral triangles. Consider the 3-uniform hypergraph G = (P,A(P)). Then G

contains a subhypergraph H isomorphic to KEE)S).

Assume x1, T2, Z3,Y1,Y2,Y3, 21, 22, 23 are the vertices of H and all triplets of the form
{xj,yr, 21} are the corresponding 3-edges. It can be shown that all sides of triangles in
H have the same length (since all triangles in H are equilateral and have many sides in
common). Assume without loss of generality that they have unit length.

Then for all j € {1,2,3} the set {y1,y2,¥s,21, 22,23} is contained in the 4-dimensional
unit sphere Sy, with center in x;. This implies that the 3-dimensional spheres 519 :=
Sz, N Sz, and S13 := Sz NSy, also contain the set {y1,y2,ys, 21,22, 23}. Note that the
spheres S1 2 and 57 3 are distinct, since their centers are the middle points of the segments
x122 and x1x3 respectively. Hence S := S72 N S13 is a 2-dimensional sphere containing
{y1,y2,y3, 21, 22, z3}. Let V1 2 be the set of points in S equidistant to y; and y2, and similarly
define V7 3. Then Vi 2 and Vj 3 are distinct circles contained in S. To get a contradiction
observe that {z1,22,23} CVi2NVig but [Vi2NVig) <2. [ |

To complete this section we present examples in dimensions 4 and 5 with large number
of unit equilateral triangles.

Theorem 7 Fy(n) = Q(n?) and F5(n) = Q(n"/3).

Proof. Let A C R? be the set of vertices of L%J unit squares centered at the origin.
Define P C R? x R? by P = (A x {0}) U ({0} x A). Notice that if ajas is a unit segment in
A then the triangle (a,0), (0,a1),(0,a2) is equilateral for any a € A. Therefore

Fin) > F(P) 2 32| 2| = om?).

For the second part consider the sphere S C R? of radius % centered at the origin.

Clarkson et al. [2] proved the existence of an L%J—point set B C S which determines
Q(n*?3) unit distances. Define the set @ = (A x {0}) U ({0} x B) C R? x R?. Again if b;by
is a unit segment in B then the triangle (a,0),(0,b1),(0,b2) is equilateral for any a € A.
Therefore

F5(n) > F(Q) > n-Q(n¥?) = Q(n"/3).
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