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Abstract

We give a new lower bound for the rectilinear crossing number ¢r(n) of the complete geo-
metric graph K,,. We prove that z7(n) > 2 | 2] [ 252 | [252] | %52 | and we extend the proof of
the result to pseudolinear drawings of K.

1 Introduction

The crossing number cr (G) of a simple graph G is the minimum number of edge crossings in any
drawing of G in the plane, where each edge is a simple curve. The rectilinear crossing number er (Q)
is the minimum number of edge crossings when G is drawn in the plane using straight segments as
edges. The crossing numbers have many applications to Discrete Geometry and Computer Science,
see for example [7] and [9)].

In this paper we study the problem of determining ¢r (K,,), where K, denotes the complete
graph on n vertices. For simplicity we write ¢F (n) = @F (K,,). An equivalent formulation of the
problem is to find the minimum number of convex quadrilaterals determined by n points in general
position (no three points on a line).

We mention here that cr (K,) = 1 |%] |25 [%52] |%52] was conjectured by Zarankiewicz
[12] and Guy [3], and there are (non-rectilinear) drawings of K,, achieving this number. Of course
cr (K,) < @ (K,,) but from the exact values of ¢ (n) for n < 12 [1], it is known that cr (Kg) <
or (K3).

Jensen [6] and Singer [10] were the first to settle e (n) = © (n*). In fact, since er (5) = 1 then
by an averaging argument it is easy to deduce that ¢r (n) > %(Z) This same idea was used by
Brodsky et al [2] when they obtained F (10) = 62, to deduce er (n) > 0.3001(’;). Later Aicholzer
et al [1] calculated e (12) = 153 and used this to get @ (n) > 0.3115(}). Very recently Wagner
[11], following different methods proved @r (n) > 0.3288(}). On the other hand Brodsky et al [2]
constructed rectilinear drawings of K, showing @7 (n) < 2250 (") < 0.3838(7). In this paper we
prove the following theorem which gives as a lower bound for ¢F (n) the exact value conjectured by

Zarankiewicz and Guy for cr (K,,).

Theorem 1 77(n) > § 31175 1252 75"

It is known that ¢* = lim, o er (n) /(’}) > 0 exists. Our theorem gives ¢* > 3/8 = 0.375 and
it can in fact be generalized to a larger class of drawings of K,,. Namely, those obtained from the
concept of simple allowable sequences of permutations introduced by Goodman and Pollack [4]. We
denote by P2 the real projective plane, a pseudoline ¢ is a simple closed curve whose removal does
not disconnect P2. A finite set P in the plane is a generalized configuration if it consists of a set of
points, together with a set of pseudolines joining each pair of points subject to the condition that
each pseudoline intersects every other exactly once. If there is a single pseudoline for every pair then
the generalized configuration is called simple.



Consider a drawing of K,, in the (projective) plane where each edge is represented by a simple
curve. If each of these edges can be extended to a pseudoline in such a way that the resulting
structure is a simple generalized configuration then we call such a drawing a pseudolinear drawing of
K,,. We call pseudosegments the edges of a pseudolinear drawing. Clearly, every rectilinear drawing
of K, is also pseudolinear. Thus the number ¢r(n), defined as the minimum number of edge crossings
over all pseudolinear drawings of K, generalizes the quantity e7(n) and satisfies ¢r(n) < er(n). In
this context we prove the following stronger result.

Theorem 2 cr(n) > 1 [3] [*54] [%52] [%7°] -

If a pseudolinear drawing is combinatorially equivalent to a rectilinear drawing then it is called
stretchable. Tt is known that almost all pseudolinear drawings are non-stretchable. So it is conceivable
that ¢r(n) < er(n) for n sufficiently large, but at the moment we have no other evidence to support

this. We also mention that the problem of determining whether a pseudolinear drawing is stretchable
is NP-hard [8].

2 Allowable Sequences

Given a set P of n points in the plane, no three of them collinear, we construct the ((5) +1) x n
matrix S (P) as follows.

Consider any circle C' containing P in its interior. Let ¢ be the vertical right-hand side tangent
line to C. We can assume without loss of generality that no segment in P is perpendicular to £, we
can also assume that no two segments in P are parallel, otherwise we can perturb the set P without
changing the structure of its crossings. Label the points of P from 1 to n according to the order of
their projections to ¢, 1 being the lowest and n the highest. For each segment ij in P, let ¢;; = c;;
be the point in the upper half of C' such that the tangent line to C at c¢;; is perpendicular to ij.
This gives a linear order on the segments of P, inherited from the counter-clockwise order of the
points ¢;; in C. Denote by ¢, the r** pair of points (segment) in P under this order. Indistinctly we
use t, to denote an unordered pair {7, j} or the point ¢;; = ¢;;. Using this, we recursively construct
the matrix S (P). The first row is (1,2, ...,n), and the (k + 1) row is obtained from the k" row
by switching the pair ¢;. S(P) is half a period of what is commonly referred as a circular sequence
of permutations of P [4].

S (P) satisfies the following properties.

1. The first row of S(P) is the n-tuple (1,2,3,...,n), the last row of S (P) is the n-tuple
(n,mn—1,...,2,1), and any row of S (P) is a permutation of its first row.

2. Any row r > 2 is obtained from the previous row by switching two consecutive entries of the
row r — 1.

3. If the 7" row is obtained by switching the entries Sr—1,c and Sy_1,c41 in the (r — 1)th row
then Srfl,c < ST,17C+1.

4. For every 1 < ¢ < j < n there exists a unique row 1 < r < (Z) such that the entries ¢
and j are switched from row r to row r + 1, i.e., t, = {i,5}, Spe = < j < Spey1, and
Srt1,e=J>1= S r41,c41 forsome 1 <c<n—-1.

A simple allowable sequence of permutations is a combinatorial abstraction of a circular sequence
of permutations associated with a configuration of points. It is defined as a doubly infinite periodic
sequence of permutations of 1,2, ... n satisfying that every permutation is obtained from the previ-
ous one by switching two adjacent numbers, and after 7 and j have been switched they do not switch
again until all other pairs have switched. For the purposes of this paper we only use half a period
of an allowable sequence. This translates to any ((3) + 1) x n matrix S (P) satisfying properties



1-4. From now on S(P) will be such a matrix, not necessarily obtained as the circular sequence of
permutations of a point set P.

It was proved by Goodman and Pollack [5] that every simple allowable sequence of permutations
can be realized by a generalized configuration of points where the matrix S(P) is determined by the
cyclic order in which the connecting pseudolines meet a distinguished pseudoline (for example the
pseudoline at infinity).

Next we establish when two pseudosegments do not intersect by means of the matrix S(P).
Given a simple generalized configuration of points P, we say that two pseudosegments ab and cd
are separated if there exists a pseudoline in P that leaves ab and cd in different sides. Note that
any two non-incident pseudosegments (i.e., they do not share endpoints), either intersect in their
interior (generate a crossing) or are separated. Thus ¢r(Gp) = ¢r(P) is the number of non-incident
pairs of pseudosegments minus the number of separated pseudosegments, where G p is a pseudolinear
drawing of K, associated to S(P).

Let <, be the linear order on {1,2,3,...,n} induced by the r** row of S(P). Observe that ab
and cd are separated if and only if there is a row r such that a,b <, ¢,d or c,d <, a,b. In this case
we say ab and cd are separated in row T. _ _

Lemma 3 allows us to count the number of separated pseudosegments in P. We say ab and cd
are neighbors in row r if they are separated in row r but not in row r — 1.

Lemma 3 ab and cd are separated if and only if there is a unique row r where ab and cd are
neighbors.

Proof. First note that if ab and cd are neighbors, then they are separated by definition. Now
assume ab and cd are separated, and let R be the last row where they are separated. If ab and cd
are separated in all rows above R then they are separated in the first and consequently in the last
rows, that is R = (3) + 1. This is impossible since having ab and cd separated in every row implies
that they never reversed their order. _ _ _

Consider the largest row r < R such that ab and cd are not separated in row r — 1. Then ab
and cd are neighbors in row r. Finally, to prove that such a row is unique, let 79 < 1 be two rows
where ab and cd are neighbors. Assume without loss of generality that a <,, b <;, ¢ <,, d. Then
a <po—1 € <py—1 b <yo,—1 d and, since b and ¢ switch exactly once, b <,, c. Also, by definition, one
of the pairs ac, ad, or bd switches from row r1 — 1 to row r1. Since such a pair switches exactly once,
then it has opposite orders in rows ry and ;. Therefore one of the following should be satisfied

b<pc<pa<p,d orb<, d<, a<yc ora<,d<,b<,ec,
but then ab and cd are not separated in row ry. |
For all ¢ # j in P, write fp (f]) = (r,¢), if i and j switch in row r and column ¢, that is
Sre=1= 584141 and Sy 41 = J = Sr41,c. Note that this is well defined since the relative order

of each pair of points {¢,j} in P is changed exactly once.
For 1 <c¢<n—1 define

Cp(c) = {r : there exist 7, j such that fp ({7) = (r, c)} ,

and let chp (¢) = ch(c) = |Cp(c)|. In other words denotes the number of changes (switches) in
column c.

Lemma 4 For any simple generalized configuration P of n points in the plane

&(P)=3<Z) G- jen().

J=1



Proof. Since each four points in P determine three pairs of non-incident pseudosegments, there
n—1

are 3(’}) pairs of non-incident pseudosegments in P. It remains to prove that Z (j—1)(n—1—7)ch(j)
j=1

of these pairs are separated (non-crossing). Note that ab and cd are neighbors in row r if and only

if there are x € {a,b}, y € {c¢,d} such that x and y switch from row r — 1 to row r. By Lemma 3, if

t. = {i,j} and i < j then all pairs hj and ik are neighbors (in row r) whenever h <, j and i <, k.
If fp ({7) = (r,¢) then row r accounts for (¢ — 1) (n — 1 — ¢) neighboring pairs of pseudosegments.

Moreover, Lemma 3 guarantees that, when adding these quantities over all rows, we are counting
all separated pairs of pseudosegments exactly once. |

3 Proof of Theorem 2

Note that for fixed 1 < i < (g), 1 switches exactly once with each number j # ¢, that is
e () 1<i<ngzil|=n-1

Moreover, since n is the last entry in row 1 and the first entry in row (g) + 1, then when ¢ = n these
n — 1 switches occur in different columns, that is

{lgcgn—lzfp(ﬁj)z(r,c) for some 1 <r < (Z),and1§j<n}:{1,2,...,n—1}.

Therefore we can define Rp (¢) = r to be the unique row r where the change of n in column ¢ occurs,
i.e., there exists 1 < j < mn such that fp (733) = (r,¢). Also for 1 < ¢ < n — 1 define the number of

changes in column ¢ above and below row Rp (c) as
Ap(c) = {r < Rp (c) : there exist i, j such that fp (ZNJ) = (r, c)}
Bp(c) = {r > Rp (c) : there exist 4, j such that fp (ZNJ) = (r, c)} .

The proof of the Theorem is based on the identity from Lemma 4, together with the next two
lemmas. Let m = [n/2]

Lemma 5 For any simple generalized configuration P of n points in the plane and 1 < k <m —1
we have
|Ap (F)| + [Bp (n — k)| = k.

Proof. For1<j<klet
g(j) = min {r : there exists ¢ such that fp (f]) = (r, k:)}
h(j) = min {r : there exists ¢ such that fp ({7) =(r,n— k)} .

Since all g (1),9(2),...,9(k),h(1),h(2),...,h (k) are different, and Ap (k) and Bp (n — k) are dis-
joint, then it is enough to prove that for all 1 < j < k, either h(j) € Bp(n — k) or g (j) € Ap (k).
Assume that h(j) ¢ Bp (n — k). Then, since h(j) # Rp(n—k), h(j) < Rp (n — k). Observe
that g (j) < h(j) and Rp (n — k) < Rp (k) then
g(]) <h(]) <RP(TL—]€) <Rp(k).

Therefore g (j) € Ap (k). |



Lemma 6 For any simple generalized configuration P of n points in the plane and 1 < k <m —1
we have
u k+1
Z(chp(c)+chp(n—c)) >3(14+2+3+...+k) :3< 5 >
c=1

Proof. By induction on |P| = n. The statement is true for |P| = 3 by vacuity.

Counsider the matrix S (P) and let P’ = P — {n}. Note that S (P’) is the matrix obtained from
erasing the unique entry equal to n in each row of S (P) and shifting one column left the necessary
elements of S (P). Also the rows where the corresponding change involves n are deleted.

Note that for 1 <c<n-—2

Cp (C) = Ap (C) U Bp (C+ ].)

Thus for 1 <ec¢<n-—2

chpr (¢) =|Ap (¢)|+ |Bp (c+1)]|. (1)
Also notice that
Bp(1) = Ap(n—1) = 2. (2)
and for 1 <c<n-—1
chp (c) =|Ap (c¢)| + |Bp (c)| + 1. (3)
Then by definition and (3)
k k
Y (chp(c)+chp(n—c) = D (|Ap (| +|Bp ()| +|Ap (n = c)| + |Bp (n - c)| +2)
=1 =1

k
2k + Y (|4p ()] +|Bp (¢)| + |Ap (n = &) + [Bp (n — o)),

separating one term from each sum we get

k k—1
> (chp () +chp(n—c)) = 2k+|Ap (k)| +|Bp ()| + > (|4p ()| +[Br (c+ 1)) +
c=1 c=1
k
+[Ap (n =1+ |Bp (n = k)| + Y _ (|[Ap (n— )|+ |Bp (n—c+1)]),
then by (1) and (2),
k k—1 k
> (chp(c)+chp(n—c)) = 2k+]|Ap (k)| +|Bp(n—k)|+> chp (c)+ Y chp (n—rc)
k—1
= 2k+|Ap (k)| +|Bp(n—K)|+ Z (chpr (¢)+ chp (n—1—2¢)).
c=1

Finally, by induction and Lemma 5,

k
> (chp(c)+chp(n—c) > 2k+k+3(1+2+ ...+ (k—1))

c=1
- 3(1+2—|—...—|—k):3<k;1).



Proof of Theorem 2. By Lemma 4, it is enough to find an upper bound for the expression

n—1

Z (c—1)(n—1=r¢)chp(c).

c=1

For 1 <j<m-—11letaz; =chp(j)+ chp(n—j), and z,, = chp(m) + chp(m + 1) if n is odd,
otherwise x,, = chp(m). Under these definitions and according to Lemma 5, together with the fact
that 337" z; = (3), it is enough to find the maximum of the function

f($1,$2,...,$m) = Z(J - 1) (ni 1 7.j)xj
j=1
subject to the following linear conditions:
m k
n k+1
= d >3 fi 1<k<m-1.
;Q:] (2> an ;xj_ < 5 > orevery 1 <k <m

It is easy to see that the maximum occurs if and only if zp = 3k for all 1 < k£ < m — 1 and
Ty = (g) — 3(7;) If this is the case then

az(n=3)(n—1)(Tn? —12n —3) if n is odd
f(z17x27~-~7xm): 1 9 . .
arn (n —2) (Tn? — 26n + 16) if n is even.
Therefore, by Lemma 5, we conclude that
1 2 2 . .
g1(n—=3)"(n—1)" ifnisodd

an(n— 2)? (n—4) if n is even.

=0z 53] |5 | 5]

ie.,
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