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Abstract

We show that, up to isomorphism, there is a unique crossing-minimal rectilinear
drawing of K18. As a consequence we settle, in the negative, the following question
from Aichholzer and Krasser: does there always exist an crossing-minimal drawing
of Kn that contains a crossing-minimal drawing of Kn−1?
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1 Introduction

The rectilinear crossing number cr(G) of a graph G is the minimum number of
edge crossings in a rectilinear (or geometric) drawing of G in the plane, i.e., a
drawing of G in the plane where the vertices are points in general position and
the edges are straight segments. A drawing of G with exactly cr(G) crossings
is crossing-minimal.

Determining the rectilinear crossing number cr(Kn) of the complete graph
Kn is a well-known open problem in combinatorial geometry (see for in-
stance [9]). In [7] Aichholzer et al. announced the exact determination of
cr(Kn) for 13 ≤ n ≤ 17. In that paper also the following question was raised.

Question 1.1 Is it true that, for every integer n ≥ 4, there exists an crossing-
minimal drawing of Kn that contains an crossing-minimal drawing of Kn−1?

The exact value of cr(Kn) is known for n ≤ 27 and n = 30 (see [1,5,6,7,8]).
In particular, cr(K18) = 1029 was established in [6]. Crossing-minimal recti-
linear drawings of Kn for this range of values of n can be found in [2] and [4].

Let θ denote the counterclockwise rotation of 2π/3 around the origin, and
let W := {(−51, 113), (6, 834), (16, 989), (18, 644), (18, 1068), (22, 211)}. Then
(see [2]) the 18–point set W ∪ θ(W ) ∪ θ2(W ) induces an crossing-minimal
drawing of K18.

Our main result is the following.

Theorem 1.2 Up to order type isomorphism, there is a unique 18-point set
whose induced rectilinear drawing of K18 has cr(K18) crossings.

Let D be the (unique, in view of Theorem 1.2) crossing-minimal geometric
drawing of K18. It is easily verified that every subdrawing of D with 17 points
has more than cr(K17) = 798 crossings. This settles Question 1.1 in the
negative.

In the next section, we introduce the necessary notation and additional
concepts required for the proof of Theorem 1.2. In Section 3 we give a brief
sketch of the proof of Theorem 1.2.

2 k-edges, (≤ k)-edges, and 3-decomposability

Let Q be a point set in the plane. If p, q ∈ Q, we denote by pq the straight
line segment with end points p and q. We use `(pq) to denote the directed
line that spans p and q, directed from p towards q. Furthermore, `(pq)+ and
`(pq)− denote the halfplanes to the right and left, respectively, of `(pq).



Let Q be an n-point set in the plane in general position, and let 0 ≤ k ≤
n/2−1. A k-edge of Q is a line that spans two points of Q, and leaves exactly k
points on one side. A (≤ k)-edge (respectively, a (> k)-edge) is an i-edge with
0 ≤ i ≤ k (respectively, k < i ≤ n/2 − 1). Let Ek(Q), E≤k(Q), and E>k(Q)
denote, respectively, the number of k-edges, (≤ k)-edges and (> k)-edges of
Q. Note that E≤k(Q) =

∑k
j=0Ej(Q) and E>k(Q) =

(
n
2

)
−E≤k(Q). The vector

vk(Q) := (E0(Q), E1(Q), . . . , Ebn/2c−1(Q)) is the vector of k-edges of Q. The
vector v≤k(Q) of (≤ k)-edges of Q is analogously defined. Finally, E≤k(n)
denotes the minimum of E≤k(Q) taken over all n-point sets Q. The exact
determination of E≤k(n) is another open problem in combinatorial geometry
(see [1,3,5,6]).

The number of crossings in a geometric drawing of Kn and the number of
k- and (≤ k)-edges in its underlying n-point set P are closely related by the
following equality, independently proved in [3] and [10]:

cr(P ) =

bn/2c−1∑
k=0

(n− 2k − 3)E≤k (P )− 3

4

(
n

3

)
+
(
1 + (−1)n+1) 1

8

(
n

2

)
. (1)

Finally, we introduce a concept that captures a property shared by all
known crossing-minimal geometric drawings of Kn, for n a multiple of 3. A
point set P is 3-decomposable if it can be partitioned into three equal-size
sets A,B and C, such that (i) there exist a triangle T enclosing the point set
P ; and (ii) the orthogonal projection of P onto the three sides of T shows
A between B and C on one side, B between C and A on the second side,
and C between A and B on the third side. In this context, {A,B,C} is a
3-decomposition of P .

3 Uniqueness of crossing-minimal drawing of K18

Throughout this section, D is an crossing-minimal rectilinear drawing of K18,
and P is its underlying 18-point set.

Our strategy is as follows. First we show that the crossing-minimality of
D completely determines v≤k(P ). We then argue that the entries of v≤k(P )
imply that P must be 3-decomposable. This in turn allows us to classify
certain (as it happens, many) types of k-edges that must occur in P . Finally,
we find a set of restrictions on the remaining k-edges, and show that they
uniquely determine the order type of P .



Sketch of Proof of Theorem 1.2 Using (1) and cr(K18) = 1029, it is not
difficult to prove the following.

Proposition 3.1 v≤k(P ) = (3, 9, 18, 30, 45, 63, 87, 120, 153).

We start by labeling the points of P . Since E0(P ) = 3, then the convex
hull of P consists of exactly 3 points, say a6, b6 and c6. Now we rotate `(a6c6)
from c6 to b6 around a6 and for i = 1, 2, . . . , 5, we let c6−i be the i-th point
found by such a rotation. Similarly, we rotate `(a6b6) from b6 to c6, again
around a6, and for i = 1, 2, . . . , 5 we let b6−i be the i-th point found by such a
rotation. Let C := {c1, . . . , c6}, B := {b1, . . . , b6} and A := P \B∪C. Clearly,
{A,B,C} is a partition of P .

From the entries of v≤k(P ) it follows that the same partition of P is ob-
tained if, instead of rotating around a6, we rotate around b6 or c6. Moreover,
for {x, y, z} = {a, b, c}, the numbers in v≤k(P ) imply that the rotations of
`(y6x6) and `(z6x6) around y6 and z6, respectively, produce the same labels
for the x’s points, and so this labeling is well-defined. Note that {A,B,C} is a
3-decomposition of P . In this context we define, as in [2], two types of edges.
Let p, q ∈ P . If p, q ∈ A, p, q ∈ B or p, q ∈ C then we call pq monochromatic;
otherwise, pq is bichromatic. Let Emono

≤k (P ) and Ebi
≤k(P ) be the number of

monochromatic and bichromatic (≤ k)-edges of P , respectively. Note that
Ek(P ) = Emono

k (P ) + Ebi
k (P ).

For x ∈ {a, b, c}, let us denote the number of monochromatic (> k)-edges
of type xx by Exx

>k(P ). Note that Emono
>k (P ) = Eaa

>k(P ) + Ebb
>k(P ) + Ecc

>k(P ).

Remark 3.2 Let {x, y, z} = {a, b, c}. Clearly, if we rotate `(x6y6) around x6

from y6 to z6, and xσ(i) is the i-th x that is found by such a rotation, then
x6xσ(i) is a j-edge of P for j = min{5 + i, 16 − (5 + i)}. Thus for j = 6, 7
there are exactly two j-edges of the type x6x, and for j = 8 there is exactly
one 8-edge of the type x6x.

The following is an immediate consequence of the 3-decomposability of P ,
Claim 1 in [2], and the fact that Ebi

8 (P ) = 108−
∑7

i=0E
bi
i (P ).

Proposition 3.3 Ebi
k (P ) = 3(k + 1) for k = 0, . . . , 5; Ebi

k (P ) = 18 for k =
6, 7; and Ebi

8 (P ) = 9.

Propositions 3.1 and 3.3 readily imply the following.

Corollary 3.4 Emono
8 (P ) = 24, Emono

7 (P ) = 15, Emono
6 (P ) = 6, and Emono

k (P ) =
0 for k = 0, 1, 2, 3, 4, and 5.

Claim 4 in [2] implies that Exx
8 (P ) ≤ 8 for each x ∈ {a, b, c}. Using this,

together with Remark 3.2 and Proposition 3.4, we obtain the following.



Proposition 3.5 Let x ∈ {a, b, c}. Then Exx
6 (P ) = 2, Exx

7 (P ) = 5, and
Exx

8 (P ) = 8. Moreover, each 6-edge of type xx involves x6.

Using this last result and similar arguments, we obtain the following.

Proposition 3.6 Let x ∈ {a, b, c}. Then 1) x6x5 cannot be a 6-edge; 2) there
are at least two 7-edges of type xx involving x5 but not x6; 3) x6x4 cannot be
a 6-edge; 4) each element of {x3x2, x3x1, x2x1} is an 8-edge; and 5) x6x2 and
x6x1 are the two 6-edges of type xx, i.e., x3, x4 and x5 are contained in the
triangle formed by x6, x2 and x1.

We may assume that x2 ∈ `(x6x1)
−. Thus the triangle formed by x6, x2 and

x1 is as in Figure 1. Since `(x3, x1) is an 8-edge, then exactly one element, say
w, of {x4, x5, y1, . . . , y5} belongs to `(x3, x1)

−. A tedious but straightforward
case analysis shows that w must be y1. Similarly, since `(x2, x1) is an 8-edge,
then there are exactly two y’s in `(x2, x1)

−. Clearly, one of them is y1. We
can then deduce that the other y must be y2 and that y2 ∈ `(y6y1)

−. Then
the points of P with indices 1, 2, 3 and 6 are as in Figure 1.

x6

x3

x2

x1

y3

y2

y1

Fig. 1. The relative position of the points of P with indices 1, 2, 3 and 6.

Using similar arguments one can prove the following.

Proposition 3.7 Let x ∈ {a, b, c}. Then 1) x4x2 cannot be an 8-edge; 2)
x6x5 is an 8-edge; 3) x3 ∈ `(x6x5)

− and x4 ∈ `(x6x5)
+; 4) x4 ∈ `(x2x3)

− and
x5 ∈ `(x2x3)

+; and 5) x5 ∈ `(x1x4)
− and x3 ∈ `(x1x4)

+.



Finally, it is not difficult to see that the order type of P is uniquely deter-
mined by the labeling of the points of P , the numbers in v≤k(P ), and the set
of restrictions given by Propositions 3.5, 3.6, and 3.7. 2
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[8] M. Cetina, C. Hernández-Vélez, J. Leaños, and C. Villalobos, Point sets that
minimize (≤ k)–edges, 3–decomposable drawings, and the rectilinear crossing
number of K30, arXiv:1009.4736v1 [math.CO].

[9] R. K. Guy, A combinatorial problem, Nabla (Bulletin of the Malayan
Mathematical Society) 7 (1960), 68–72.

[10] L. Lovász, K. Vesztergombi, U. Wagner and E. Welzl, Convex quadrilaterals
and k-sets, Toward a Theory of Geometric Graphs, Contemp. Math., 342, Amer.
Math. Soc. (2004), 139–148.


