There is a unique crossing-minimal rectilinear drawing of K_{18}

Oswin Aichholzer

Institute for Software Technology, University of Technology, Graz, Austria

Bernardo M. Ábrego Silvia Fernández–Merchant

Departament of Mathematics, California State University at Northridge, CA, United States

Jesús Leaños

Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas, México

Gelasio Salazar

Instituto de Física, Universidad Autónoma de San Luis Potosí, México

Abstract

We show that, up to isomorphism, there is a unique crossing-minimal rectilinear drawing of K_{18} . As a consequence we settle, in the negative, the following question from Aichholzer and Krasser: does there always exist an crossing-minimal drawing of K_n that contains a crossing-minimal drawing of K_{n-1} ?

Keywords: Rectilinear crossing number, complete graphs, k-edges

1 Introduction

The rectilinear crossing number $\overline{\operatorname{cr}}(G)$ of a graph G is the minimum number of edge crossings in a rectilinear (or geometric) drawing of G in the plane, i.e., a drawing of G in the plane where the vertices are points in general position and the edges are straight segments. A drawing of G with exactly $\overline{\operatorname{cr}}(G)$ crossings is crossing-minimal.

Determining the rectilinear crossing number $\overline{\operatorname{cr}}(K_n)$ of the complete graph K_n is a well-known open problem in combinatorial geometry (see for instance [9]). In [7] Aichholzer et al. announced the exact determination of $\overline{\operatorname{cr}}(K_n)$ for $13 \leq n \leq 17$. In that paper also the following question was raised.

Question 1.1 Is it true that, for every integer $n \ge 4$, there exists an crossing-minimal drawing of K_n that contains an crossing-minimal drawing of K_{n-1} ?

The exact value of $\overline{\operatorname{cr}}(K_n)$ is known for $n \leq 27$ and n = 30 (see [1,5,6,7,8]). In particular, $\overline{\operatorname{cr}}(K_{18}) = 1029$ was established in [6]. Crossing-minimal rectilinear drawings of K_n for this range of values of n can be found in [2] and [4].

Let θ denote the counterclockwise rotation of $2\pi/3$ around the origin, and let $W := \{(-51, 113), (6, 834), (16, 989), (18, 644), (18, 1068), (22, 211)\}$. Then (see [2]) the 18-point set $W \cup \theta(W) \cup \theta^2(W)$ induces an crossing-minimal drawing of K_{18} .

Our main result is the following.

Theorem 1.2 Up to order type isomorphism, there is a unique 18-point set whose induced rectilinear drawing of K_{18} has $\overline{\operatorname{cr}}(K_{18})$ crossings.

Let \mathcal{D} be the (unique, in view of Theorem 1.2) crossing-minimal geometric drawing of K_{18} . It is easily verified that every subdrawing of \mathcal{D} with 17 points has more than $\overline{\mathrm{cr}}(K_{17})=798$ crossings. This settles Question 1.1 in the negative.

In the next section, we introduce the necessary notation and additional concepts required for the proof of Theorem 1.2. In Section 3 we give a brief sketch of the proof of Theorem 1.2.

2 k-edges, $(\leq k)$ -edges, and 3-decomposability

Let Q be a point set in the plane. If $p, q \in Q$, we denote by pq the straight line segment with end points p and q. We use $\ell(pq)$ to denote the directed line that spans p and q, directed from p towards q. Furthermore, $\ell(pq)^+$ and $\ell(pq)^-$ denote the halfplanes to the right and left, respectively, of $\ell(pq)$.

Let Q be an n-point set in the plane in general position, and let $0 \le k \le n/2-1$. A k-edge of Q is a line that spans two points of Q, and leaves exactly k points on one side. A $(\le k)$ -edge (respectively, a (> k)-edge) is an i-edge with $0 \le i \le k$ (respectively, $k < i \le n/2-1$). Let $E_k(Q), E_{\le k}(Q)$, and $E_{>k}(Q)$ denote, respectively, the number of k-edges, $(\le k)$ -edges and (> k)-edges of Q. Note that $E_{\le k}(Q) = \sum_{j=0}^k E_j(Q)$ and $E_{>k}(Q) = \binom{n}{2} - E_{\le k}(Q)$. The vector $v_k(Q) := (E_0(Q), E_1(Q), \ldots, E_{\lfloor n/2 \rfloor - 1}(Q))$ is the vector of k-edges of Q. The vector $v_{\le k}(Q)$ of $(\le k)$ -edges of Q is analogously defined. Finally, $E_{\le k}(n)$ denotes the minimum of $E_{\le k}(Q)$ taken over all n-point sets Q. The exact determination of $E_{\le k}(n)$ is another open problem in combinatorial geometry (see [1,3,5,6]).

The number of crossings in a geometric drawing of K_n and the number of k- and $(\leq k)$ -edges in its underlying n-point set P are closely related by the following equality, independently proved in [3] and [10]:

$$\overline{\operatorname{cr}}(P) = \sum_{k=0}^{\lfloor n/2 \rfloor - 1} (n - 2k - 3) E_{\leq k}(P) - \frac{3}{4} \binom{n}{3} + \left(1 + (-1)^{n+1}\right) \frac{1}{8} \binom{n}{2}.$$
 (1)

Finally, we introduce a concept that captures a property shared by all known crossing-minimal geometric drawings of K_n , for n a multiple of 3. A point set P is 3-decomposable if it can be partitioned into three equal-size sets A, B and C, such that (i) there exist a triangle T enclosing the point set P; and (ii) the orthogonal projection of P onto the three sides of T shows A between B and C on one side, B between C and A on the second side, and C between A and B on the third side. In this context, $\{A, B, C\}$ is a 3-decomposition of P.

3 Uniqueness of crossing-minimal drawing of K_{18}

Throughout this section, \mathcal{D} is an crossing-minimal rectilinear drawing of K_{18} , and P is its underlying 18-point set.

Our strategy is as follows. First we show that the crossing-minimality of \mathcal{D} completely determines $v_{\leq k}(P)$. We then argue that the entries of $v_{\leq k}(P)$ imply that P must be 3-decomposable. This in turn allows us to classify certain (as it happens, many) types of k-edges that must occur in P. Finally, we find a set of restrictions on the remaining k-edges, and show that they uniquely determine the order type of P.

Sketch of Proof of Theorem 1.2 Using (1) and $\overline{\operatorname{cr}}(K_{18}) = 1029$, it is not difficult to prove the following.

Proposition 3.1 $v_{\leq k}(P) = (3, 9, 18, 30, 45, 63, 87, 120, 153).$

We start by labeling the points of P. Since $E_0(P)=3$, then the convex hull of P consists of exactly 3 points, say a_6, b_6 and c_6 . Now we rotate $\ell(a_6c_6)$ from c_6 to b_6 around a_6 and for $i=1,2,\ldots,5$, we let c_{6-i} be the i-th point found by such a rotation. Similarly, we rotate $\ell(a_6b_6)$ from b_6 to c_6 , again around a_6 , and for $i=1,2,\ldots,5$ we let b_{6-i} be the i-th point found by such a rotation. Let $C:=\{c_1,\ldots,c_6\}$, $B:=\{b_1,\ldots,b_6\}$ and $A:=P\setminus B\cup C$. Clearly, $\{A,B,C\}$ is a partition of P.

From the entries of $v_{\leq k}(P)$ it follows that the same partition of P is obtained if, instead of rotating around a_6 , we rotate around b_6 or c_6 . Moreover, for $\{x,y,z\} = \{a,b,c\}$, the numbers in $v_{\leq k}(P)$ imply that the rotations of $\ell(y_6x_6)$ and $\ell(z_6x_6)$ around y_6 and z_6 , respectively, produce the same labels for the x's points, and so this labeling is well-defined. Note that $\{A,B,C\}$ is a 3-decomposition of P. In this context we define, as in [2], two types of edges. Let $p,q \in P$. If $p,q \in A$, $p,q \in B$ or $p,q \in C$ then we call pq monochromatic; otherwise, pq is bichromatic. Let $E_{\leq k}^{mono}(P)$ and $E_{\leq k}^{bi}(P)$ be the number of monochromatic and bichromatic ($\leq k$)-edges of P, respectively. Note that $E_k(P) = E_k^{mono}(P) + E_k^{bi}(P)$.

For $x \in \{a, b, c\}$, let us denote the number of monochromatic (> k)-edges of type xx by $E_{>k}^{xx}(P)$. Note that $E_{>k}^{mono}(P) = E_{>k}^{aa}(P) + E_{>k}^{bb}(P) + E_{>k}^{cc}(P)$.

Remark 3.2 Let $\{x, y, z\} = \{a, b, c\}$. Clearly, if we rotate $\ell(x_6y_6)$ around x_6 from y_6 to z_6 , and $x_{\sigma(i)}$ is the *i*-th x that is found by such a rotation, then $x_6x_{\sigma(i)}$ is a *j*-edge of P for $j = min\{5 + i, 16 - (5 + i)\}$. Thus for j = 6, 7 there are exactly two *j*-edges of the type x_6x , and for j = 8 there is exactly one 8-edge of the type x_6x .

The following is an immediate consequence of the 3-decomposability of P, Claim 1 in [2], and the fact that $E_8^{bi}(P) = 108 - \sum_{i=0}^7 E_i^{bi}(P)$.

Proposition 3.3 $E_k^{bi}(P) = 3(k+1)$ for k = 0, ..., 5; $E_k^{bi}(P) = 18$ for k = 6, 7; and $E_8^{bi}(P) = 9$.

Propositions 3.1 and 3.3 readily imply the following.

Corollary 3.4 $E_8^{mono}(P) = 24$, $E_7^{mono}(P) = 15$, $E_6^{mono}(P) = 6$, and $E_k^{mono}(P) = 0$ for k = 0, 1, 2, 3, 4, and 5.

Claim 4 in [2] implies that $E_8^{xx}(P) \leq 8$ for each $x \in \{a, b, c\}$. Using this, together with Remark 3.2 and Proposition 3.4, we obtain the following.

Proposition 3.5 Let $x \in \{a, b, c\}$. Then $E_6^{xx}(P) = 2$, $E_7^{xx}(P) = 5$, and $E_8^{xx}(P) = 8$. Moreover, each 6-edge of type xx involves x_6 .

Using this last result and similar arguments, we obtain the following.

Proposition 3.6 Let $x \in \{a, b, c\}$. Then 1) x_6x_5 cannot be a 6-edge; 2) there are at least two 7-edges of type xx involving x_5 but not x_6 ; 3) x_6x_4 cannot be a 6-edge; 4) each element of $\{x_3x_2, x_3x_1, x_2x_1\}$ is an 8-edge; and 5) x_6x_2 and x_6x_1 are the two 6-edges of type xx, i.e., x_3, x_4 and x_5 are contained in the triangle formed by x_6, x_2 and x_1 .

We may assume that $x_2 \in \ell(x_6x_1)^-$. Thus the triangle formed by x_6, x_2 and x_1 is as in Figure 1. Since $\ell(x_3, x_1)$ is an 8-edge, then exactly one element, say w, of $\{x_4, x_5, y_1, \ldots, y_5\}$ belongs to $\ell(x_3, x_1)^-$. A tedious but straightforward case analysis shows that w must be y_1 . Similarly, since $\ell(x_2, x_1)$ is an 8-edge, then there are exactly two y's in $\ell(x_2, x_1)^-$. Clearly, one of them is y_1 . We can then deduce that the other y must be y_2 and that $y_2 \in \ell(y_6y_1)^-$. Then the points of P with indices 1, 2, 3 and 6 are as in Figure 1.

Fig. 1. The relative position of the points of P with indices 1, 2, 3 and 6.

Using similar arguments one can prove the following.

Proposition 3.7 Let $x \in \{a, b, c\}$. Then 1) x_4x_2 cannot be an 8-edge; 2) x_6x_5 is an 8-edge; 3) $x_3 \in \ell(x_6x_5)^-$ and $x_4 \in \ell(x_6x_5)^+$; 4) $x_4 \in \ell(x_2x_3)^-$ and $x_5 \in \ell(x_2x_3)^+$; and 5) $x_5 \in \ell(x_1x_4)^-$ and $x_3 \in \ell(x_1x_4)^+$.

Finally, it is not difficult to see that the order type of P is uniquely determined by the labeling of the points of P, the numbers in $v_{\leq k}(P)$, and the set of restrictions given by Propositions 3.5, 3.6, and 3.7.

References

- [1] B. M. Ábrego, S. Fernández-Merchant, M. Cetina, J. Leaños and G. Salazar, On $\leq k$ -edges, crossings, and halving lines of geometric drawings of K_n . arXiv:1102.5065v1 [math.CO].
- [2] B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños and G. Salazar, 3-symmetric and 3-decomposable geometric drawings of K_n . Discrete Applied Mathematics. **158** (2010) no. 12, 1240–1258.
- [3] B. M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, *Graphs and Comb.* **21** (2005), no. 3, 293–300.
- [4] O. Aichholzer, http://www.ist.tugraz.at/aichholzer/research/triangulations/crossing/.
- [5] O. Aichholzer, J. García, D. Orden and P. Ramos, New lower bounds for the number of $(\leq k)$ -edges and the rectilinear crossing number of K_n . Discrete Comput. Geom. 38 (2007), no. 1, 1–14.
- [6] O. Aichholzer, J. García, D. Orden and P. Ramos, New results on lower bounds for the number of $(\leq k)$ -facets, *Electronic Notes in Discrete Mathematics* **29** (2007), 189–193.
- [7] O. Aichholzer and H. Krasser, Abstract order type extension and new results on the rectilinear crossing number. *Comput. Geom.* **36** (2007), no. 1, 2–15.
- [8] M. Cetina, C. Hernández-Vélez, J. Leaños, and C. Villalobos, Point sets that minimize ($\leq k$)-edges, 3-decomposable drawings, and the rectilinear crossing number of K_{30} , arXiv:1009.4736v1 [math.CO].
- [9] R. K. Guy, A combinatorial problem, Nabla (Bulletin of the Malayan Mathematical Society) 7 (1960), 68–72.
- [10] L. Lovász, K. Vesztergombi, U. Wagner and E. Welzl, Convex quadrilaterals and k-sets, Toward a Theory of Geometric Graphs, Contemp. Math., 342, Amer. Math. Soc. (2004), 139–148.