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Abstract

We bound lcr(Kn,m), the rectilinear local crossing
number of the complete bipartite graph Kn,m, for
every n and m. We completely determine lcr(Kn,m)
whenever min(n,m)  4.

1 Introduction

We are concerned with rectilinear drawings of the
complete graph Kn,m. That is, drawings with n red
vertices and m blue vertices in the plane, where every
edge joining two di↵erent color vertices is drawn as a
straight line segment. We also assume that any two
of these edges share at most one point.

In general, the local crossing number of a graph
G was defined by Ringel as follows (see Guy et al.
[2], Kainen [3], and Schaefer [5]). The local crossing

number of a drawing D of a graph G, denoted lcr(D),
is the largest number of crossings on any edge of D.
The local crossing number of G, denoted lcr(G), is
the minimum of lcr(D) over all drawings D of G.
This is also known as the cross-index (Thomassen
[6]). The equivalent definition for rectilinear drawings
is the rectilinear local crossing number of G, denoted
lcr(G), as the minimum of lcr(D) over all rectilinear
drawings D of G. Recently, Ábrego and Fernández-
Merchant [1] completely determined lcr(Kn) using a
Separation Lemma (see Lemma 2 in [1]).
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The crossing number of a graph G, denoted by
cr(G), is the smallest number of crossings among all
drawings of G. When this minimum is restricted
to rectilinear drawings, we obtained the rectilinear

crossing number of G, denoted by cr(G). The value
of cr(G) can be used to bound lcr(G) (as done in [2]
for drawings of Kn on the torus). Namely, adding the
number of crossings of every edge over all edges of a
graph G counts precisely twice the number of cross-
ings of G. In our problem, this means that It follows
that

lcr(Km,n) �
2 cr(Km,n)

mn
.

The Zarankiewicz Conjecture (Paul Turán, 1944),
states that cr(Km,n) = cr(Km,n) = Z(m,n) :=⌅
n
2

⇧ ⌅
n�1
2

⇧ ⌅
m
2

⇧ ⌅
m�1
2

⇧
, but this has only been proved

when min(m,n)  6, and for m = 7 and n 
10. The current best published lower bound on
cr(Km,n) is 0.86Z(m,n) by de Klerk et al. [4] and re-
cently, Norine and Zwols announced the lower bound
0.905Z(m,n), but this has not been published. This
would yield

lcr(Km,n) �
0.905

8
mn+⇥(mn) > 0.113125mn+⇥(mn).

If the Zarankiewicz Conjecture were true, we would
have

lcr(Km,n) � mn/8 +⇥(mn).

The Zarankiewicz drawing of Km,n with Z(n,m)
crossings (see Figure 1) has local crossing number�⌅

m
2

⇧
� 1

� �⌅
m
2

⇧
� 1

�
showing that

lcr(Km,n)  mn/4 +⇥(mn).
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Figure 1: Zarankiewicz drawing ofKm,n withZ(m,n) crossings.

2 Main results

Clearly lcr(K2,n)=0. We determine lcr(Kn,m) when
min(n,m)  4 and improve the upper bound for all
other cases.

Theorem 1. For any integer n � 3,

lcr(K3,n) =

⇠
n� 2

4

⇡
and lcr(K4,n) =

⇠
n� 2

2

⇡
.

Proof. (Sketch) Figure 2 shows a drawing of K3,n

such that each edge is crossed at most dn�2
4 e times

and there is an edge with that exact number of cross-
ings. This shows that lcr(K3,n)  dn�2

4 e. The red
vertices form an equilateral triangle. There are two
special blue points d and e very close to the top red
point, one above and one below. The rest of the blue
points are (almost) evenly distributed among four
arcs of circle. The Zarankiewicz construction of K4,n

Figure 2: An optimal construction for lcr(K3,n).

for m = 4 and any n has local crossing number
⌃
n�2
2

⌥

(see Figure 1) proving lcr(K4,n) 
⌃
n�2
2

⌥
. To prove

that lcr(K3,n) � dn�2
4 e, we consider several cases ac-

cording to how the blue points are distributed among
the regions determined by the red points. In each
case, we identify 2 or 4 edges that must be crossed
by a combined total of at least n�2

2 or n� 2, respec-

tively (see Figure 3). The proof of lcr(K4,n) � dn�2
2 e

is more involved but follows similar lines.
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Figure 3: All shaded regions are empty of blue points.

Theorem 2. lcr(Km,n)  2
9mn+⇥(mn).

Figure 4: A drawing of Km,n with local crossing number
2
9mn+⇥(mn). The red points are (almost) evenly distributed
into 3 clusters and the blue into 6 clusters along 3 arcs of circle.
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