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Abstract

We present new bounds on a problem by P. Brass on
the maximum number of triangles that a drawing
of a 3-uniform hypergraph in the plane can have so
that any two triangles incident to a vertex do not
have any other point in common.

1 Introduction

In his book, jointly co-authored with W. Mosser
and J. Pach, P. Brass presented the following ex-
tremal geometric graph theory problem [3]. Related
problems and results can be found in [1, 2].

Section 9.8, Problem 4 (Brass) What is the
maximum number of hyperedges in a two-
dimensional geometric three-hypergraph with
n vertices in which no two edges incident to a
vertex have any other point in common?

For concreteness, we denote that number as f(n),
and we denote the required property as the local
non-overlapping property. It is observed that by
choosing half of the interior faces of a maximal tri-
angulation, one gets a set of triangles satisfying the
local non-overlapping property. Thus, f(n) � n�2.
By adding the interior angles of the triangles and
observing that two triangles incident to a vertex
must leave some uncovered angle between them, the
upper bound f(n)  2n�O(1) is easily obtained.
In this note we narrow the gap between the two

bounds by giving a better lower bound: f(n) �
2n� c · log3(n). We do this by first restricting the
problem to the case when the set of n points is in
convex position. We denote as f

conv(n) the cor-
responding number. We give a construction that
shows that f

conv(n) � n � c · log22(n). We then
show how to adapt this convex-case construction
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to one for the general case, yielding our claimed
bound.
We also list the exact values for f

conv(n) for n

up to 35.

2 Points in convex position

The problem of determining f
conv(n), the maxi-

mum number of triangles that can be drawn with
vertices on a set of n points in convex position,
with the local non-overlapping property, turns out
to be very interesting by itself. It is clear that
any such set of triangles can be redrawn on the
vertices of a regular n-gon, maintaining its local
non-overlapping property. We thus might consider
w.l.o.g. that the supporting point set is the set of
vertices of a regular n-gon. The next easy lemma
turns to be technically very helpful to tackle the
problem. We denote the triangle with vertices
p, q, and r as �(p, q, r).

Lemma 1. f conv(n)  f
conv(n+1)  f

conv(n)+1.

Proof. The left inequality is clearly true. We prove
the second inequality.
Let T be a set of locally non-overlapping trian-

gles whose vertices are those of a regular (n+1)-gon
with circumcircle C. Let ↵ be the maximum inte-
rior angle of any triangle in T . Let t = �(p, q, r)
be one triangle s.t. \rpq has size ↵. We claim
that t is the only triangle incident to p. Suppose
on the contrary that there exists another triangle
t
0 = �(p, s, t) incident to p. Suppose w.l.o.g. that
the points p, s, t, q, r appear in this order along the
convex hull of the point set. Since the arc of C

oposite to \rpq is contained in the arc of C oposite
to \pst, then \pst is larger than \rpq, which has
the maximum value ↵, a contradiction.
Now consider a set of f conv(n + 1) triangles on

n + 1 points. By the previous observation, there
exists one point p with only one triangle t incident
to it. Remove both p and t to get a set of f(n+1)�1
triangles on n points. Thus, f(n) � f(n+1)�1.

Theorem 1. f
conv(n) � n� c · log2(n).
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Proof (sketch). Let k be a positive integer and
n = 3(k + 1)2k. We iteratively construct a set
of n points with at least n � (k + 2)(k + 1) lo-
cally non-overlapping triangles. This shows that
f(n) � n� (k + 2)(k + 1) > n� log22(n).
For stage t, we start with a set Pt of nt points

in convex position, where P1 is the original set of
points and n1 = n. Write nt = 2t · qt + rt, where
qt and rt are integers, and 0  rt < 2t. Label the
points in clockwise order {0, 1, 2, . . . , nt � 1}. For
integers i and j, draw the triangle Ti,j = 4(2t · i+
j, 2t · i+ j+ t, 2t · i+ j+2t), whenever 0  i  qt�1
and 0  j  t � 1. As long as nt is even, let Mt

be the set of points of the form 2t · i+ j + t where
0  i  qt � 1 and 0  j  t� 1, or 2t · qt + j with
0  j < rt/2. Let Pt+1 = Pt � Mt. Then nt+1 =
|Pt+1| = nt � tqt � rt/2 = 2t · qt + rt � tqt � rt/2 =
tqt+rt/2 = nt/2 and thus nt+1 = n/2t. Also, stage
t adds tqt = nt/2 � rt/2 = n/2t � rt/2 > n/2 � 2t
triangles. Finally, relabel the points of Pt+1 from 0
to nt+1 � 1, clockwise, in such a way that vertex 0
keeps its label throughout the process. Repeat this
process until obtaining Pk+1, which has nk+1 =
n/2k = 3(k+1) points labeled 0 to 3k+2. Finally,
draw the k+1 triangles 4(i, i+(k+1), i+2(k+1))
for 0  i  k. Since log2 n = k + log2(3(k + 1)) �
k + 2 > k + 1 for k � 1, then the total number of
triangles in this construction is at least

Pk
t=1(n/2

t � 2t) + (k + 1)

=
Pk

t=1(3(k + 1)2k�t � 2t) + (k + 1)
= n� (k + 2)(k + 1) > n� (log2 n)

2
.

It can be verified that the constructed set of trian-
gles has the local non-overlapping property.

The next figure shows the set of 88 triangles on 96
points given by the previous construction for k = 3.
For clarity, every other point and its correspond-
ing triangle formed with its neighboring points are
omitted. Triangles and vertices are color-coded
according to the stage they are added/removed.
For complete detail, the figures can be arbitrarily
zoomed-in in the digital version of this note.

To close the results for the convex case, we report
the exact values for f conv(n) for n up to 35. These

were obtained by mathematical analysis aided by
computer search.

f
conv(n) =

8
>>>><

>>>>:

n� 2 for n = 3,
n� 3 for 4  n  6,
n� 4 for 7  n  12,
n� 5 for 13  n  19,
n� 6 for 20  n  35.

3 Points in general position

Theorem 2. f(n) � 2n� c
0 log3(n).

Proof (sketch). Let k be a positive integer and
n = 3 · 2k+2 � 12. We construct a set of at least
n � 6 � 4

Pk�1
j=0 f

conv(3 · 2j) � 2n � c
0 log3(n) lo-

cally non-overlapping triangles on a set of n points.
We carefully put together four copies of an optimal
configuration for f conv(3·2j) for each 0  j  k�1,
adding several thin triangles between copies. It can
be verified that the constructed set of triangles has
the local non-overlapping property.
The next figure shows part of this construction

for n = 84 (k = 3). The complete construction
consists of all the thin triangles shown in the figure
plus 4 copies of each of the unique optimal configu-
rations for f

conv(3), f conv(6), and f
conv(12) (each

vertex pattern shown in the figure corresponds to
one of these copies).
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