Table of Contents

Executive Summary .. 3
Introduction ... 4

IT Vision @2015: A Year of Campus Dialog .. 4

Figure 1: IT Vision@2015 Themes and Sub-Themes .. 5

Theme 1: Enabling Education and Research .. 6
 Technology Throughout the Curriculum ... 6
 Technology Rich, Flexible Learning Spaces ... 6
 Books and Beyond ... 7
 Integrated and Scalable Support .. 7
 Expanded Research Tool Kit .. 7
 Realizing the Vision: Enabling Education and Research ... 8

Theme 2: Supporting Data-Informed Decisions .. 9
 Understanding Data and Predicting the Future ... 9
 Self-Service Analysis ... 9
 Realizing the Vision: Supporting Data-Informed Decisions .. 9

Theme 3: Exemplary Service .. 10
 Service Anytime, Anywhere, Anyhow ... 10
 Efficient and Productive ... 10
 Personalized Service .. 10
 Realizing the Vision: Exemplary Service .. 11

Theme 4: Agile, Adaptable, and Affordable Technology ... 12
 Users will be Choosers .. 12
 Facilitators and Guides .. 12
 Agile and Robust Infrastructure .. 12
 Realizing the Vision: Agile, Adaptable, and Affordable Technology .. 13

Broader Implications .. 14
 Implications for Facilities Planning .. 14
 Implications for Policy .. 14
 Implications for Cultural Change .. 14
 Implications for the Curriculum ... 14

Moving Forward ... 15

Appendix A: IT Vision@2015 Planning Calendar .. 16

The image on the cover page is a “word cloud” based on text of the IT Vision@2015 report. The word cloud was generated using a tool called Wordle; it gives more prominence to words that appear more frequently in the document.

All survey data incorporated in the document come from the 2011 Information Technology Annual Survey of students, faculty and staff. To learn more about the IT survey, visit http://www.csun.edu/it/about/survey.html.
Executive Summary

Technology is so infused in the lives of students, faculty, and staff that at times we fail to notice its transformative effect. Information technologies are changing how we learn, discover, communicate, socialize, understand, and interact. IT Vision@2015 articulates how California State University, Northridge will use technology to further our University planning priorities. It describes how we expect technology to help engage students, make education more accessible, measure and understand outcomes, enable new research discoveries, improve our productivity, and enrich our interactions. The vision anticipates a technology future that is more agile, virtual, wireless, and adaptable. It calls for our technologies and services to enable greater choice, empower self-reliance, and reduce the time required to implement new technology.

IT Vision@2015 is constructed around four themes. Each theme describes an important aspect of the University's future and establishes how technology could improve our capabilities and outcomes. Each theme contains multiple sub-themes that illustrate the changes we anticipate regarding how we use and manage technology. The four themes that comprise the vision are summarized below.

- **Enabling Education and Research** - Technology is foundational to student success and a key contributor to our learning-centered University. Students and faculty are exploring and adopting new ways to discover, share, and interact with academic content. The University is evolving to a flexible learning environment that incorporates interactive content and teaching tools tailored to particular disciplines and learning objectives. Technology-rich learning spaces, virtual software libraries, and mobile technologies will extend learning beyond the physical classroom. Enhanced infrastructure and applications will support the growing research portfolio and aid scholarly collaborations.

- **Supporting Data-Informed Decisions** - In the future, analysis will move beyond helping understand what has happened and instead, increasingly help predict what might happen. Data sources will need to become more definitive and widely accessible, providing faculty and staff with greater access to sources of data internal and external to the University.

- **Exemplary Service** - The University serves a highly mobile population that will increasingly expect to access information and services where they are and when they need it. The service delivery model will increase transition from in-person to online. At the same time, constituents will expect that services and communications become more relevant, timely, and personalized.

- **Providing Agile, Adaptable, and Affordable Technology** - To realize its vision, the University needs its technology to be able to adapt rapidly to changing needs and priorities. Individuals will require greater latitude to choose the appropriate technology to meet their needs and use it easily within the University technology environment. Students, faculty and staff will expect services that guide their choice and use of technology with support structures that respond quickly to meet new and emerging needs.

IT Vision@2015 is aspirational, but achievable. Resource availability will determine how much we can do and how fast we can do it. Implementation roadmaps will identify the strategies and actions we must pursue to achieve each theme. IT governance committees will use the roadmaps to set annual University technology projects and investment priorities. Metrics will be developed and shared to evaluate progress and promote transparency.
Introduction

Technology is changing in exciting ways that can be of great benefit to students, faculty, and staff at California State University, Northridge. If the University is strategic about how we support and leverage these changes, we will create new ways for faculty and students to teach, learn and engage one another. We have the opportunity to change the way Cal State Northridge constituents experience technology services and enhance the way we access, interpret, and act on information.

This document presents the result of a year-long, University-wide conversation, co-led by the Provost and the Vice President for Information Technology, that explored the ways Cal State Northridge students, faculty, and staff expect to experience and use technology in the next three to five years. This resulting IT Vision@2015 document is a collective point of view of how changes in education and research, data driven decision-making, and service delivery will change how we use and support technology. It envisions a future technology environment that is more adaptable, agile, and affordable.

IT Vision@2015 describes a future at Cal State Northridge in which technology is used to engage students, make more services virtual, enhance productivity, and provide the information needed to drive decision-making and help us to be a learning-centered university. Implementing this vision has the potential to improve student recruitment and retention, enable faculty to adopt new pedagogies that improve learning, enable the University to potentially serve more students, and improve the quality and productivity of services to constituents both on and off campus.

The University will have numerous technology choices and will need to choose wisely. Priorities will need to be set, technology services re-examined, and resources focused on projects that are most important in the future. IT Vision@2015 provides direction to guide annual technology planning and investment decisions. IT governance committees will establish the priorities for action and resource availability will determine the vision scope and how quickly we realize our vision.

IT Vision @2015: A Year of Campus Dialog

IT Vision@2015 was developed through a year-long collaborative process that engaged faculty, students, and staff. The process used existing information technology governance committees, faculty governance committees, open forums, and some meetings focused around strategic topics (e.g. sustainability) to generate ideas and insights to the IT Vision@2015. Individual participation was also invited through a project website that provided regular updates on the progress and collected comments and contributions through a blog. In addition, a significant portion of the 2011 Information Technology Annual Survey for faculty, students, and staff featured questions regarding the future use of technology.

The IT Vision@2015 process began with a scan of key trends in information technology and higher education IT strategies. Articles, white papers, and plans envisioning the future were reviewed and shared with the University community. The discussion then turned to envisioning how major technology developments may impact the University, how we may use technology differently to support University priorities and how we will increasingly need to manage technology differently in the future. These questions were explored broadly and some were more focused on specific topics including data, analytics and decision-making, operational effectiveness, and the commercialization of technology.
An interim report was published in January 2011 to share the ideas generated in the fall and winter. During the spring semester, planning and governance groups were further engaged to refine the vision and explore additional topics of interest. A planning calendar with the list of the participating groups is included in Appendix A.

Planning Themes

IT Vision@2015 is organized in four thematic areas with multiple sub-themes that explore specific changes in how the University will use and support technology. Each theme section concludes with a summary of actions and outcomes that will be pursued to realize the vision. As Figure 1 illustrates, the four thematic areas are: *enabling education and research, supporting data informed decisions, exemplary service, and providing agile, adaptable and affordable technology.*

The remainder of this document expands upon each theme and their sub-themes. Each theme also includes a Realizing the Vision table that links the theme actions to the University planning priorities.

Figure 1: IT Vision@2015 Themes and Sub-Themes
Theme 1: Enabling Education and Research

Technology is foundational to student success and a key contributor to our learning-centered University. Students and faculty are exploring and adopting new ways to discover, share and interact with academic content. The University is evolving to a flexible learning environment that incorporates interactive content and teaching tools tailored to particular disciplines and learning objectives. Technology-rich learning spaces, virtual software libraries, and mobile technologies will extend learning beyond the physical classroom. Enhanced infrastructure and applications will support the growing research portfolio and aid scholarly collaborations.

Technology Throughout the Curriculum

The boundaries between online and in-person learning are blurring. Technology already enriches and enables learning in face-to-face, hybrid, and fully online courses. In the future, technology can provide even greater means to supplement in-person courses by engaging students using interactive content to strengthen understanding, facilitate interaction, and simulate problems. In hybrid and fully online courses, technology offers a means to increase access to more affordable and effective education, while enabling the University to teach more students within its existing physical space. More online courses can help improve retention and graduation rates by alleviating enrollment limits in popular courses required to complete certain degrees.

To expand the use of technology in all facets of the curriculum, the current learning management system will evolve into a flexible virtual learning environment. This learning environment will enable faculty and students to assemble content and tools tailored to their preferences, disciplines, and learning objectives. The adoption of open standards and guidelines that promote interoperability will assist faculty to choose technologies that will be easy to use in the University’s learning environment and will be conducive to sharing data among campus systems.

Technology Rich, Flexible Learning Spaces

Learning takes place in many ways and places. Lectures, group projects, self-directed exploration, and impromptu discussions among students as well as between students and faculty are all forms of learning. These learning opportunities take place both inside and outside the classroom. They occur whenever and wherever the students and faculty meet. In the future, new forms of collaboration and communication technologies combined with near ubiquitous access to wireless networks will enable faculty and students to engage with information and each other more extensively.

Video and video conferencing will bring collaborators and guest lecturers from around the world to the University. Students and faculty will have the means to share data, manipulate images, graphs and models, and explore interactive content. To the greatest extent possible, faculty and students will bring the tools and devices of their choice into the classroom and wirelessly connect to course content, classroom technology, and with one another.

Students will work in teams to engage in simulations, conduct experiments in virtual labs and develop team projects and presentations. Collaboration spaces with both the physical and technological elements that enable teamwork will be available in more places around the campus.
Beyond the campus, students can use location-aware mobile devices to collect data, record observations, view videos, and engage in other forms of experiential learning. Students and faculty can also leverage virtual software libraries to access the specialized software and content they need for assignments without requiring a visit to campus or the purchase of specialized software.

Books and Beyond

The transition from static, paper-based course content to digital, media-rich interactive content will increasingly provide new ways for faculty to engage students with a variety of learning styles. Digital content promises to make curricular materials more affordable and accessible through a variety of formats and devices. The ability to more seamlessly integrate publisher content with open content will provide faculty greater flexibility in constructing curricular materials and assignments. To take advantage of open content, simulations, e-books, and interactive web content, the University will use intuitive tools and self-support mechanisms. Increased faculty and student access to integrated training, editing, production, storage and distribution tools will create an opportunity to make video a common component of lectures and assignments.

"Phones and laptops will become the normal way for students to access textbooks and course work.”
- 2011 IT Survey

As more course and personal content is created and stored only in its digital form, faculty and students will require tools to organize, access, and share their digital assets. E-portfolios of the students’ choice will enable them to store and display their content for faculty and one another via the learning environment.

Integrated and Scalable Support

Supporting the growth of hybrid and online courses and extending the use of technology in face-to-face instruction will require a collaborative and integrated set of support services. Multi-disciplinary expertise in instructional design and technology, faculty development, assessment, and accessibility will be required to develop effective technology-enhanced educational experiences. To a greater extent, integrated support services will need the flexibility to support the varied interests and needs of individual faculty members along with the scalability to support entire academic departments and programs.

Expanded Research Tool Kit

In many disciplines, effective technology infrastructure and support is becoming as important to research as lab space and library resources. Increasingly, faculty will expect access to tools in order to analyze data, model problems, access information resources and research instruments, and find and engage collaborative partners. Researchers require support to store, preserve, and make available their scholarly work across multiple media types including data, video, sound, and text.

Looking to the future, faculty will expect to have a suite of tools to enable collaboration with colleagues at other institutions. Faculty will expect technology to facilitate access to their collaborative research partners and electronic resources of other institutions. As the research portfolio evolves, the University will need to expand the capacity of its networks to provide the means to access scientific instruments, data sets or computational resources regardless of their location.
Realizing the Vision: Enabling Education and Research

By 2015, the University will:

| Academic Excellence | • Feature a virtual learning environment in which faculty members have greater latitude to select and use specialized tools to support particular applications of technology in the classroom.
• Expand resources (e.g., grant programs, release time, teaching labs) available to support faculty development and experimentation with new technologies and pedagogies.
• Provide access to teaching labs that enable faculty to explore the use of new technologies for use in the classroom.
• Support efforts to convert entire programs to hybrid or completely online delivery.
• Expand the institutional repository to organize, store and provide access to digital content and data created by faculty and students.
• Align the technology infrastructure capacity with the expanded University’s research portfolio.
• Support the design and implementation of research data management plans and services. |
|---|---|
| Student Engagement | • Provide technology-enabled learning spaces outside of traditional classrooms.
• Identify new standards for a technology enriched classroom and transition to the new standards over three to five years. |
| User-Friendly Practices/Exemplary Services | • Build or acquire tools to make it easier for faculty and students to find, organize, and use artifacts from the repository in courses and research projects.
• Develop policies and practices to establish ownership and guide the appropriate use of digital media created by faculty and students.
• Provide enhanced support services to faculty and staff for the creation of digital media and the use of large data sets in teaching and research.
• Create services in partnership with the library to facilitate organizing and maintaining digital assets.
• Feature more self-service, just-in-time support.
• Further integrate technology support with other areas that are essential to teaching with technology (e.g., library). |
Theme 2: Supporting Data-Informed Decisions

In the future, analysis will move beyond helping understand what has happened and instead, increasingly help predict what might happen. Data sources will need to become more definitive and more widely accessible, providing faculty and staff with greater access to sources of data, both internal and external to the University.

Understanding Data and Predicting the Future
The University will deploy technologies that enable the analysis and reporting of data in forms to make information meaningful and actionable. Faculty and staff will have greater capacity to build predictive models around critical issues to integrate these data models into processes and management decisions. Analytics will be increasingly embedded into processes as early warnings to catch enrollment targets that may be missed, cost over-runs before they occur, or to identify students that are at risk. These warning systems will model a wider variety of potential root causes of problems and provide more proactive alerts to faculty and staff.

Self-Service Analysis
Users will expect to have information via self-service with ability to receive operational reports on-demand. University leaders will want access to a common dashboard of performance metrics and leading indicators to monitor the implementation of campus plans. Faculty and staff will want to use data and analytical tools without specialized training. Decision makers seek the capability to perform analysis on-demand that combines University data with data from external sources. The University will need consistent, authoritative sources of data to eliminate the confusion associated with multiple sources of data and redundant shadow systems.

Realizing the Vision: Supporting Data-Informed Decisions

<table>
<thead>
<tr>
<th>By 2015, the University will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Friendly Practices/Exemplary Services</td>
</tr>
<tr>
<td>• Have a University data model to support analysis.</td>
</tr>
<tr>
<td>• Have a robust data warehouse and tools (e.g., dashboards, modeling and virtualization tools) to help analyze administrative and academic data.</td>
</tr>
<tr>
<td>• Have processes to combine University data with data from external sources to facilitate comprehensive analysis.</td>
</tr>
<tr>
<td>• Perform routine reporting and analysis through self-service.</td>
</tr>
<tr>
<td>Student Engagement/Resource Enhancement</td>
</tr>
<tr>
<td>• Build predictive data models with alerts embedded in business processes.</td>
</tr>
<tr>
<td>• Have expertise in developing and/or deploying solutions that contextualize data in ways that support decision-making and predictive analysis.</td>
</tr>
</tbody>
</table>
Theme 3: Exemplary Service

The University serves a highly mobile population that will increasingly expect to access information and services where they are and when they need it. The service delivery model will increase transition from in-person to online. At the same time, constituents will expect that services and communications become more relevant, timely, and personalized.

Service Anytime, Anywhere, Anyhow

By necessity and choice, students, faculty, and staff are increasingly mobile. Education and work are performed from many locations at all times. Students, faculty, and staff expect a host of essential services and information to be available without the requirement to stand in a line, visit an office, schedule an appointment, or even be on campus. Online services will increasingly expand to include broader academic and administrative support functions such as counseling, tutoring, and career services. Cal State Northridge users will expect communication technologies to move them seamlessly from self-service to personalized service.

71% of CSUN students surveyed believed it is likely or highly likely in the next three to five years that students will prefer to use their mobile devices to access most student services.

– 2011 IT Survey

Efficient and Productive

The University seeks to continuously improve processes by making them more efficient and responsive to users’ needs. Administrative offices will expect technology to help increase the productivity of services, deliver more self-service, and position the University to serve more students. Administrative leaders will expect routine transactions to be facilitated extensively by automated workflows with reviews and approvals accomplished with secure electronic signatures. Staff and their constituents will expect the ability to exchange documents, collect information, access services, and provide pertinent information through the use of online resources and eliminate the routing of paper.

University administrative leaders will require the flexibility to assemble services from the combination of providers that offers the best experience for students, faculty, and staff. Shared services (leveraging expertise with other groups to collaborate, share knowledge and increase efficiency, sometimes lowering cost of delivery) between other CSU campuses or organizations are likely to become more prevalent. Even as services are assembled from more varied providers, constituents expect them to be consistent, intuitive, and integrated.

Processes and services are likely to need to change more rapidly; as a result, support for administrative technology services will need to become more agile to respond to changing needs and priorities. University technologies will need to work in concert with a broader array of software without sacrificing the ability to secure and share institutional data.

Personalized Service

In the future, the University will maintain more numerous, multi-faceted relationships with its internal and external constituents to support institutional goals including diversifying sources of revenue, improving service quality, extending networks to support career placement, serving and supporting the community, and improving enrollments in for-credit and non-credit programs. Students, faculty, staff, alumni, and supporters will expect that every part of the University they come in contact with will know who they are and tailor their interactions accordingly. Service
providers will need to know more about their users’ interests and preferences to tailor communications and programs.

Technology can play important roles in enhancing user engagement strategies. First, it should help create a base of knowledge about the University’s constituents, what they do, and how they interact with the campus. Sharing access to this information enables the many offices that serve the internal and external user community to maintain as complete a picture as possible of the events, programs and institutional services they experience, as well as their interests and preferences. Second, becoming more adept at using an increasing variety of communication tools and practices will help to inform our users about events, programs, and opportunities. Communications can be tailored based on a constituent’s interests and preferences for receiving information. Third, technology can expand capacity to assess the effectiveness of our engagement strategies. By combining data about interests with user communications and engagement history, the University will develop a greater understanding of the effectiveness of our programs and outreach strategies.

Realizing the Vision: Exemplary Service

<table>
<thead>
<tr>
<th>By 2015, the University will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Friendly Practices/Exemplary Services</td>
</tr>
<tr>
<td>- Embed the ability to work on a variety of computing platforms (including mobile platforms) as a standard requirement in software selection and development projects.</td>
</tr>
<tr>
<td>- Expand staff competency and capacity to develop and integrate mobile applications.</td>
</tr>
<tr>
<td>- Adopt personalized, online self-service as a standard for service delivery.</td>
</tr>
<tr>
<td>- Deploy technologies that allow students, faculty, and staff to access needed resources from any location, time, or Internet-capable device.</td>
</tr>
<tr>
<td>- Partner with sister CSU campuses, and other universities and education institutions to leverage delivery of common shared services.</td>
</tr>
<tr>
<td>- Integrate remote support technologies in online services and processes.</td>
</tr>
<tr>
<td>- Create and use significantly more sophisticated interactive content in our efforts to engage users.</td>
</tr>
<tr>
<td>- Build work tasks based on prompts and triggers from integrated workflow processes.</td>
</tr>
<tr>
<td>- Provide online access to support materials and documents related to business process task.</td>
</tr>
<tr>
<td>Campus & Community Collaboration</td>
</tr>
<tr>
<td>- Leverage constituent relationship management technologies and processes to personalize services.</td>
</tr>
<tr>
<td>- Employ an ever-evolving set of communication technologies to reach our University community.</td>
</tr>
</tbody>
</table>
Theme 4: Agile, Adaptable, and Affordable Technology

To realize its vision, the University needs its technology to be able to adapt more rapidly to changing needs and priorities. Individuals require greater latitude to choose the appropriate technology to meet their needs and use it easily within the University technology environment. Students, faculty, and staff will expect services that guide their choices and use of technology with support structures that respond quickly to meet new and emerging needs.

Users will be Choosers

The next five years will accelerate a fundamental change in how the University provides and manages technology services, moving from a technology service model in which a user’s choice of technology is limited by what the University provides and supports. The IT Vision@2105 envisions a new model of technology services that optimizes user choice while sustaining the reliability, security, interoperability and ease of use. Students, faculty, and staff will want a broad a set of options and the flexibility to quickly choose the application, content or device they need. Users will expect to be able to easily connect these new tools with the University’s technology environment with minimal or no assistance.

While this vision is alluring, it is also complex and will change the support model to concentrate more on the interoperability of technologies to preserve their ease of use and compatibility as sources of content and formats for methods for defining and storing data proliferate. The University will need to adopt standard definitions, protocols, and frameworks that guide technology decisions, sustain the integrity and security of data, and provide mechanisms for sharing information across many applications and services.

Facilitators and Guides

Information technology facilitators will be needed to assume the role of guides in helping identify and implement solutions. The University will utilize a complex environment in which technologies and services are obtained from a myriad of sources and integrated together to create a cohesive experience. In the next five years, the University will transition from the direct delivery and maintenance of technology services to a focus on facilitating and enabling the effective use of technology provisioned from multiple sources. Services will increasingly become more scalable and more available through self-service.

University technology services will need to become more nimble and adaptable, using methodologies and tools to enable the deployment of solutions more rapidly. New strategies will require expanding competencies to identify, negotiate, and manage effective partnerships and collaborations within and external to the University.

Agile and Robust Infrastructure

Increasingly, the infrastructure will become a gateway into which students, faculty, and staff connect their choice of applications, tools and content. University systems will need to be able to verify the identity of our constituents.

1 EDUCAUSE Research Fellow, Ron Yanosky, first described the concept that users will become choosers in a chapter that appeared in the book, The Tower and the Cloud, edited by Richard Katz.
and collaborators and provide them access to the appropriate information and services. Each aspect of the IT Vision@2015 rests on the assumption that the University will continue to develop and maintain a capable network and identity management infrastructure. Commitment to open standards has the potential of enabling greater choice of technology without sacrificing interoperability or creating stovepipes of data. To realize efficiencies of scale and redundancy, technologies will increasingly migrate to public and private clouds. Software-as-a-Service and Technology-as-a-Service (e.g., the cloud) will increasingly become preferred strategies when needs are not highly differentiated, expertise is limited, or opportunities to participate in greater economies of scale are apparent.

Realizing the Vision: Agile, Adaptable, and Affordable Technology

<table>
<thead>
<tr>
<th>By 2015, the University will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Excellence</td>
</tr>
<tr>
<td>• Deliver Internet and on-campus network capacity aligned with academic and administrative needs.</td>
</tr>
<tr>
<td>• Provide access to experimental and research network environments for University research.</td>
</tr>
<tr>
<td>Resource Enhancement</td>
</tr>
<tr>
<td>• Leverage scalable cloud-based storage, server, software, and platform solutions provided by non-profit partners (e.g., CENIC) and the CSU and non-profit partners to replace the need for on-campus infrastructure.</td>
</tr>
<tr>
<td>User Friendly Practices/ Exemplary Services</td>
</tr>
<tr>
<td>• Guide effective adoption of cloud solutions with policies, technical standards, procurement processes, and advisory services.</td>
</tr>
<tr>
<td>• Enable individual faculty, students and staff to use storage solutions (e.g., Google, Dropbox) and other applications (e.g. YouTube) that are commercially and/or freely available to individuals, while managing the risk to University data.</td>
</tr>
</tbody>
</table>
Broader Implications

The IT Vision@2015 process has also framed some broader issues that are worthy of additional discussion. These issues speak to the policy, cultural and operational dependencies that could impact success with technology. They are briefly summarized below.

Implications for Facilities Planning

- Growth in hybrid courses may change the type and mix of classroom space required.
- Virtual computer labs will change the use of traditional computer labs. In their place, the University may need more spaces for students to work collaboratively.
- Broader adoption of online testing will create the need for specialized testing spaces. To the extent that courses are offered online, the University may require access to computer-based testing facilities off-campus.
- The University may experience an increased demand for collaborative study spaces outside the classroom, requiring such spaces to be designed into new construction and remodeled buildings.

Implications for Policy

- Policies may need to be amended to consider the type of data the University is willing to store outside of its direct control, including personally-owned devices. Data policies may also need to address when and what kinds of enterprise data can be made available to be used by other applications that are not within the management responsibilities of the central IT division, the University, or the CSU.
- Policies and processes (as well as technologies) may need to be established to govern how an individual’s identity is verified in a completely online interaction with the University (e.g., an online learning student taking a course).
- As technology provides more capabilities to track individuals’ interests and activities, policies may need to be established to safeguard privacy rights.
- As faculty and students create and use more digital content in their teaching and learning, intellectual property and copyright, policies may need to be clarified and revised.

Implications for Cultural Change

- Technology will provide the means to enable students, faculty, and staff to participate in the University without being on campus physically. The University will need to ensure that technology is effectively utilized to create new kinds of communities and encourage interpersonal interaction.
- Shared and cloud-based services will challenge the ability to compromise and partner with other entities. It will cause us to consider where unique processes create important benefits and where they can be given up in favor of access to greater expertise or economies of scale.

Implications for the Curriculum

- Online courses will make it possible for students to complete degrees with courses taken from a variety of institutions. The University may need to work with other CSU campuses to allow students from any campus to register for classes at other campuses while gaining credit toward a degree at the home campus. To achieve this goal, Cal State Northridge may need to move from a unified campus-based curriculum toward one that is more exchangeable with other campuses.
• As faculty create digital assets for instruction, they may need to share these teaching and learning materials with other faculty members at the University, throughout the CSU, and within the higher education community.

• It may become more typical for students to complete the first two years of university at community colleges. Online and hybrid classes may be used to integrate students’ university experience as they transition from community college and even high school to a university, allowing them to begin earning university credits while still attending community college or high school.

Moving Forward

This plan establishes a long-term aspiration. Realizing the vision it describes will require several individual projects and changes. As a follow-up to this plan, implementation of IT Vision@2015, “roadmaps” will be developed for each theme. The roadmaps will establish the major strategies and high level sequencing of initiatives to implement the IT Vision@2015. Each year, the Information Technology governance and advisory groups will work with the Information Technology division leadership to identify annual project priorities that are consistent with the IT Vision@2015 roadmaps and the University planning priorities.

Progress towards the goals will be measured and reported to the University community annually. The Information Technology governance and executive campus leadership will evaluate progress and validate or amend goals, strategies, and priorities as circumstances warrant. In this sense, the IT Vision@2015 will be a living document that adapts to shifts in institutional needs and priorities. While the goals and aspirations it describes are unlikely to change, the strategies, tactics, and priorities pursued will be shaped by external events, lessons learned from initial pilots, and new opportunities that are discovered as we implement the IT Vision@2015 plan.
Appendix A: IT Vision@2015 Planning Calendar

<table>
<thead>
<tr>
<th>Month</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT GOVERNANCE</td>
<td></td>
</tr>
<tr>
<td>Advisory Comm Academic Tech (ACAT)</td>
<td>23</td>
<td>19</td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom Technology Comm</td>
<td>19</td>
<td>6</td>
<td>12</td>
<td>30</td>
<td>22</td>
<td>23</td>
<td>30</td>
<td>26</td>
<td>18</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Desktop Admin & Svcs Comm (DASC)</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASC with All Campus Technical Staff</td>
<td></td>
</tr>
<tr>
<td>Executive Tech Steering Comm (ETSC)</td>
<td></td>
</tr>
<tr>
<td>SOLAR and Administrative Systems Comm (SASC)</td>
<td>18</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Infrastructure & Services Comm (TISC)</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>FACULTY GOVERNANCE</td>
<td></td>
</tr>
<tr>
<td>Academic Technology Comm (ATC)</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Resources Comm (ERC)</td>
<td></td>
</tr>
<tr>
<td>Library Faculty Senate Meeting</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
</tr>
<tr>
<td>Academic Resources Comm (ARC)</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility Meeting</td>
<td></td>
</tr>
<tr>
<td>College Administrative Council Meetings</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Division Administrative Council Meetings</td>
<td></td>
</tr>
<tr>
<td>Faculty Focus Group</td>
<td></td>
</tr>
<tr>
<td>Faculty Chair Retreat</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT All Staff Meeting</td>
<td></td>
</tr>
<tr>
<td>Paperless Meeting</td>
<td></td>
</tr>
<tr>
<td>Provost's Council</td>
<td></td>
</tr>
<tr>
<td>Staff Focus Group</td>
<td></td>
</tr>
<tr>
<td>Student Focus Group</td>
<td></td>
</tr>
<tr>
<td>Sustainability Meeting</td>
<td></td>
</tr>
<tr>
<td>User Planning & Budget Group (UPBG)</td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Legend
- **Introduce concept of IT Vision@2015/Initial Discussion**
- **Visioning discussions**

Fiscal Year 10-11

Fall 2010 Semester

Spring 2011 Semester

Summer 2011