Iron deficiency and infant gross motor development: linked randomized controlled trials of pre- and/or postnatal iron supplementation

Rosa M Angulo-Barroso, PhD1,4, Ming Li, MD2, Denise CC Santos, PhD3, Julie Sturza, MPH4 and Betsy Lozoff, MD4

1Kinesiology, California State University, Northridge, Northridge, CA, USA; 2Department of Pediatrics, Peking University First Hospital, Beijing, China; 3Human Movement Sciences, Methodist University of Piracicaba, Piracicaba, SP, Brazil; 4Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA

No author has any conflict of interest

Opinions reflect those of the authors and not necessarily the funding agencies

INTRODUCTION

- Motor development is a critical factor in child behavior and is associated with cognitive and social-emotional development (Angulo-Barroso et al., 2011; Hadders-Algra 2008; Piek et al., 2008; Murray et al., 2006).
- Iron deficiency (ID) in infancy is associated with poorer motor development: short and long-term effects on fine and gross motor development (Shafir et al., 2008, Gunnarsson et al., 2007, Shafir et al., 2006).
- Randomized controlled trials (RCTs) show positive effects of iron supplementation in infancy (Lind et al., 2004, Friel et al., 2003, Stoltzfus et al., 2001).
- No previous RCT considers effects of the timing of iron supplementation (pregnancy vs. infancy) on motor development.

AIM

To examine the effects of iron supplementation in pregnancy and/or infancy on infant gross motor development at 9 mo.

METHODS

- Design: RCT of iron supplementation in infancy linked to RCT of iron supplementation in pregnancy (Fig. 1).
- Sample: Participants from Hebei Province, China
- Inclusion criteria: Healthy full-term neonates with outcome for prenatal RCT and neonatal/6w developmental testing
- Exclusion criteria: Low cord ferritin suggestive of brain ID (< 35 µg/L) (Siddappa et al., 2004), Perinatal conditions (e.g. multiple birth, prematurity, maternal diabetes, birth complications)
- Assessment of motor development at 9 mo: Peabody Developmental Motor Scales 2nd ed. (PDMS-2)

RESULTS

Table 1. Sample characteristics

<table>
<thead>
<tr>
<th></th>
<th>Placebo/placebo</th>
<th>Placebo/iron</th>
<th>Iron/placebo</th>
<th>Iron/iron</th>
<th>p-value1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at testing, mo</td>
<td>9.3 (0.4)</td>
<td>9.2 (0.4)</td>
<td>9.3 (0.4)</td>
<td>9.2 (0.4)</td>
<td>0.07</td>
</tr>
<tr>
<td>Sex, % male</td>
<td>53</td>
<td>46</td>
<td>50</td>
<td>52</td>
<td>0.26</td>
</tr>
<tr>
<td>Birth weight, g</td>
<td>3372 (374)</td>
<td>3373 (387)</td>
<td>3324 (370)</td>
<td>3380 (351)</td>
<td>0.22</td>
</tr>
<tr>
<td>Gestational age, wk</td>
<td>39.7 (1.1)</td>
<td>39.7 (1.1)</td>
<td>39.7 (1.1)</td>
<td>39.7 (1.0)</td>
<td>0.83</td>
</tr>
<tr>
<td>9-month WAZ</td>
<td>1.03 (2.7)</td>
<td>0.80 (1.08)</td>
<td>0.92 (0.98)</td>
<td>0.96 (0.98)</td>
<td>0.23</td>
</tr>
<tr>
<td>ID2 at 9 months, %</td>
<td>68</td>
<td>60</td>
<td>68</td>
<td>68</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Values are Mean (SD) for continuous variables or % for categorical ones. *Anova or x². ID defined as ≥ 2 abnormal iron measures (MCV < 74 fl, ZPP/H > 69 µmol/mol heme, serum ferritin < 12 µg/L).

- Infants who received iron postnatally, regardless of whether or not their mothers received iron supplements in pregnancy, showed better PDMS-2 outcome compared to infants who did not receive iron postnatally (received iron only prenatally via maternal supplements or in neither time period) (Fig. 2).

DISCUSSION AND CONCLUSIONS

- Motor scores were higher with iron supplementation in infancy.
- Why only postnatal effect?
 - Rapid gross motor development in this period (6 w – 9 mo) may contribute to increase sensitivity to insufficient iron
- Insufficient external sources of iron in infancy appear to limit infant gross motor development.
- Poorer gross motor development may initiate cascading effects on cognitive and socio-emotional development
- The RCT design supports causal inferences.
- Iron supplementation in infancy, with or without iron supplementation in pregnancy, improved gross motor test scores at 9 mo.

Acknowledgments

- NICHD and the Office of Dietary Supplements (R01HD052069) and Vifor Pharma, Ltd.
- Postdoctoral sponsorship: Methodist University of Piracicaba and São Paulo Research Foundation – FAPESP/Brazil.

References

- Friel et al., Journal of Pediatrics, 2003; 43:582-586
- Hadders-Algra M. Development. 2008; 84:787–789
- Piek et al., Human Movement Science, 2006; 27-268-681
- Shafir et al., Horm Metab Sci., 2006; 25:321–328
- Shafir et al., Early Hum Dev. 2008; 84:475–485
- Stoltzfus et al. BMJ 2001; 323:1–9

Figure 1. Flowchart of study participation

Figure 2. PDMS-2 results by group

Figure 2. PDMS-2 results by group