Genetics & Development


Faculty in the Genetics and Development Area conduct a broad spectrum of research activities funded by NIH, NSF and other agencies. We foster a collaborative and cooperative research environment, providing excellent research experience for our students.

Ray Hong - developmental genetics and chemosensory behavior of nematodes

Ray HongAssociate Professor
Ph.D. University of California, San Diego
Phone: 818-677-3347
Fax: 818-677-2034
Office: Citrus Hall 3220

Nematodes are ideal candidates for the study of development and behavior in the context of ecology because they are ubiquitous, small organisms that occupy most of the Earth’s known ecological niches: soil, animals, and plants. Unlike most animals, nematodes are easy to culture and readily “domesticated” in the lab for analyses at the genetic, cellular, and organismal levels. My work primarily involves the use of the nematode model Pristionchus pacificus, which has been used to study the evolution of developmental processes in a comparative context using genetics and molecular biology. P. pacificus is  maturing as a genetic study system. In general, Pristionchus species are free-living nematodes associated with beetles, and all are easily obtained from the wild as well as maintained and freeze stocked in the lab. Pristionchus nematodes maintain specific insect interactions by intercepting the intra-species communications of their host insects, and natural variation in chemosensation can be analyzed in P. pacificus populations since instinctive chemosensory behaviors are often developmentally determined. Currently, there is no known interspecies pheromone receptors known in nematodes, so we are particularly keen on finding out what receptors P. pacificus uses to detect the pheromone of one of its hosts, the oriental beetle. My ultimate goal is to understand the specific developmental and genetic nature of Pristionchus attraction to beetles compounds from the molecular to the population level.

Cindy Malone - genetic and epigenetic regulation of gene expression

Associate Professor & Director CSUN-UCLA Bridges to Stem Cell Research Program
Ph.D. University of California, Los Angeles
Phone: 818-677-6145
Fax: 818-677-2034 
Office: Chaparral Hall 5421

My research program focuses on gene regulation or the process of how genes are turned on and off. Controlling when and where genes are turned on and off is critical for normal cell function. Without this strict control of gene expression, organisms would not develop properly or be able to sustain life. The study of gene regulation is a fundamental part of the search for more effective treatments for a wide range of diseases including heart disease, diabetes, autoimmune disorders, and cancer. Using standard molecular biology techniques, we dissect both the genetic factors and the epigenetic factors affecting the expression of several different gene promoters. Genetic factors involved in gene regulation include transcriptional activators and repressors whose interaction with gene promoters and enhancers are dictated by the DNA sequence, or changes in DNA sequence that occur through mutations. Epigenetic factors involved in gene regulation consist of chemical modifications to the DNA, like CpG methylation, and modifications to the chromatin, like histone acetylation, but do not involve DNA sequence changes.

Rheem Medh - genetics of cell death

Rheem MedhProfessor
Ph.D. University of Texas Medical Branch, Galveston
Phone: 818-677-3338
Fax: 818-677-2034 
Office: Chaparral Hall 5422

My primary interest is in understanding how cells die. There are multiple forms of cell death; the one I am most interested in is called "apoptosis" or "programmed cell death". It is a form of cellular suicide, where the dying cell activates within itself a series of well-orchestrated events including activation and repression of precise sets of genes, which modulate the execution. This basic process holds the key to normal body function, health and disease. Apoptosis has been shown to play a role in several physiological processes, including development, normal tissue turnover, immune cell selection, and reproduction. Excessive apoptosis, or a defect in the process has been implicated in diseases such as neurodegenerative disorders like Alzheimers, autoimmune disorders, and cancer. My long-term goal is to understand the early genetic triggers of apoptosis and to use this information to design therapeutic strategies to alleviate or overcome human diseases, particularly cancer and bone disease.

Aïda Metzenberg - molecular genetics of human disease

Aïda MetzenbergProfessor
Ph.D. University of Wisconsin, Madison
Phone: (818) 677-3355
Fax: (818) 677-2034
Office: Chaparral Hall 5213

I am interested in the molecular basis of rare, heritable disorders. Our work has recently focused on Chondrodysplasia Punctata (CDPX2), which is due to a defect in cholesterol biosynthesis. Another disorder that we are studying is Dyskeratosis Congenita (DKC), a lethal telomerase defect. We have expanded our horizons towards treatment of heritable disorders, including Mucopolysaccharidosis II (MPS2), Neurofibromatosis 1 (NF1), Hereditary Inclusion Body Myopathy (HIBM) and sickle cell anemia.

Steven Oppenheimer - cell binding, cancer research

Steven OppenheimerProfessor
Fellow, AAAS
CSU System Trustees Outstanding Professor
United States Presidential Awardee
Ph.D. The Johns Hopkins University
Phone: (818) 677-3336
Fax: (818) 677-2034 
Office: Chaparral Hall 5207

My students and I investigate the molecular basis of cell-cell interactions in cancer and development. At this stage in my career, I am only accepting undergraduates in my lab.

Cheryl Van Buskirk - molecular genetics of behavior

Cheryl Van BuskirkAssistant Professor
Office Phone: 818-677-4591
FAX: 818-677-2034
Office: Citrus Hall 3216A

My research investigates two things we can all relate to: stress (!) and sleep (zzz...). We study the molecular genetics of stress responses and sleep regulation using the nematode worm C. elegans. This model organism has a very simple nervous system (only 302 neurons) yet it displays many complex behaviors. Further, the signaling pathways regulating some of these behaviors appear to be deeply conserved, and hence studies in the worm have the potential to shed light on behavioral regulation within more complex nervous systems. The major focus of the lab right now is to investigate how these animals respond behaviorally to stress. We have recently found that in response to a wide range of stressful situations, C. elegans will go to sleep, using the EGF signaling pathway and the sleep-inducing ALA neuron. We hypothesize that sleep helps them cope with proteotoxic stress (protein misfolding). Very exciting!

Virginia Oberholzer Vandergon - molecular evolution of multigene families

Virginia VandergonProfessor
Ph.D. University of California, Riverside
Phone: 818-677-6362
Fax: 818-677-2034
Office: Chaparral Hall 5418

My research interests lie in looking at evolutionary processes that are involved in genome change. Using bioinformatics and molecular tools I am looking at the evolutionary history of genes through the study of gene families. Plant genomes appear to have recruited copies of genes resulting in many gene families. To better understand this I have looked at the recruitment and redundancy of two nuclear plant gene families chalcone synthase (CHS) and myb. I am studying these gene families addressing questions of recruitment and rates of recruitment.