"Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications", Cvicek et al.

Supporting Text 1

Here we compare the GRoSS alignment to two other available GPCR alignments:

- 1. Structure based alignment with gaps developed by Isberg et al. [24], downloaded from GPCRDB [78]
- 2. HMM-HMM based alignment created by hhalign [77]

Comparison of GRoSS sequence alignment to HMM-HMM and GPCRDB

GRoSS

Within each GPCR class, the GRoSS alignment is an alignment that preserves the most conserved (BW) residues and has been curated not to contain gaps in the TM regions. First, we used Clustal Omega [37] to align small (~40) groups of proteins together so that no gaps are created in the TM regions. These individual alignments were then aligned together again using Clustal Omega, which uses hidden Markov model for profile-profile alignments. Between classes, the sequences were aligned to maximize the number of conserved contacts.

НММ-НММ

We compare our alignment to a general HMM-HMM alignment computed for each target—template pair taken from the available crystal structures. For each crystal structure, we searched for related sequences using hhblitz (<u>http://toolkit.lmb.uni-muenchen.de/hhblits</u> with database: uniprot20_2013_03). The representative alignment was stored and used as a HMM model for HMM-HMM alignment performed with hhalign [77].

GPCRDB

Isberg et al. [24] performed a detailed structural comparison of the GPCR crystal structures and concluded that the optimal alignments of TMs between some pairs of GPCR proteins have single residue gaps, which correspond to bulges or constrictions on the helices. We downloaded the Isberg alignment from GPCRDB [78], which contains several differences from the published version in [24] (panels A, I, and N in Figure 3 of ref. [24]). We assume that the differences are caused by a need to reconcile the pairwise alignments into a global alignment.

To the best of our knowledge, the gaps in the GPCRDB alignment cannot be predicted without prior knowledge of the protein structures. For example, sequence CIGWG in CRF1 aligns to IG-WG in GLR (Fig. 3G in [24]). Also HMM-HMM has

difficulty identifying the GPCRDB's gaps. Table A highlights the differences between HMM-HMM and GPCRDB alignments in terms of number of misaligned residues in all TM regions for the crystallized GPCRs considered. HMM-HMM manages to predict all GPCRDB TM gaps for only a small number of target—template pairs (value 0 in Table A). However, for most pairs even within class A HMM-HMM cannot correctly determine the gaps (small positive values in the table). Large number of misaligned residues between different classes means that HMM-HMM is not suitable for comparisons across the different GPCR classes.

													Tem	plate											
		Α																			В		C		F
Target		RHO	Beta 1AR	Beta2AR	D3	H1	M2	M3	5HT1B	5 HT2 B	A2A	S1P1	CXCR4	CCR5	KappaOR	MuOR	NOP	DeltaOR	PAR1	P2Y12	CRF1	GLR	MGLU1	MGLU5	SMO
Α	RHO		1	1	3	1	0	0	0	12	4	- 33	4	4	0	2	2	2	41	23	- 30	18	- 96	94	93
	Beta1AR	1		0	5	2	1	1	1	15	5	- 34	5	7	1	3	3	3	43	27	- 34	19	92	88	Π
	Beta2AR	1	0		6	3	1	1	1	15	5	- 34	5	7	1	3	3	3	43	- 26	- 33	19	- 97	91	Π
	D3	3	5	6		5	5	3	1	6	3	- 33	3	3	7	8	8	8	- 35	21	48	26	100	- 96	93
	H1	1	2	1	5		1	1	1	5	5	- 34	3	3	7	8	9	9	- 39	23	40	- 24	101	97	83
	M2	0	1	1	4	1		0	0	12	4	32	5	5	0	2	3	3	37	23	- 44	18	- 97	94	71
	M3	0	1	1	3	1	0		0	12	4	32	4	4	0	2	2	2	- 36	22	43	18	101	95	72
	5HT1B	0	1	1	1	1	0	0		9	4	- 33	2	2	1	2	2	2	- 34	21	45	16	- 96	92	84
	5HT2B	12	15	15	6	5	12	12	9		13	41	12	11	15	15	16	16	42	- 30	51	32	108	100	89
	A2A	4	5	5	3	5	4	4	4	13		23	6	5	4	6	6	6	- 35	19	27	19	94	92	89
	S1P1	- 33	- 34	- 34	- 33	- 34	32	32	- 33	41	23		- 33	- 33	- 33	- 33	- 33	- 33	40	- 35	45	18	114	108	101
	CXCR4	4	5	4	3	3	5	4	2	12	6	- 33		3	7	6	- 5	6	32	- 25	21	17	- 98	91	98
	CCR5	4	7	- 7	3	3	5	4	2	11	5	- 33	3		4	4	4	5	31	- 26	21	20	103	- 99	103
	KappaOR	0	1	1	7	7	1	0	1	15	4	- 33	7	4		1	0	1	- 35	- 29	24	9	- 98	93	103
	MuOR	2	3	3	8	8	2	2	2	15	6	- 33	6	4	1		0	0	- 36	26	- 24	15	- 97	93	97
	NOP	2	3	3	8	9	3	2	3	16	6	- 33	5	4	0	0		0	- 36	- 25	- 24	20	- 94	92	- 99
	DeltaOR	2	3	3	8	9	3	2	2	16	6	- 33	6	5	1	0	0		- 36	26	24	10	- 94	91	100
	PAR1	41	43	43	35	39	37	- 36	34	42	35	40	32	31	35	- 36	35	36		3	31	24	100	96	106
	P2Y12	23	27	26	21	23	23	22	21	- 30	19	35	25	26	- 29	26	25	26	3		25	18	- 99	95	79
В	CRF1	29	- 34	- 33	48	42	49	44	45	53	27	44	21	21	24	24	24	- 24	32	25		23	85	61	81
	GLR	16	19	18	26	24	18	18	16	32	19	18	17	20	9	14	20	17	24	18	23		90	91	66
C	MGLU1	98	94	98	100	100	- 99	102	97	108	- 76	118	98	103	98	97	94	97	102	99	79	- 73		0	105
	MGLU5	- 95	- 90	92	- 96	- 98	- 95	- 97	92	102	- 94	113	93	- 99	93	93	93	94	98	- 95	- 56	- 74	0		99
F	SMO	93	-77	-77	100	83	71	72	85	89	81	100	98	103	103	97	99	100	106	70	81	66	87	- 99	1

Table A. Number of misaligned residues in the TM regions between GPCRDB and HMM-HMM.

Comparing GRoSS to the reference alignments

The GRoSS alignment refines the BW TM.50 residues extended from class A to classes B, C, and F. In terms of the notation used in [24], this would be referred to as TM.50a, denoting the use of class A as a reference. For each TM and each target—template pair we compute the relative offset of the BW residues in the HMM-HMM alignment. If the offset is 0, we use "_" as a label; if the offset is 9 or more residues, we use "9"; and if template BW residue maps to a loop or a wrong TM, we use "X". Table B shows the relative alignment of the BW residues between the GRoSS and the HMM-HMM alignments with the labels for the 7 TMs concatenated into one string.

When both the target and the template are from the same class, HMM-HMM aligns correctly all 7 BW .50 residues. When using class A templates for class B targets, HMM-HMM often gives the correct BW correspondence, and in some instances is off

by one turn (4 residues) on TM5. Class C gets TM7 off by 6 residues, which already constitutes too large of an error for homology models. The alignment between class A and SMO (class F) varies, but most often it disagrees by 4 residues on TM5 and 1 residue on TM7.

Table C shows the same comparison but between the GRoSS and the GPCRDB alignments. Here, classes A and B are aligned identically, class C differs by 1 residue on TM7 and class F differs on 3 TMs by 2 or 3 residues.

	Missignment of HW residues																							
												Ten	nplate											
	A																			8		С		F
Target	RHO	Beta1AR	Beta2AR	D3	H1	M2	М3	SHE	SHT2B	A2A	S1P1	CKCR4	CORS	KappaOR	MuOR	NOP	DeltaOR	PAR1	P2Y12	CRF1	GLR	MGLU1	MGLUS	SMO
A RHO																						_11_336	_11_336	411
Beta1AR																						_11_136	_11_1%	1
Beta2AR																						_11_1B6	11 136	1
D3																				4		_11_X9K	_11_X9X	4XX
H1																				4		11 136	11 136	1
M2																				4		11 136	11 136	1
M3																				4		11 136	11 136	1
SHT1B																				4		11 136	11 136	451
5HT28																				4		11 136	11 136	1
A2A																						11 136	11 136	41
SIPI																				4		11 336	11 336	41
CXCR4		-	_			_				-			-			_	-	_				11 336	11 336	41
cars																						11 136	11 136	431
KannaOlt		-	_			_										_	-	_				11 336	11 336	4 1
MuOR																						11 136	11 136	41
MOP		_	_													-		_				11 136	11 136	41
DeltaOlt										_	_				-	-						11 136	11 136	4 1
PAR1	-		_			<u> </u>			-			-						-			-	11 136	11 136	4 1
P7W12	-		_	-	-	_			-			-		-	_				-		-	11 106	11 136	
R CIEFI			-	4	4	4	4	4	4		4	-			-			-			-	336		r se
GUR				<u> </u>	<u> </u>	<u>—-</u> —	<u> </u>		<u>— –</u>			<u> </u>			-			_			<u> </u>	3 785	3 736	
C MGUU1	11 36	11 136	11 136	11 999	11 136	11 136	11 116	11 136	11 136	11 1 6	11 36	11 836	11 136	11 836	11 136	11 136	11 136	11 1%	11 186	316	3 7 6		- 1.00	1 3717
MGUIS	11 786	11 135	11 136	11 999	11 136	11 186	11 136	11 136	11 186	11 136	11 136	11 136	11 135	11 136	11 18	11 18	11 136	11 136	11 18		3 7 6			1 3717
F SMO	411	1	1	499	1	1	1	411	1	1	4 1		431	4 1	431	4 1	4 1	4 1	1		44	1 719	1 3719	
		.		- T	<u> </u>		<u> </u>	- T.M.				D1		- T-1	L	·		<u> </u>	<u> </u>	~	TA	<u>⊢-</u>		1

Table B. Relative alignment of BW residues between GRoSS and HMM-HMM.

	impize																							
	A																			В		C		F
Target	RHO	BetalAR	Bet a AR	D8	на	M2	M3	SHITLB	SH128	A2A	S1P1	CICRI	CCR5	KappaO	RIMUOR	NCP	DetaOR	PAR1	P2Y12	CREI	GLR	MGLUI	MGLUS	SMO
ARHO																						1	1	2 33
BetalAR		_																				1	1	2 33
Beta2AR																						1	1	2 33
DB							-				-											1	1	2 33
на																						1	1	2 33
M2					-						-	_			-	_				_		1	1	2 33
M3						-		-				_										1	1	2 33
SHIT1B						-	-				_	_								_		1	1	2 33
5HT26								1				_				_				_		1	1	2 33
A2A																						1	1	2 33
SIP1								-								_						1	1	2 33
CIC PA											-											1	1	2 33
CCR5											_	_										1	1	2 33
KappaOl	2																					1	1	2 33
MUOR											_	_	_				_			_		1	1	2 33
NOP																						1	1	2 33
DeltaOR						-	_				_	_	_		-	-				_	_	1	1	2 33
PAR1																	_					1	1	2 33
P2Y12						-					-	_			-	_	_			_		1	1	2 33
B CIRIF1																						1	1	2 33
GIR																				-		1	1	2 33
C MGLU1	1	1 1	1	1	1	L	1 1	1	1		1	1	1	1 1		1	1 1		L	1	1 1			2 32
MGLU5	1	1	1	1	1	1	1 1	1	1		1	1	1	1 1		1	1 1		1	1	1 1			2 32
FSMID	2 3	3 2 33	2 33	2 33	2 3	3 2 3	3 2 33	2 33	2 33	2 3	3 2	33 2	33 2	33 2 33	2 3	3 2 3	3 2 33	2 3	3 2 3	323	3 2 33	2 32	2 32	

Table C. Relative alignment of BW residues between GRoSS and GPCRDB.

GRoSS, HMM-HMM and GPCRDB agree on alignment of the BW .50 residues for all TMs within class A. In this case, the only differences between these alignments are the gaps in HMM-HMM. Some gaps can be present in both target and template at matching locations, which would simplify homology modeling. Table D shows the number of residues aligned to gaps for each target—template pair when HMM-HMM is used. Similarly to the notation in the previous tables, we label "_" when there are no gaps; "9" for 9 or more gaps; "Y" for misaligned BW residues; "X" for any template residues aligned to loop regions of the target.

Table E shows the number of residues aligned to gaps if the GPCRDB alignment is used. Most target—template pairs have at least one gap. However, the number of

gaps predicted by HMM-HMM (Table D) is larger and often falls at wrong positions, which disagree with GPCRDB (Table A).

Table D. Gaps in HMM-HMM: Number of residues in template TMs aligned to gaps in target sequence.

												Rumber	of Thi gap:	5										
	A																			B		С		F
Target	RHO	BetalAR	Beta2AR	D3	H1	M2	М3	SHT1B	SHT 28	A2A	SIP1	CXCR4	COR5	KappaOR	MuOR	NOP	DeltaOR	PAR1	P2Y12	CRF1	GIR	MGLU1	MGLUS	SMO
A RHO					1				1		32	1	1	1	1	1	1		1	11	2	YY4YYY	W4WY	11_WY
BetalAR					1						32	1	1	1	1	1	1		1	1		YY YYY	W WY	21
Beta2AR				1	1						32	1	1	1	1	11	11		1	1	1	YYSYYY	W4WY	11
D3			11		11	2_	1	1_	12	11	32	1 21	1_2_	1_2_1	1_2_	1_2_	1_2_	1_2_	1_2_	_1_1Y	11_1	YY4XYX	W5XYX	_1_YXX
H1	1	1	1	_11_		_1	1			1	321	1 1	1 1	1 1	1	1 1	1 1	1	1 1	1 11	2	YY_YYY	W 3WY	1_1IY
M2				1	1						32	1 1	1 1	1	1	1 1	1 1	11	1	1 IY	22_	YY4YYY	W4WY	_1_1IY
МЗ				_1_	_1_						_32	11	1_1_	1_1_	11	1.1_	1_1_	11	1_1_	_1_1Y	22	_YY4YYY	YY 4YY Y	_1_1IY
SHT1B				1							32	1 1	1 1	1	1	1	1	1	1	1 11	1	YY3WY	W3WY	2YYY
SHT28	_1_			12						1_	321	1_31_	1_5_	1_6_	1_4_	1.5_	1_5_	1_5_	1_4_	2¥	2	YY YYY	WIWY	_1_1IY
A2A				1_	_1				11		12_1_	2_1	1	1	1	11	1		1		3	_YY4YYY	_W4WY	Y1Y
S1P1	22	_32	_32	32	321	32	_32	_32	321	12_1_		22 1	22	22_1	_22	22	22 1	32_1	22_1	22 Y	12 2	YY WY	W_WY	_2_YIY
CXCR4	1	1	1	1_21_	11	11	1 1	1_1_	1_31_	2 1	22_1_		2	1_2_	2	2_	2_	2	1	11	1_3_	_YY5YYY	_W2MX	_1_Y3Y
COR5	1	1	1	1_2_	1_1_	11	1 1	1_1_	1_5_	1	_22	2			1_	1_	1_		2	11_	11_3_	_YY_WY	W_WY	WY
KappaOR	1	1	1	1_2_1	11	11	11	1	1_6_	1	_22_1_	1 2			1_	1_	1_		2		3	_YY_YYY	_W_WY	_1_YIY
MuOR	1	1	1	1_2_	1	1	11	1	1_4_	1	_22	2	1_	1_					11	_1_	1_2_	_YY_WY	_W_WY	YIY
NOP	1	11_	11_	1_2_	1.1	11	11	11	1_5_	11	_22	2_	1_	_1_				1	1_		1_2_	_YY_YYY	_W_WY	_1_YIY
DeltaOlt	1	1	11	1_2_	11	11	11	1	1 5	1	_22_1_	2	1_	11					11	_1	2	<u>YY YY</u>	_W_WY	<u>YIY</u>
PARI				1_2_	1_	1_	1_	11	1_5		32_1_	1_							2	_1_	33	_YY4YYY	_W4WY	11_Y3Y
P2Y12	1	1	1	1_2_	1 1	1	1 1	1	1_4_	1	22_1_	1	2	2	1	11	11	2		1	1_B_	<u>YY YY</u> Y	W_WY	_1_GIY
B CIRF1	11	1	1	_1_1Y	_1_1Y	_1_1Y	_1_Y_	_1_1Y	_1_2Y		_12_Y_	11	11		_1_		_1_	11	_1_			_1_5YW	_1_53W	YY
GLR	_1_		11	11_1	2	22	22	1	2	3	_12_2_	1_3	11_2_	3	_1_2_	1_2_	11_2_	2	1_13_			¥4_5¥¥Y	Y6_5YW	21YY
C MGLU1	_W#WY	YY YW	YYSYYY	_ YY4YYY	_ YY 3YY Y	_YY#YY	_YY4YYY	_YY3YYY	W_WY	_YY 4Y4Y	YY YW	YY_XW	YY WY	W_XW	YY YW	YY YW	W_WY	_W4WY	W YYY	5YYY	¥3_5¥4¥			Y_WW
MGLUS	_YY4YYY	_YY_YYY	_YY4YYY	_ YY5YYY	_ YY 3YYY	_YY4VYY	_YY4YYY	_W3WY	W_WY	_YY 4YYY	YY_XYY	_YY_YYY	YY WY	_w_xw	_YY_YW	_YY_YYY	_W_WY	_W4WY	_YY_YYY	53YY	Y5_5Y3Y			1Y_YYYY
F SMIO	12_YXY	1Y	11	YW	1_11	11Y	11Y	2 YYY	_1_1IY	2_¥	_12_YIY	_1_YYY	YYY	<u>1 Y Y</u>	YYY	<u>1 Y Y</u>	Y1Y	11_Y3Y	33¥	YX	21_YX	<u>Y_1YW</u>	Y YYYY	

Table E. Gaps in GPCRDB: Number of residues in template TMs aligned to gaps in target sequence.

	٨																			B		С		F
Target	RHO	BetalAR	Beta2AR	D3	н	M2	MB	SHER	SHT2B	A2A	S1P1	CXCR4	cars	KappaOR	MuOR	NOP	DeltaOR	PAR1	P2Y12	CRF1	GUR	MGIU1	MGLUS	SMO
A RHO				1	11				1_1_	3	1 1	11	11	1	1	1	1	1 111	1 111	1 21	1 1	1_1_Y	1_1 Y	Y_1W
BetalAR				1	1				1_1_	3	1 1	1.1	11	1	1	1	1	1 111	1 111	1 21	1 1	1_1Y	1_1 Y	Y_1YY
Beta2AR				1	1				1 1	3	1 1	11	11	1	1	1	1	1 111	1 111	1 21	1 1	1 1 Y	1 1 Y	Y IW
D3	_1_	_1_	_1_		2	_1_	_1_		1	3	1.11_	1	1	11_	11_	11_	11	_1_11_	_1_211_	1_31_	1_11_	_1_11_Y	_1_11_Y	_Y_11YY
HL	1	1	1	2		1	1	1	1_2_	13	1 11	1 2	12	11	11	11	11	1 211	1 211	1 31	1 11	1_11_Y	1 11 Y	Y_11W
M2				_1_	_1_				1_1_	3_	1_1_	11_	11_	1	1	1	1	_1_111_	1 111	1_21_	1_1_	_1_1_Y	1_1.7	_Y_1W
М3				1	1				1_1_	3	1 1	11	11	1	1	1	1	1 111	1 111	1 21	1 1	1_1Y	1_1 Y	_Y_1W
SHT1B					_1_				1	3	1_1_	1	1	1	1	1	1	1_11	1 11	1 21	1_1_	1_1_Y	1.17	Y_1W
SHT28	1_1_	1_1_	1_1_	1	1_2	1_1_	1_1_	1		1_3_	11_11_	11	11	11_1	11_1	11_1	11_1	11_11_	11_211_	11_31_	11_11_	11_11_Y	11_11_Y	17_1177
A2A	3	3	3	3	13	3	3	3	1_3_		1_2_	1_3_	13	1.3	13	1_3_	1_3	1_21_	1 21	1 21	1_2_	1_2_Y	1 2 Y	Y_2W
SIP1	1 1	1 1	1 1	1 11	1 11	1 1	1 1	1 1	11_11_	1 2		11	_11_	1	1	1	1	11	1	2		Y	Y	<u>y</u> yy
CXCR4	11	11	11	1	12	11	11	1	11	13	11			_1_	11	1	1	11	211_	31	_11_	11_Y	11_Y	Y_11W
CORS	11	11	11	1	12	11	11	1	11	13	_11_			1	11	1	1	11_	211_	31	_11_	11_Y	_11_Y	_Y_11YY
KappaOR	1	1	1	11	11	1	1	1	11_1	13	11	1	1					111	111_		11	1_Y	1 Y	Y_1W
MuOR	1	1	1	11	11_	1	1	1	11_1_	13	11	1	_1					111_	111_	21	11	<u>1</u> Y	<u>1</u> Y	_YIYY
NOP	1	1	1	11	11	1	1	1	11_1	13	1	1	1					111	111	21_	1	1_Y	1 Y	Y_1W
DeltaOR	1	1	_1	11	11_	1	1	1	11_1_	13	1_	_1	_1_					111_	111_	21	11111111	1_Y	1_Y	_Y1YY
PAR1	1_1111_	1_1111_	_1_111	1_11_	1_211_	1_111	1_1111_	1_11	11_11_	1_21_	11	11_	_11_	111_	111_	_111_	111_		2	3.1	11	1_IY	1_11	Y_1_W
P2Y12	1_111_	1_111_	_1_111_	_1_211_	1_211_	_1_111_	_1_111	_1_11	11_211_	1_21_	1_	211_	211_	111	111_	111_	111_	2		3_1_	11	1_1Y	1_1Y	_Y_1_W
B CIRF1	1 21	1 21	1 21	1 31	1 31	1 21	1 21	1 21	11_31_	1 21	2	31	31	21		21	21	3.1	3.1		2	2_¥	Y	Y_2 W
GLR	1_1_	11	11	1_11_	111_	11	11	11	11_11_	1_2_		_11_	_11_	_1_	_1_	1_	_1_	_11	_11			Y	Y	<u>Y</u> YY
C MGLU1	1_1_Y	1_1_Y	_1_1_Y	_1_11_Y	1.11.1	1_1_Y	1_1_Y	1_1_Y	11_11_Y	1_2_Y	Y	_11_Y	11_Y	<u>1</u> Y	1_Y	1_Y	<u>1</u> Y	1_11	1_1Y	2_Y	Y			<u>_Y</u> YY
MGLUS	1 1 Y	1 1 Y	1 1 Y	1 11 Y	1 11 Y	1 1 Y	1 1 Y	1 1 1	11_11_Y	1 2 Y	Y	11_Y	11_Y	1 Y	1 Y	1 Y	1_Y	1 11	1_11	2 Y	Y			Y W
FSMIO	Y_1W	Y_1W	Y_BY	Y_11W	Y_11YY	Y_1YY	Y_1YY	Y_BY	17_1177	_Y_2YY	Y_Y	Y_11YY	Y_11W	Y_1W	Y_1YY	Y_1W	Y_1YY	Y_1_YY	Y_1_W	Y_2_YY	<u>Y</u> Y	<u>Y</u> YY	<u>Y</u> YY	

Geometrical quality of homology models

Each alignment can be used to produce a homology model for a given target template pair. For the following analysis, we constructed simple homology models for the backbone atoms only. We ignored any missing residues, which were gaps in the target—template alignment. For all pairs considered in the previous tables, we evaluated RMSD, TM-score, and the number of common inter-helical contacts. The results of these three measures comparing HMM-HMM with GRoSS are shown in Figure A panels 1, 2, and 3. The same measures comparing GPCRDB with GRoSS are shown in Figure A panels 4, 5, and 6.

The RMSD comparisons (lower number is better) show that GRoSS alignment outperforms HMM-HMM for essentially all cases (Fig. A1). The RMSD comparisons of GRoSS to GPCRDB (Fig. A4), show that GRoSS outperforms GPCRDB in cross-class cases and only slightly underperforms in intra-class cases. This is expected as GPCRDB alignments include gaps/bulges based on pairwise structural comparison input, whereas GRoSS alignment ignores these gaps and bulges. TM-Score comparisons (higher number is better) show similar results as RMSD comparisons for GRoSS versus HMM-HMM (Fig. A2) and GRoSS versus GPCRDB (Fig. A5).

The comparison of the number of conserved contacts (higher number is better) shows that HMM-HMM performs slightly better than GRoSS (Fig. A3) for intra-class cases, but fails for inter-class cases. Same is true for GPCRDB comparison with GRoSS (Fig. A6).

Overall, these comparisons show that GRoSS alignments perform better than both HMM-HMM and GPCRDB. The cross-class sequence alignments for GRoSS are significantly better, whereas the intra-class sequence alignments are of similar quality.

Figure A. Comparing geometrical quality of the homology models.