Vertical Visibility among Parallel Polygons in Three Dimensions

GD 2015

Radoslav Fulek (IST, Austria), Radoš Radoičić (CUNY)

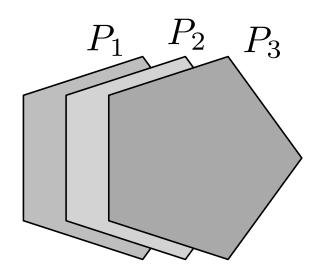
We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

A pair of polygons $P_1, P_2 \in \mathcal{S}$ see each other if there exists a line segment ℓ orthogonal to both of them connecting them such that ℓ is disjoint from other polygons in \mathcal{S} .

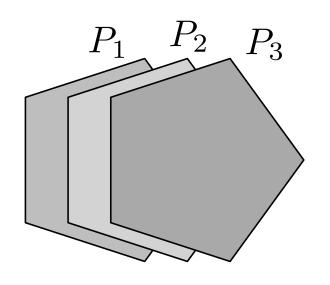
We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

A pair of polygons $P_1, P_2 \in \mathcal{S}$ see each other if there exists a line segment ℓ orthogonal to both of them connecting them such that ℓ is disjoint from other polygons in \mathcal{S} .



We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

A pair of polygons $P_1, P_2 \in \mathcal{S}$ see each other if there exists a line segment ℓ orthogonal to both of them connecting them such that ℓ is disjoint from other polygons in \mathcal{S} .



 P_1 sees P_2 , but P_1 does not see P_3

We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

A pair of polygons $P_1, P_2 \in \mathcal{S}$ see each other if there exists a line segment ℓ orthogonal to both of them connecting them such that ℓ is disjoint from other polygons in \mathcal{S} .

The set S forms a **visibility clique** if every pair of polygons in S see each other.

We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

A pair of polygons $P_1, P_2 \in \mathcal{S}$ see each other if there exists a line segment ℓ orthogonal to both of them connecting them such that ℓ is disjoint from other polygons in \mathcal{S} .

The set S forms a **visibility clique** if every pair of polygons in S see each other.

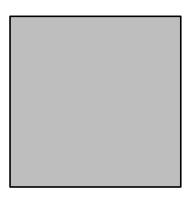
 P_2

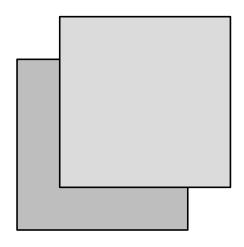
We consider a finite set S of **translates/homothetes** of two dimensional **convex polygons** in \mathbb{R}^3 .

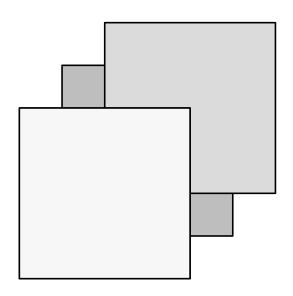
A pair of polygons $P_1, P_2 \in \mathcal{S}$ see each other if there exists a line segment ℓ orthogonal to both of them connecting them such that ℓ is disjoint from other polygons in \mathcal{S} .

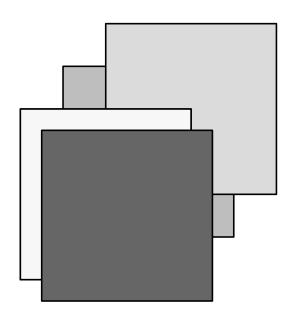
The set $\mathcal S$ forms a **visibility clique** if every pair of polygons in $\mathcal S$ see each other. P_1

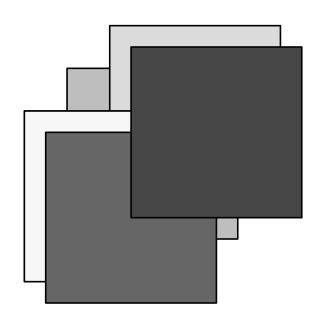
 $\{P_1, P_2, P_3\}$ forms a visibility clique.

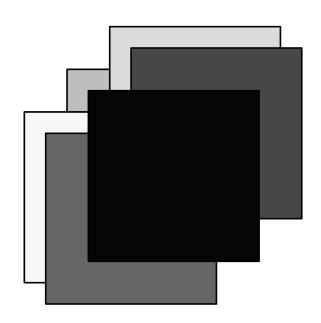


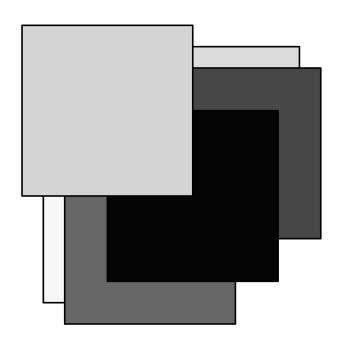




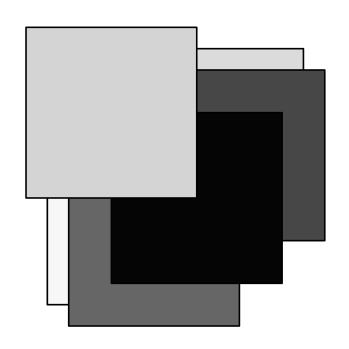






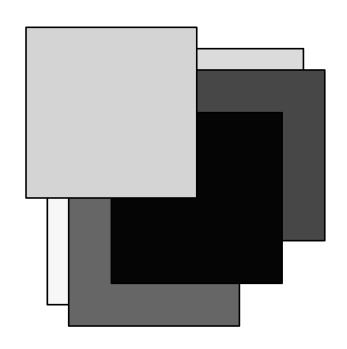


We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.



Thus, $f(4) \geq 7$.

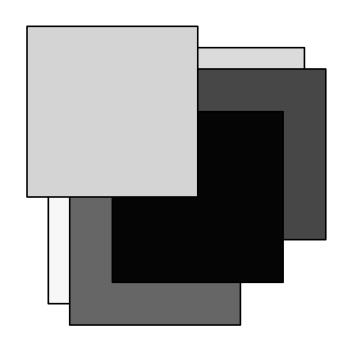
We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.



Thus, $f(4) \geq 7$.

In fact, f(4) = 7. Fekete et al. 1995

We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.

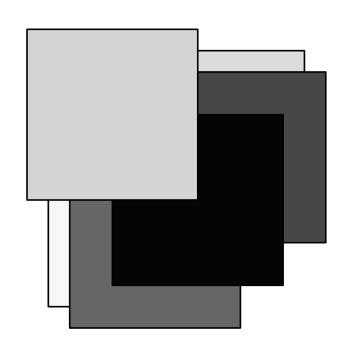


Thus, $f(4) \geq 7$.

In fact, f(4) = 7. Fekete et al. 1995

Also, $f(3) \ge 14$. Babilon et al. **1999**

We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.

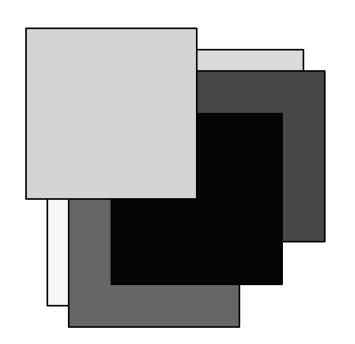


Thus, $f(4) \geq 7$.

In fact, f(4) = 7. Fekete et al. 1995

Also, $f(3) \ge 14$. Babilon et al. **1999**

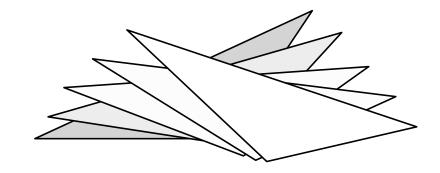
We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.



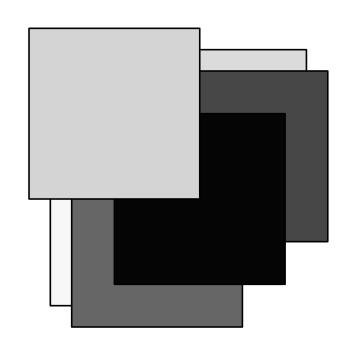
Thus, $f(4) \geq 7$.

In fact, f(4) = 7. Fekete et al. 1995

Also, $f(3) \ge 14$. Babilon et al. 1999



We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.

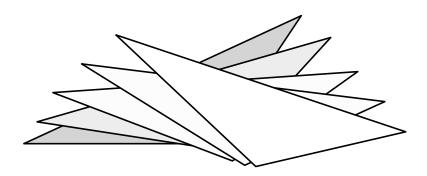


Thus, $f(4) \geq 7$.

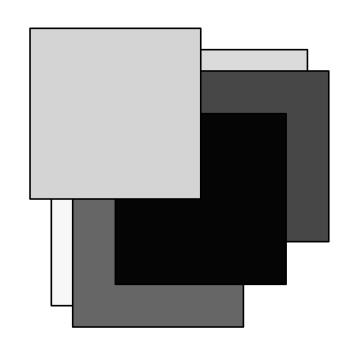
In fact, f(4) = 7. Fekete et al. 1995

Also, $f(3) \ge 14$. Babilon et al. **1999**

$$f(k) \le 2^{2^k}$$
 Babilon et al. 1999



We are interested in the maximum size f(k) of the visibility clique for translates of a regular convex k-gon.



Thus, $f(4) \geq 7$.

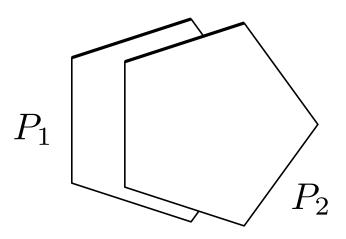
In fact, f(4) = 7. Fekete et al. 1995

Also, $f(3) \ge 14$. Babilon et al. **1999**

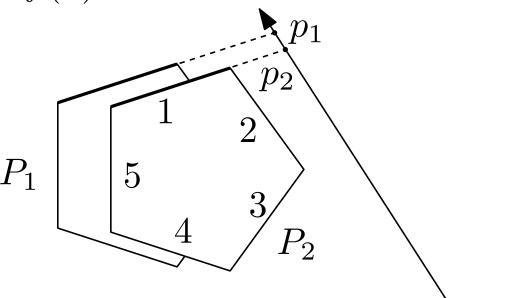
$$f(k) \le 2^{2^k}$$
 Babilon et al. 1999

 $f(k) \le 2^{2^k}$ Babilon et al. 1999

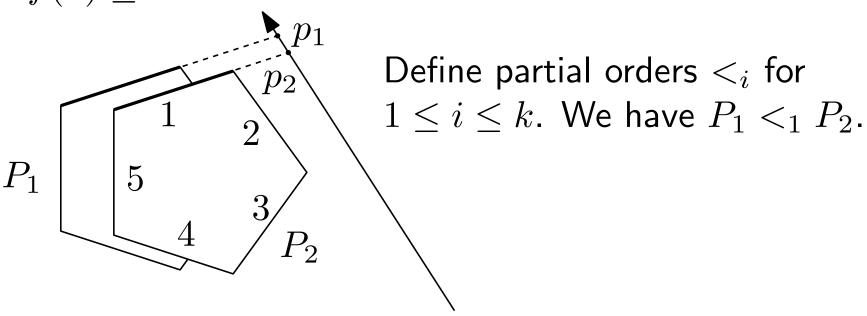
 $f(k) \leq 2^{2^k}$ Babilon et al. 1999



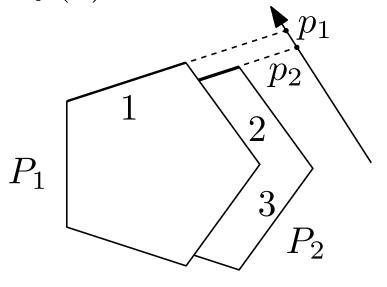
 $f(k) \leq 2^{2^k}$ Babilon et al. 1999



$f(k) \le 2^{2^k}$ Babilon et al. 1999

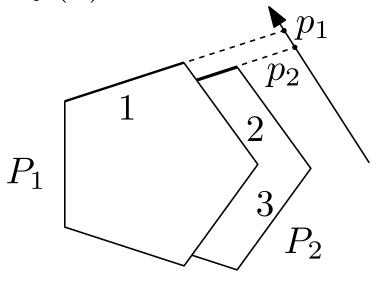


$f(k) \le 2^{2^k}$ Babilon et al. 1999



Define partial orders $<_i$ for $1 \le i \le k$. Now, P_1 and P_2 are incomparable by $<_1$.

$f(k) \leq 2^{2^k}$ Babilon et al. 1999



Define partial orders $<_i$ for $1 \le i \le k$. Now, P_1 and P_2 are incomparable by $<_1$.

By Dilworth theorem we can pick a chain or anti-chain of size at least $\sqrt{f(k)}$.

$f(k) \le 2^{2^k}$ Babilon et al. 1999



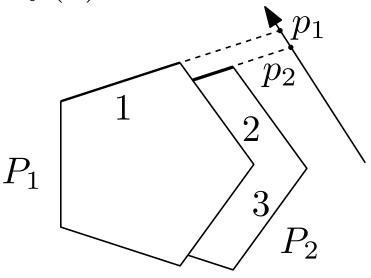
Define partial orders $<_i$ for $1 \le i \le k$. Now, P_1 and P_2 are incomparable by $<_1$.

By Dilworth theorem we can pick a chain or anti-chain of size at least $\sqrt{f(k)}$.

We have k partial orders, and hence,

$$\underbrace{\sqrt{\sqrt{\dots\sqrt{f(k)}}}}_{k-times} \le 2$$

$f(k) \le 2^{2^k}$ Babilon et al. 1999

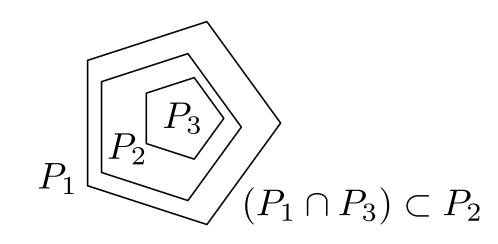


Define partial orders $<_i$ for $1 \le i \le k$. Now, P_1 and P_2 are incomparable by $<_1$.

By Dilworth theorem we can pick a chain or anti-chain of size at least $\sqrt{f(k)}$.

We have k partial orders, and hence,

$$\underbrace{\sqrt{\sqrt{\dots\sqrt{f(k)}}}}_{k-times} \le 2$$



Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

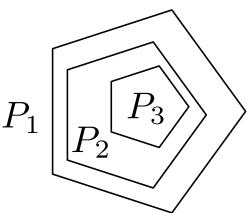
Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

First, we pick $\frac{1}{4}$ fraction of homothetes such that no pair of them is contained one in another.

Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

First, we pick $\frac{1}{4}$ fraction of homothetes such that no pair of them is contained one in another.

Consider the poset (P, \subseteq) and observe that we have no chain of length **five**.

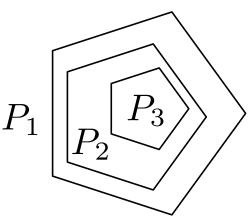


Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

First, we pick $\frac{1}{4}$ fraction of homothetes such that no pair of them is contained one in another.

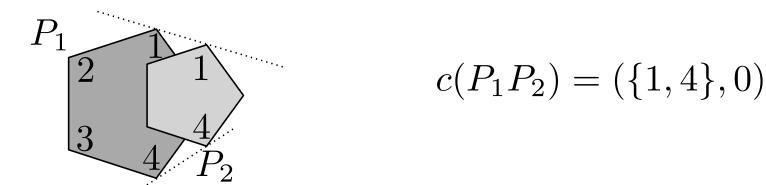
Consider the poset (P, \subseteq) and observe that we have no chain of length **five**.

Use Dilworth theorem.



Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

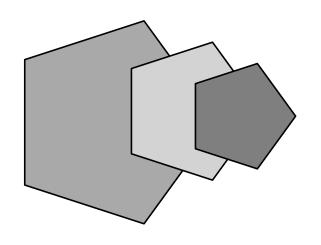
- We order homothetes from left to right according to x-coordinates of centers of gravity.
- We color each edge in the visibility clique with a pair consisting of a two element set encoding the vertices supporting the common tangents, and an indicator for its above–below relationship. We use $2\binom{k}{2}$ colors.



Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

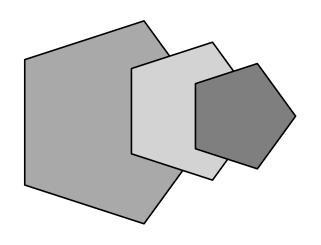
- We order homothetes from left to right according to x-coordinates of centers of gravity.
- We color each edge in the visibility clique with a pair consisting of a two element set encoding the vertices supporting the common tangents, and an indicator for its above—below relationship. We use $2\binom{k}{2}$ colors.
- We apply a Ramsey-type theorem for ordered graphs.

Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.



We have ordered homothetes from left to right according to x-coordinates of centers of gravity.

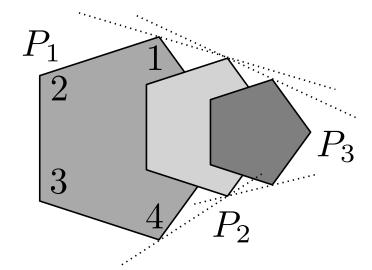
Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.



We have ordered homothetes from left to right according to x-coordinates of centers of gravity.

We observe that we cannot have a monochromatic monotone (with respect to our order) path of length three.

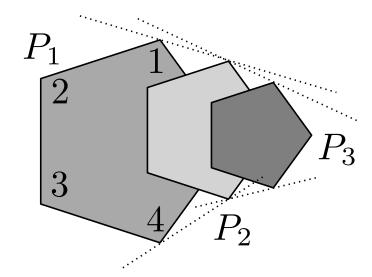
Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.



We have ordered homothetes from left to right according to x-coordinates of centers of gravity.

We observe that we cannot have a monochromatic monotone (with respect to our order) path of length three.

Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.

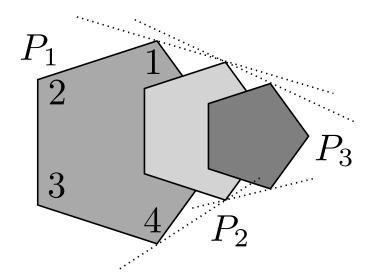


$$c(P_1P_2) = c(P_2P_3) = (\{1,4\},0)$$

We have ordered homothetes from left to right according to x-coordinates of centers of gravity.

We observe that we cannot have a monochromatic monotone (with respect to our order) path of length three.

Theorem 1. (F and Radoičić 15+) For homothetes of convex k-gon we have $f(k) \leq 2^{2\binom{k}{2}+2}$.



$$c(P_1P_2) = c(P_2P_3) = (\{1,4\},0)$$

We have ordered homothetes from left to right according to P_3 x-coordinates of centers of gravity.

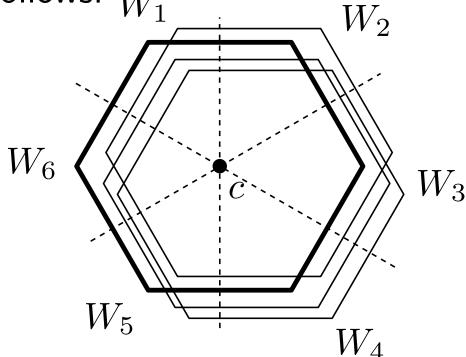
We observe that we cannot have a monochromatic monotone (with respect to our order) path of length three.

By a result of **Milans et al.** (2012) we can have at most 2^c vertices, where c is the number of colors.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

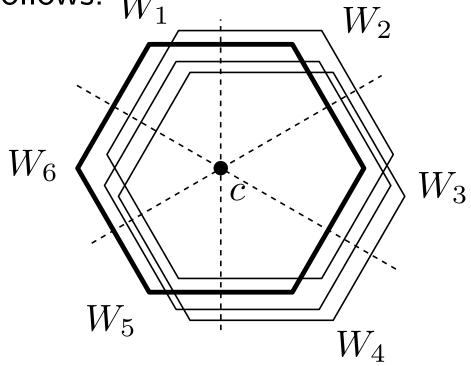
Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

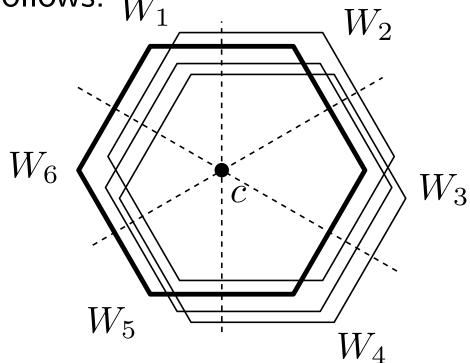
First, we have k even and the translates are homogenized as follows: W_1



We just need to pick a subset with centers sufficiently close one to another.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1

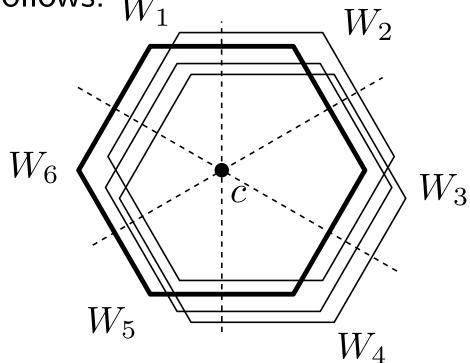


We just need to pick a subset with centers sufficiently close one to another.

If the radius of the circumscribed circle is unit $\sin(\frac{\pi}{k})$ would do.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



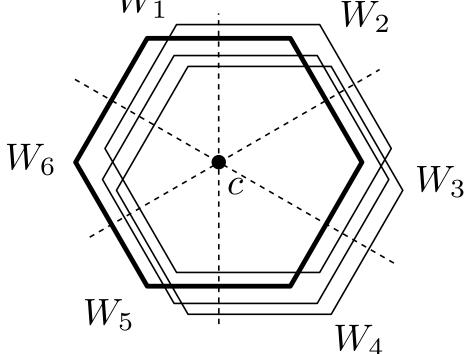
We just need to pick a subset with centers sufficiently close one to another.

If the radius of the circumscribed circle is unit $\sin(\frac{\pi}{k})$ would do.

Thus, $\frac{1}{k^2}$ —fraction is still in the game.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

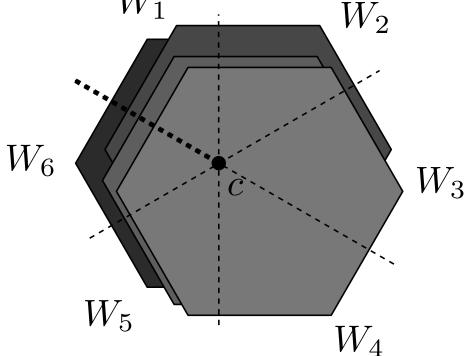
First, we have k even and the translates are homogenized as follows: W_1



Next, we pick a "staircase".

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

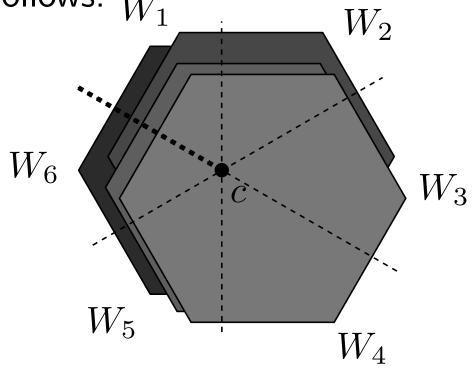
First, we have k even and the translates are homogenized as follows: W_1



Next, we pick a "staircase".

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1

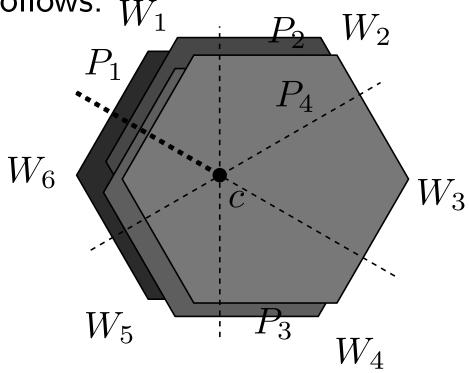


Next, we pick a "staircase".

This can be achieved by Dilworth Thm. or Erdős-Szekeres Lemma by picking $\sqrt{.}$ sets.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



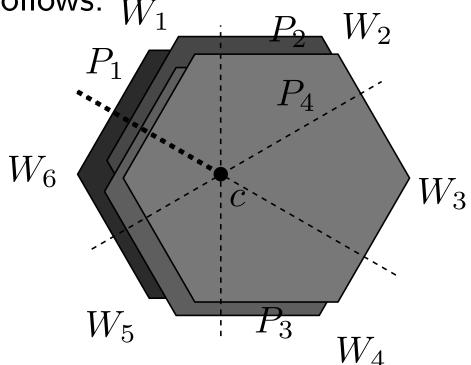
Next, we pick a "staircase".

We define the switch graph G_i for each wedge W_i , e.g.,

$$G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$$

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



Next, we pick a "staircase".

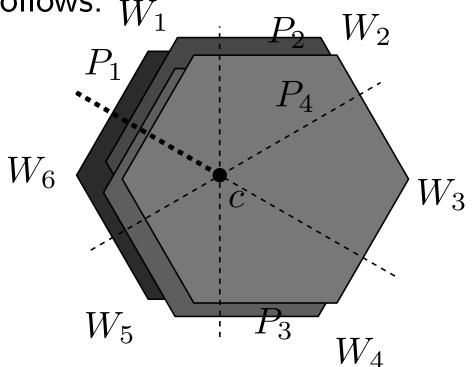
We define the switch graph G_i for each wedge W_i , e.g.,

$$G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$$

By $G_i = G_{i+k/2 \mod k}$, we have that a switch graph cannot contain a **matching** of size two.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



Next, we pick a "staircase".

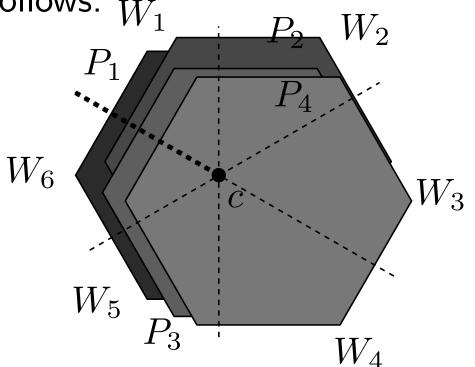
We define the switch graph G_i for each wedge W_i , e.g.,

 $G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$

By $G_i = G_{i+k/2 \mod k}$, we have that a switch graph cannot contain a matching of size two.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



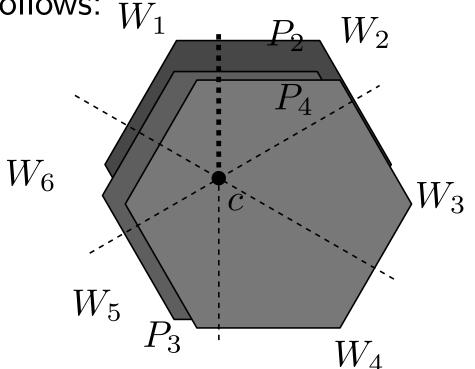
Next, we pick a "staircase". We define the switch graph G_i for each wedge W_i , e.g.,

$$G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$$

By $G_i = G_{i+k/2 \mod k}$, we have that a switch graph cannot contain a **matching** of size two.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_{\bullet}



Next, we pick a "staircase".

We define the switch graph G_i for each wedge W_i , e.g.,

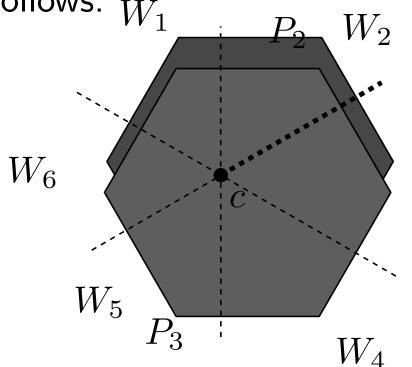
$$G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$$

By $G_i = G_{i+k/2 \mod k}$, we have that a switch graph cannot contain a matching of size two.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_{\bullet}

 W_3



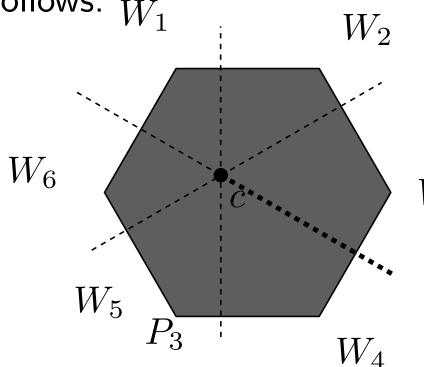
Next, we pick a "staircase". We define the switch graph G_i for each wedge W_i , e.g.,

$$G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$$

By $G_i = G_{i+k/2 \mod k}$, we have that a switch graph cannot contain a matching of size two.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

First, we have k even and the translates are homogenized as follows: W_1



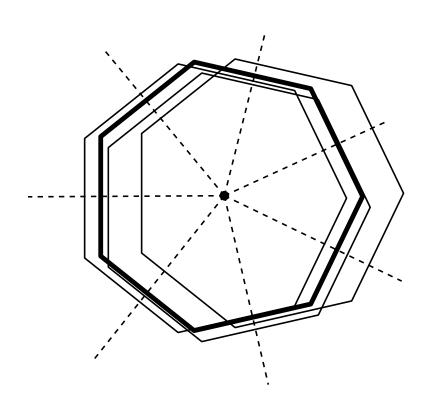
Next, we pick a "staircase". We define the switch graph G_i for each wedge W_i , e.g.,

$$G_1 = (\{P_1, P_2, P_3, P_4\}, \{P_1P_2, P_3P_4\}).$$

Thus, only k+1 translates remained.

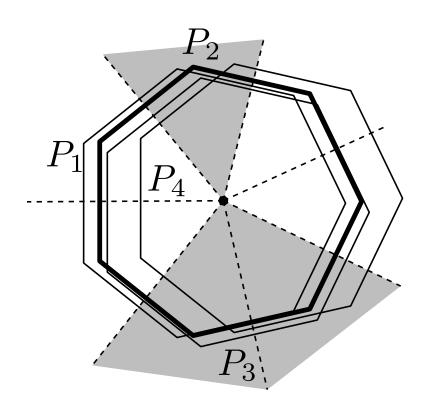
Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

Second, for k odd our proof becomes more technical:



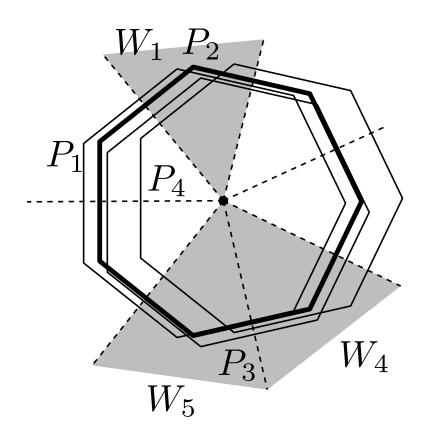
Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

Second, for k odd our proof becomes more technical:



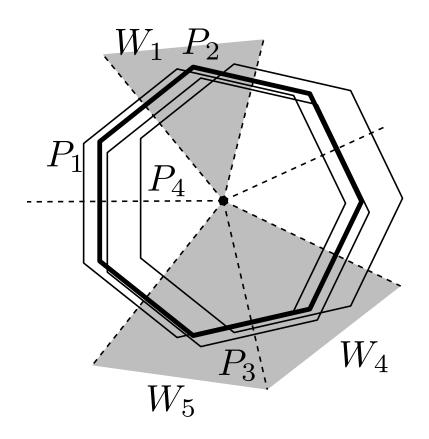
Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

Second, for k odd our proof becomes more technical:



Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

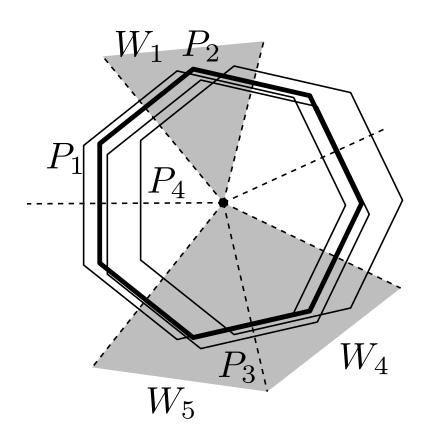
Second, for k odd our proof becomes more technical:



For the switch graph G_i we have $G_i \subseteq G_{i+k/2 \mod k} \cup G_{i-k/2 \mod k}$ as opposed to $G_i = G_{i+k/2 \mod k}$ in the case of k even.

Theorem 2. For translates of regular convex k-gon $f(k) \leq O(k^4)$.

Second, for k odd our proof becomes more technical:



For the switch graph G_i we have

 $G_i \subseteq G_{i+k/2 \mod k} \cup G_{i-k/2 \mod k}$ as opposed to $G_i = G_{i+k/2 \mod k}$ in the case of k even.

If G_i contains c pairwise disjoint edges by a Ramsey argument we find an induced subgraph G of $G_{i+k/2 \mod k}$ or $G_{i-k/2 \mod k}$ with two disjoint edges forming a straircase such that G_{i+1} or G_{i-1} contains the same subgraph.

Is the size of a visibility clique for homothehic copies of a convex k-gon at most polynomial?

Is the size of a visibility clique for homothehic copies of a convex k-gon at most polynomial?

Is the size of a visibility clique for translates of copies of a convex k-gon at most polynomial?

Is the size of a visibility clique for homothehic copies of a convex k-gon at most polynomial?

Is the size of a visibility clique for translates of copies of a convex k-gon at most polynomial?

Is
$$f(k+2) \ge f(k)$$
?

Is the size of a visibility clique for homothehic copies of a convex k-gon at most polynomial?

Is the size of a visibility clique for translates of copies of a convex k-gon at most polynomial?

Is
$$f(k+2) \ge f(k)$$
?