Intersection-Link Representations of Graphs

GD 2015, 24–26 September, Los Angeles, CA, USA

Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Giuseppe Di Battista, Maurizio Patrignani, Ignaz Rutter
Motivations

Node-Link Diagrams vs Intersection Representations

- good for sparse graphs
- good for dense graphs

- We want to represent graphs that are **globally sparse** but contain **dense subgraphs**, e.g.:
 - *social networks*: dense subgraphs are **communities**
 - *computer networks*: dense subgraphs are **backbone subnetworks**
Intersection-link Representations

\[G = (V, E_1 \cup E_2) \]

- Each vertex \(v \) is a geometric object \(R(v) \)
- \(R(u) \) and \(R(v) \) intersect iff \((u, v) \) is an intersection-edge
- \(R(u) \) and \(R(v) \) are connected by a curve iff \((u, v) \) is a link-edge
Intersection-link Representations

\[G = (V, E_1 \cup E_2) \]

MODELS:
- intersecting subgraphs \((K_n, K_{n,m}, \triangle\text{-free}, \text{etc.})\)
- geometric objects (rectangles, circles, convex polygons, etc.)
- link-edges style (topological or geometric)

Hybrid Model

dense parts

sparse parts

intersection-edges

link-edges
Clique Planarity

Problem definition

- **input**: pair \((G, S = \{s_1, \ldots, s_k\})\) where:
 - \(G = (V, E)\) is a graph
 - \(S\) is a partition of \(V\) into cliques \(s_i\)
- **question**: is there a *clique planar drawing* of \((G, S)\)?

<table>
<thead>
<tr>
<th>(s_1 = K_{10})</th>
<th>(s_2 = K_9)</th>
<th>(s_3 = K_7)</th>
</tr>
</thead>
</table>

*clique planar drawing

- intersection-link representation of
 \((G, S)\) in which:
 - no two link-edges intersect
 - no link-edge intersects the interior of a rectangle

\(s_3\) is a cool clique!!
Our Results

- NP-completeness of Clique Planarity

- Related Problems
 - clustered planarity
 - book embedding
 - level planarity

- P-time cases
Canonical Representations

Lemma (Canonical)

\((G, S)\) is clique-planar \iff \((G, S)\) has a **canonical representation**

- vertices are **axis-aligned unit squares**

- \(\forall s \in S\), all the intersecting squares representing vertices in \(s\) have their upper-left corner along a **common line with slope 1**
Canonical Representations: **proof idea**

Lemma (Canonical)

\((G, S)\) is clique-planar \(\iff\) \((G, S)\) has a **canonical representation**

Key Property for rerouting the link-edges without introducing crossings:

The circular sequence of link-edges crossing the **boundary of** \(\Gamma_s\) contains edges incident to a **subsequence of**:

\[R(u_1), R(u_2), \ldots, R(u_{|S|}), R(u_{|S|-1}), \ldots, R(u_2) \]

for some permutation \(u_1, \ldots, u_{|S|}\) of the vertices of \(s\)
Clique Planarity and Clustered Planarity

Problem definition

- **input**: a c-graph (G, T), i.e. a graph G together with a clustering T of its vertex set
- **question**: is there a c-planar drawing of (G, T)?

Our focus:

- c-graphs whose clusters induce independent sets of vertices

c-planar drawing

- **planar drawing** of G
- clusters are simple closed regions enclosing their vertices
 - no region-region overlaps
 - no edge-region crossings

GD’15 · Intersection-Link Representations of Graphs
Clustered Planarity with Linear Saturator (CPLS)

<table>
<thead>
<tr>
<th>Theorem [Feng, Cohen, and Eades, ESA ’95]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A c-graph ((G, \mathcal{T})) is c-planar iff ((G, \mathcal{T})) can be augmented with a set of edges (saturator) to a c-planar and c-connected c-graph</td>
</tr>
</tbody>
</table>

C-Planarity
- The saturator induces a **tree** in each cluster

C-Planarity with Linear Saturators
- The saturator induces a **path** in each cluster
Relationship between CPLS and Clique Planarity

Theorem

\[\text{CPLS } \propto \text{ Clique Planarity} \]

\[\mu \in \mathcal{T}(G, T) \]
\[s \in \mathcal{S}(G', S) \]

\[\text{cluster } \mu \implies \text{clique } s_\mu \]

\[e \in E(G) \implies e \text{ is a link-edge} \]

\[u, v \in \mu \implies (u, v) \text{ is an intersection-edge of } s_\mu \in \mathcal{S} \]
Relationship between CPLS and Clique Planarity

Theorem

CPLS \propto Clique Planarity

(G, T)

Γ: C-Planar Drawing with Linear Saturators

μ

(G', S)

Γ^*: Canonical Clique Planar Drawing

Γ^*

S_μ

Key property:

the endpoints of edges incident to μ in Γ (to s_μ in Γ^*) form a subsequence of $u_1, u_2, \ldots, u_{k-1}, u_k, u_{k-1}, \ldots, u_2$
Computational Complexity

Theorem

HamPath in 2-connected planar graphs \propto CPLS

Corollary

Clique Planarity is \mathcal{NP}-complete

\[
(G', \mathcal{T}) \text{ has a linear saturator iff } G \text{ is Hamiltonian}
\]
Clique Planarity with Given Vertex Representations

Input: a pair (G, S) with a geometric representation Γ of all the cliques of S

Goal: test whether the link-edges of (G, S) can be drawn in Γ to obtain a clique-planar drawing

Partial Embedding Planarity problem: test whether a planar drawing of a graph H exists extending a given drawing H' of a subgraph H' of H

Angelini et al. · Trans. Alg. ’15

$O(n)$-time testing algorithm
Clique Planarity with Given Vertex Representations

- All embedded cacti representing \(\Gamma \) lie in the **same face**
- Planar drawing \(\Gamma^* \) extending \(\Gamma \) with the **link-edges**

\[\Gamma_s \]

occurrences of rectangles along the outer boundary of \(\Gamma_s \)

outerplane binary cactus representing \(\Gamma_s \)
Cliques Planarity with 2 Cliques

Complexity status w.r.t. |S|:

- |S| = 1: there are no link-edges, always YES
- |S| = 2: unknown!
- |S| ∈ O(n): \mathcal{NP}-complete even if $S = \{K_q, K_1, \ldots, K_1\}$, with $q > 1$

canonical clique planar drawing of a pair $(G, \{s_1, s_2\})$
Bipartite 2-Page Book Emb. with Spine Crossings

Problem definition (without spine crossings)

- **input**: bipartite planar graph $G = (V_1 \cup V_2, E)$
- **question**: is there a 2-page book embedding of G in which vertices in V_1 (V_2) are **consecutive along the spine**?

B2PBE with spine crossings = Clique Planarity with $|S| = 2$
- edges may cross the spine once between the two portions of the spine delimited by a vertex of V_1 and a vertex of V_2
Partitioning the Link-Edges

2-Partitioned Clique Planarity

each link-edge has to be incident to a **prescribed side of each clique** (top or bottom)

Partitioned B2PBE (with spine crossings)

each of the two end-parts of an edge has to be incident to a **prescribed side of the spine**
Simultaneous Embedding with Fixed Edges

Problem definition

- **input**: $G_1(V, E_1)$, $G_2(V, E_2)$
- **question**: existence of planar drawings Γ_1 and Γ_2

such that

1. **vertices**:
 - $\forall v \in V$, $\Gamma_i(v) = \Gamma_j(v)$

2. **shared edges**:
 - $\forall e \in E_i \cap E_j$, $\Gamma_i(e) = \Gamma_j(e)$
Algorithm for 2-Partitioned Clique Planarity

2-Partitioned Bipartite Clique Planarity

Partitioned Bipartite 2-Page Book Emb.

Partial Instance

SEFE instances \(\langle G_1, G_2 \rangle \) with

\(G_1 \) and \(G_2 \) biconnected

\(G = G_1 \cap G_2 \) connected

Bläsius and Rutter · SODA’13

\(O(n^2) \)-time testing algorithm

\(V_1 \)

\(V_2 \)

Page 1

Page 2
Algorithm for 2-Partitioned Clique Planarity

2-Partitioned Clique Planarity \rightarrow Partitioned Bipartite 2-Page Book Emb. \rightarrow SEFE instances \langle G_1, G_2 \rangle with G_1 and G_2 biconnected $G = G_1 \cap G_2$ connected

Complete Instance

Bläsius and Rutter · SODA'13

$O(n^2)$-time testing algorithm
Level Clique Planarity

What if cliques are given together with a hierarchical relationship among them?

- attempt to extend the notion of Level Planarity to Clique Planar Graphs

Input: pair \((G, S)\) together with leveling function \(\psi: S \rightarrow \{1, \ldots, k\}\)

Question: is there a canonical clique planar drawing of \((G, S)\) s.t.:

- the top side of the BBOX of clique \(s\) lies along a line \(y = 2\psi(s)\)
- link-edge \((u, v)\) is a \(y\)-monotone curve from the top of \(R(u)\) to the bottom of \(R(v)\)

Properness:
- it is always possible to subdivide link-edges spanning non adjacent levels with a dummy clique containing a single vertex
- vertices are assigned to levels
- edges only connect vertices belonging to different levels
- cliques are assigned to levels
- link-edges only connect cliques belonging to different levels
What if cliques are given together with a hierarchical relationship among them?

- attempt to extend the notion of Level Planarity to Clique Planar Graphs

Properties:
- (P1) the top side of the BBOX of a clique s lies on the corresponding level
- (P2) link-edge (u, v) is a y-monotone curve from the top of $R(u)$ to the bottom of $R(v)$
Testing Algorithm for Level Clique Planarity

- **Level Clique Planarity**
- **Equivalent proper instance**
- **Proper Instance of \(T \)-Level Planarity**

\(T \)-Level Planarity

- the order of the vertices of Level \(i \) has to be **compatible** with a tree \(T_i \) whose leaves are the vertices in Level \(i \)

Degrees of freedom:
- order of the cliques along each level
- order of the squares in a canonical representation of their clique

\(O(n^2) \)-time testing algorithm

Angelini et al. · TCS’14
Open Problems

Intersection-link Representations

- how about considering other families of dense graphs?
 - e.g.: interval graphs, complete bipartite graphs, triangle-free graphs

- how about using different geometric objects?
 - unfortunately even triangles and circles might not have simple canonical representation

Clique Planarity

- What is the complexity of Bipartite 2-Page Book Embedding with and without spine crossings?
 - recall that B2PBE with Spine Crossings = CPLS with 2 clusters = Clique Planarity with $|S| = 2$
Intersection-Link Representations of Graphs

GD 2015, 24–26 September, Los Angeles, CA, USA

Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Giuseppe Di Battista, Maurizio Patrignani, Ignaz Rutter

Thanks for your attention!!

Open Problems

- Intersection-link representations
 - how about considering other families of dense graphs?
 - e.g.: interval graphs, complete bipartite graphs, triangle-free graphs
 - how about using different geometric objects?
 - observe that triangles and unit circles might not have simple canonical representation

- Clique Planarity
 - What is the complexity of the Bipartite 2-Page Book Embedding problem (with and without spine crossings)?
 - recall that B2PBE with Spine Crossings = CPLS with 2 clusters = Clique Planarity with \(|S| = 2\)