A **map graph** \([2]\) is a contact graph of internally-disjoint regions of the plane, where the contact can be even a point.

A **clique planar graph** \([1]\) is a graph \(G = (V,E)\) that admits a representation where each vertex \(u \in V\) is represented by an axis-aligned unit square \(R(u)\) and where, for some partition of \(V\) into vertex-disjoint cliques \(S = \{c_1, \ldots, c_k\}\), each edge \((u,v)\) is represented by the intersection between \(R(u)\) and \(R(v)\) if \(u\) and \(v\) belong to the same clique (intersection edges) or by a non-intersected curve connecting the boundaries of \(R(u)\) and \(R(v)\) otherwise (link edges).

\[\text{A map graph...} \quad \text{...which is a map graph...} \quad \text{... and also a clique planar graph}\]
