

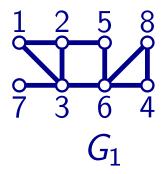
Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends

Alexander Wolff
Chair of Computer Science I
Universität Würzburg

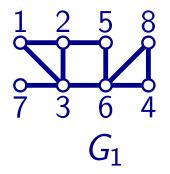
Joint work with Michael A. Bekos · Thomas C. van Dijk · *Philipp Kindermann*

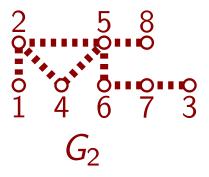
Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

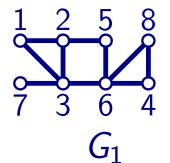


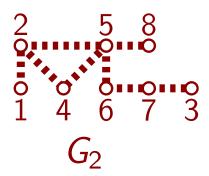
Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set





Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

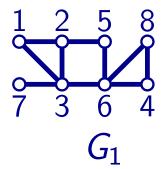


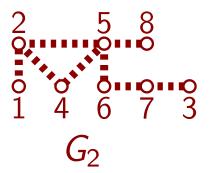


Embed both graphs in a planar way

edges of one graph may intersect edges of the other graph

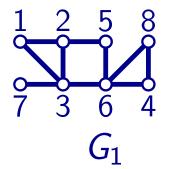
Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

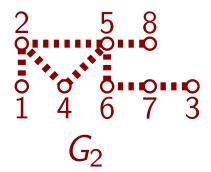




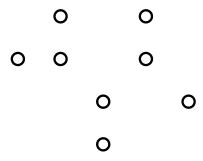
- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)

Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

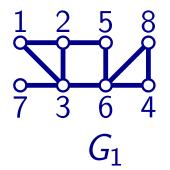


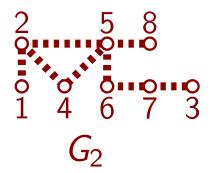


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)

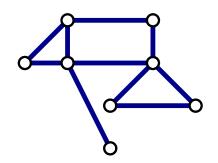


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

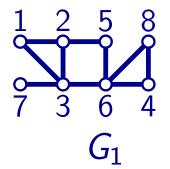


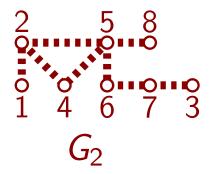


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)

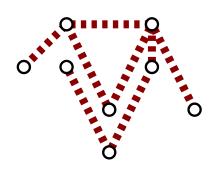


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

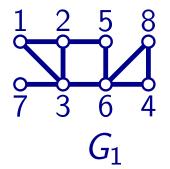


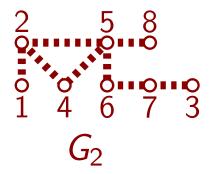


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)

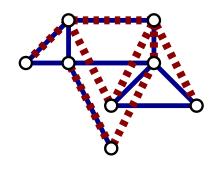


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

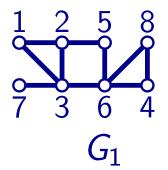


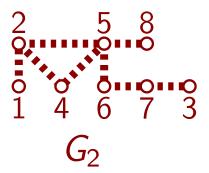


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)



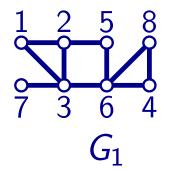
Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

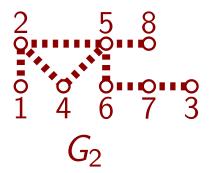




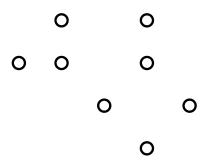
- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - Sim. Emb. with Fixed Edges (SEFE)

Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

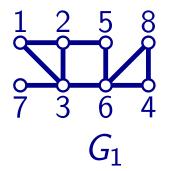


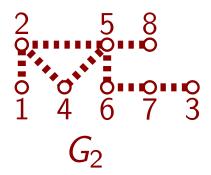


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - Sim. Emb. with Fixed Edges (SEFE)

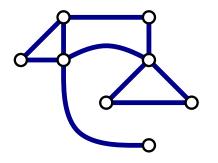


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

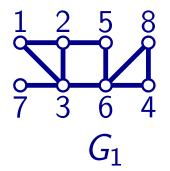


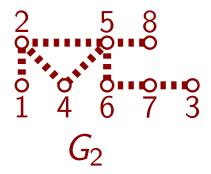


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)

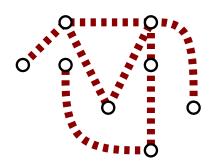


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

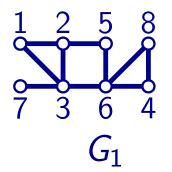


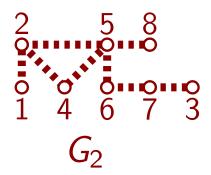


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - Sim. Emb. with Fixed Edges (SEFE)

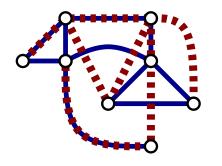


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

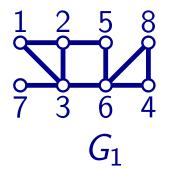


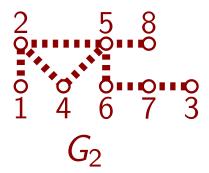


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)



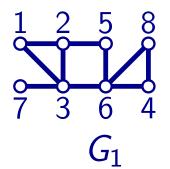
Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

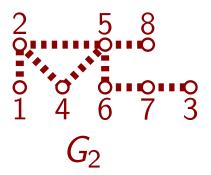




- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)
 - SIM. EMB. (SE)

Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

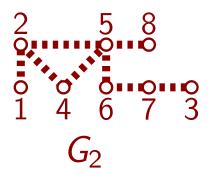




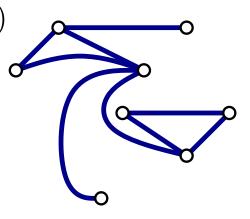
- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - Sim. Emb. with Fixed Edges (SEFE) •
 - \circ Sim. Emb. (SE)

Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

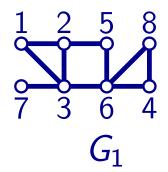


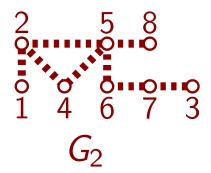


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)
 - SIM. EMB. (SE)

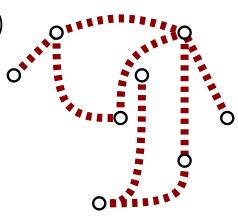


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

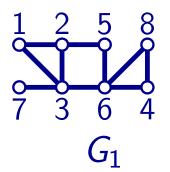


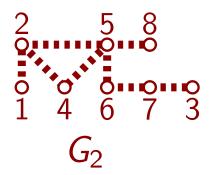


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)
 - \circ Sim. Emb. (SE)

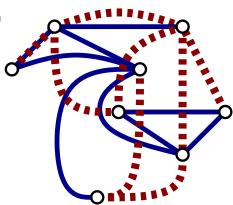


Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

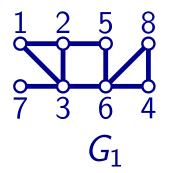


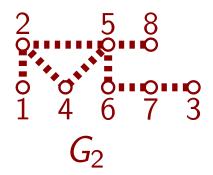


- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)
 - SIM. EMB. (SE)



Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

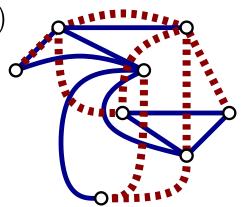




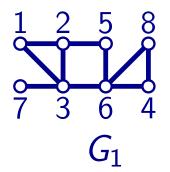
Embed both graphs in a planar way

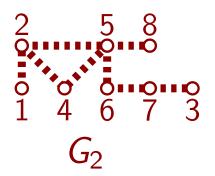
- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - SIM. EMB. WITH FIXED EDGES (SEFE)
 - SIM. EMB. (SE)

Large body of literature; see the survey by Bläsius, Rutter & Kobourov [HGD'13]!



Given: Two planar graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on same vertex set

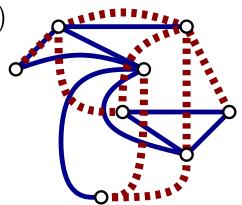




Embed both graphs in a planar way

- edges of one graph may intersect edges of the other graph
 - SIM. GEOMETRIC EMB. (SGE)
 - Sim. Emb. with Fixed Edges (SEFE)
 - SIM. EMB. (SE)

Large body of literature; see the survey by Bläsius, Rutter & Kobourov [HGD'13]!



RACSIM: Simultaneous Embedding with Right-Angle Crossings

RACSIM: Simultaneous Embedding with Right-Angle Crossings

RACSIM: Simultaneous Embedding with Right-Angle Crossings

RACSIM: Simultaneous Embedding with Right-Angle Crossings

Geometric RACSIM: RACSIM with straight-line edges

[Angelini et al. JGAA'12]

There exist a tree and a path that don't admit an ${\rm SGE}$ drawing.

[Angelini et al. JGAA'12]

There exist a tree and a path that don't admit an SGE drawing.

[Cabello et al. JGAA'11]

There exist a tree and a matching that require exponential area for an ${\rm SGE}$ drawing.

[Angelini et al. JGAA'12]

There exist a tree and a path that don't admit an SGE drawing.

[Cabello et al. JGAA'11]

There exist a tree and a matching that require exponential area for an ${\rm SGE}$ drawing.

[Erten & Kobourov JGAA'05]

Any pair of trees admits an SE drawing with 1 bend and quadratic area.

[Angelini et al. JGAA'12]

There exist a tree and a path that don't admit an SGE drawing.

[Cabello et al. JGAA'11]

There exist a tree and a matching that require exponential area for an ${\rm SGE}$ drawing.

[Erten & Kobourov JGAA'05]

Any pair of trees admits an SE drawing with 1 bend and quadratic area.

[Kammer SWAT'06]

Any pair of planar graphs admits an SE drawing with 2 bends and quadratic area.

[Angelini et al. JGAA'12]

There exist a tree and a path that don't admit an SGE drawing.

[Cabello et al. JGAA'11]

There exist a tree and a matching that require exponential area for an SGE drawing.

[Erten & Kobourov JGAA'05]

Any pair of trees admits an SE drawing with 1 bend and quadratic area.

[Kammer SWAT'06]

Any pair of planar graphs admits an ${\rm SE}$ drawing with 2 bends and quadratic area.

small angles

[Argyrious et al. JGAA'13]

A cycle and a matching always admit a geometric RACSIM drawing in quadratic area.

[Erten & Kobourov JGAA'05]

Any pair of trees admits an SE drawing with 1 bend and quadratic area.

[Kammer SWAT'06]

Any pair of planar graphs admits an ${\rm SE}$ drawing with 2 bends and quadratic area.

small angles

[Argyrious et al. JGAA'13]

A cycle and a matching always admit a geometric RacSim drawing in quadratic area.

There exist a wheel and a cycle that don't admit a geometric RACSIM drawing.

[Erten & Kobourov JGAA'05]

Any pair of trees admits an SE drawing with 1 bend and quadratic area.

[Kammer SWAT'06]

Any pair of planar graphs admits an ${\rm SE}$ drawing with 2 bends and quadratic area.

small angles

[Argyrious et al. JGAA'13]

A cycle and a matching always admit a geometric RACSIM drawing in quadratic area.

There exist a wheel and a cycle that don't admit a geometric RACSIM drawing.

[Frati, Hoffmann, Kusters GD'15]

New!

[Argyrious et al. JGAA'13]

A cycle and a matching always admit a geometric RACSIM drawing in quadratic area.

There exist a wheel and a cycle that don't admit a geometric RACSIM drawing.

[Frati, Hoffmann, Kusters GD'15]

Two trees admit a (1, 4)-SEFE
 (i.e., 1 bend per edge and 4 crossings per edge pair).

New!

[Argyrious et al. JGAA'13]

A cycle and a matching always admit a geometric RACSIM drawing in quadratic area.

There exist a wheel and a cycle that don't admit a geometric RACSIM drawing.

[Frati, Hoffmann, Kusters GD'15]

Two trees admit a (1, 4)-SEFE
 (i.e., 1 bend per edge and 4 crossings per edge pair).

New!

 \circ A tree and a planar graph admit a (6, 8)-SEFE.

A Few Known Results

[Argyrious et al. JGAA'13]

A cycle and a matching always admit a geometric RACSIM drawing in quadratic area.

There exist a wheel and a cycle that don't admit a geometric RACSIM drawing.

[Frati, Hoffmann, Kusters GD'15]

Two trees admit a (1, 4)-SEFE
 (i.e., 1 bend per edge and 4 crossings per edge pair).

New!

- \circ A tree and a planar graph admit a (6, 8)-SEFE.
- Two planar graphs admit a (6, 16)-SEFE.

Our Results for SE

Graph classes

Number of bends

Cycle	X	Cycle	1×1
Caterpillar	X	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1×0
Wheel	X	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	X	Outerplanar	3×3
2-page book emb.	X	2-page book emb.	4×4
Planar	×	Planar	6×6

Our Results for SE

Graph classes		Number of bends	
Cycle	×	Cycle	1×1
Caterpillar	×	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1 imes 0
Wheel	×	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	×	Outerplanar	3×3
2-page book emb.	×	2-page book emb.	4×4
Planar	×	Planar	6×6

Bend complexity can be seen as a measure that shows how difficult it is to simultaneously embed two graphs.

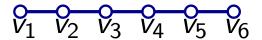
Our Results for SE

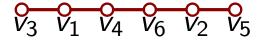
Graph classes

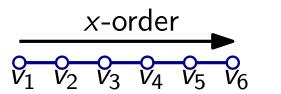
Number of bends

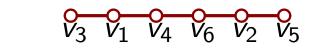
Cycle	X	Cycle	1 imes 1
Caterpillar	X	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1×0
Wheel	×	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	×	Outerplanar	3×3
2-page book emb.	×	2-page book emb.	4×4
Planar	X	Planar	6×6

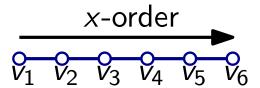
Bend complexity can be seen as a measure that shows how difficult it is to simultaneously embed two graphs.

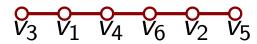


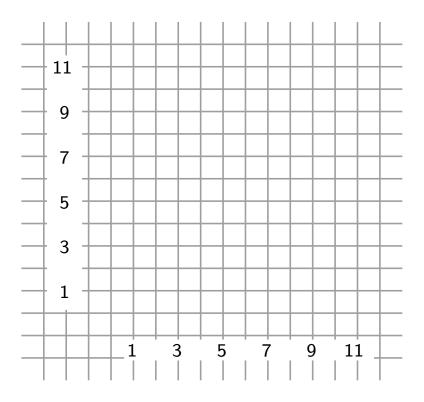


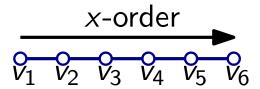


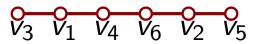


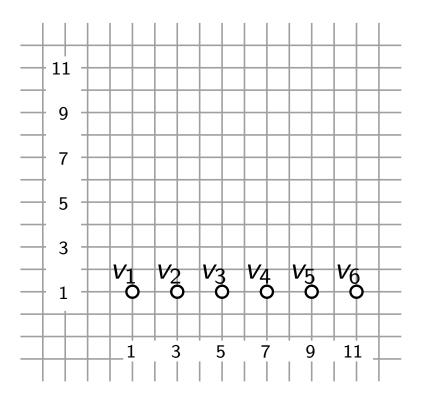


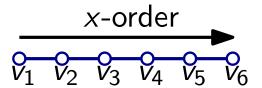


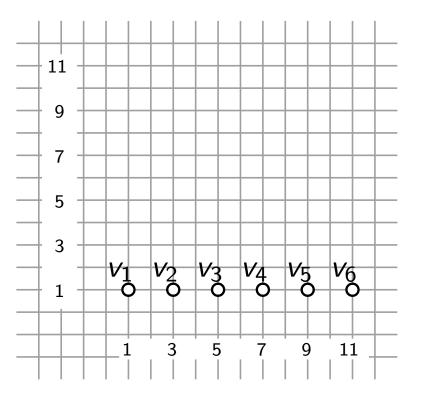


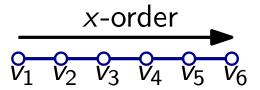


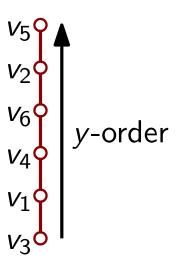


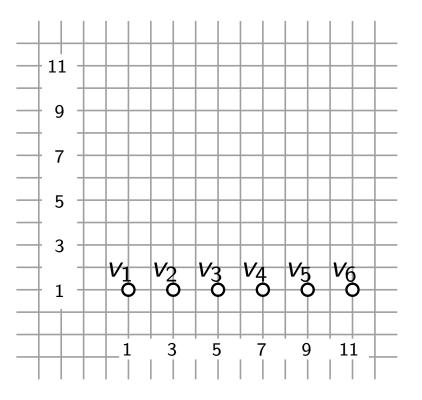


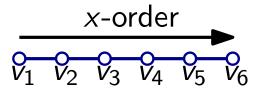


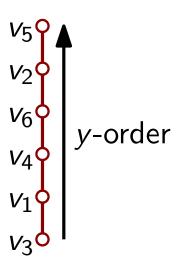


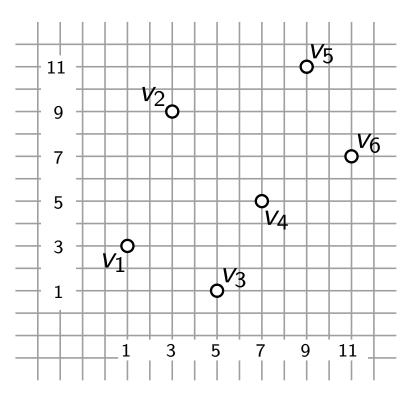


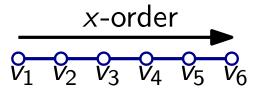


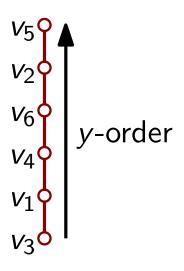




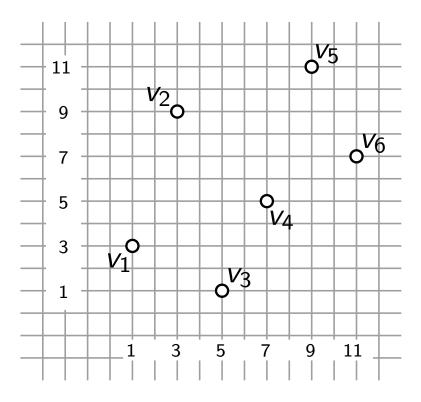


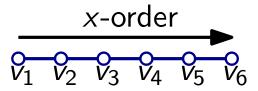


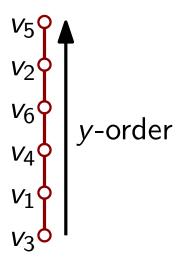


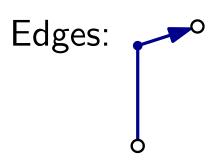


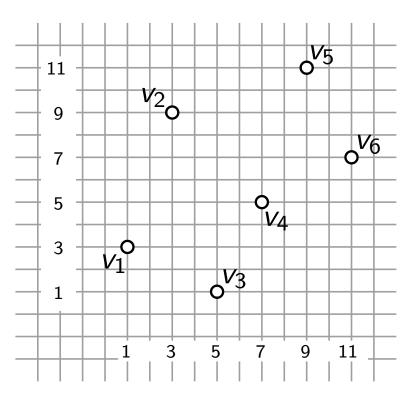
Edges:

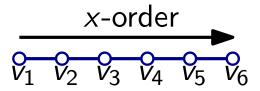


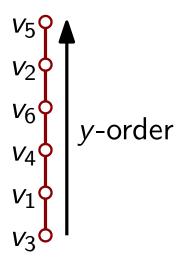


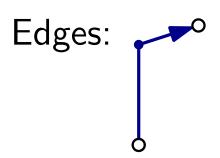


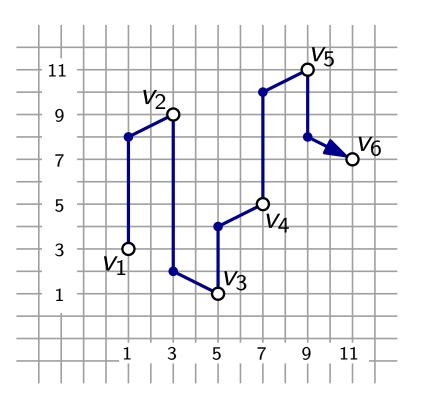


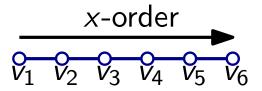


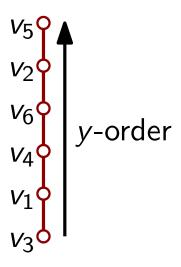


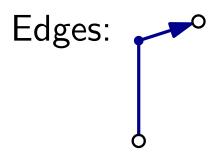


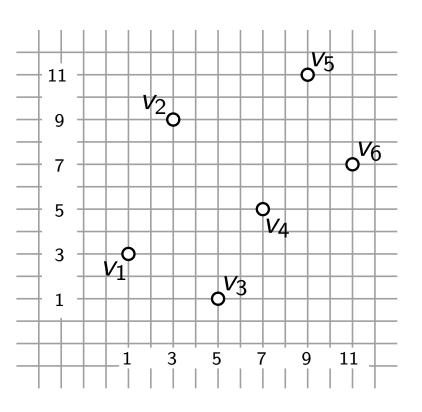


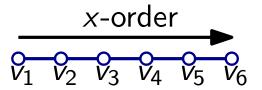


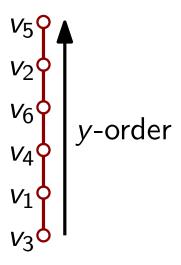


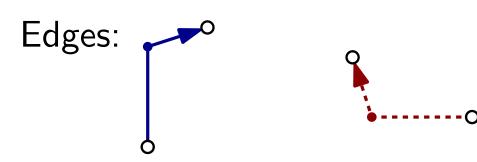


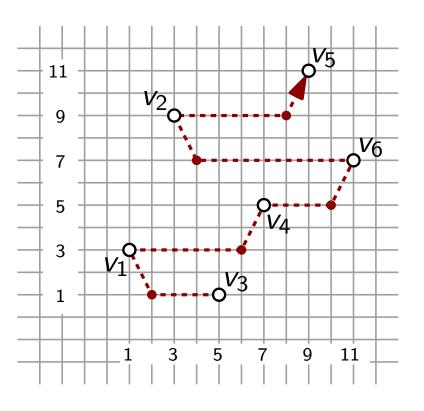


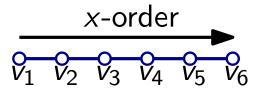


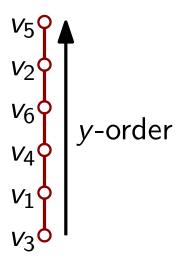


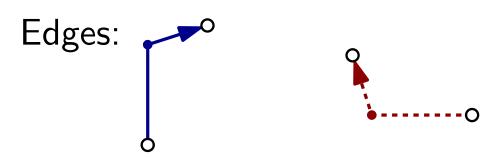


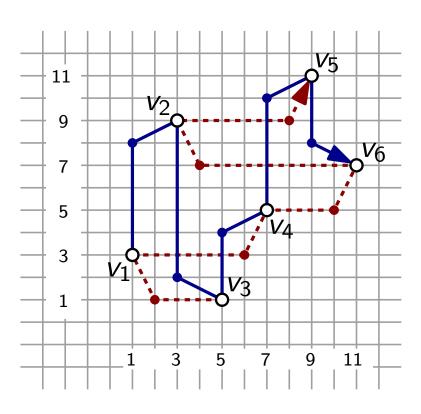


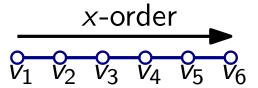


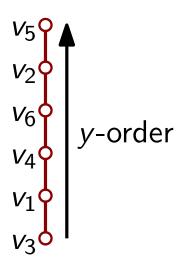


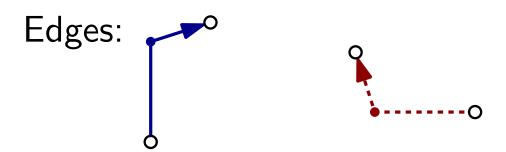






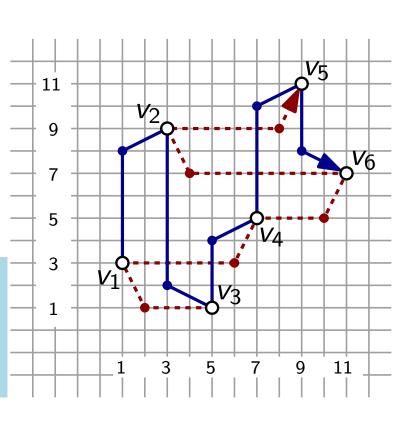


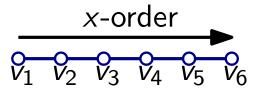


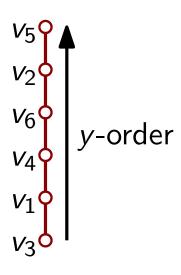


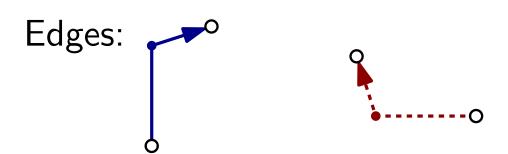
Main ideas:

Combine x-order and y-order.

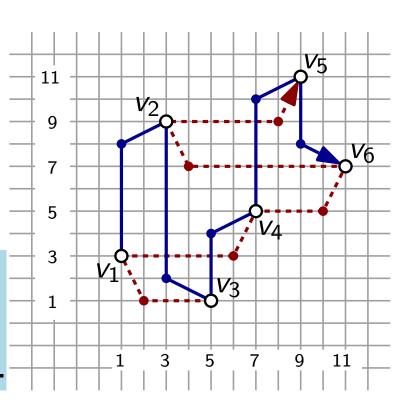


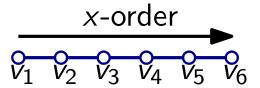


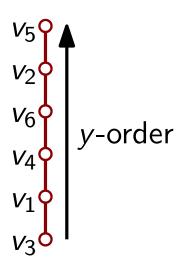


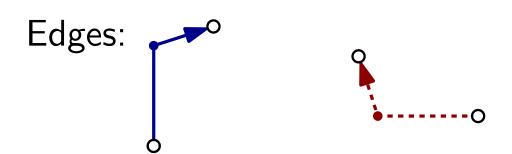


- Combine x-order and y-order.
- Keep slanted segm. short in 1 dim.

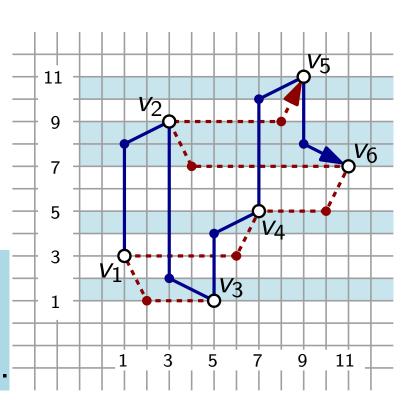


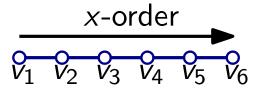


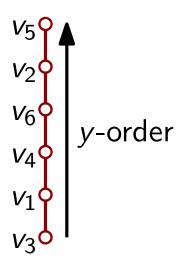


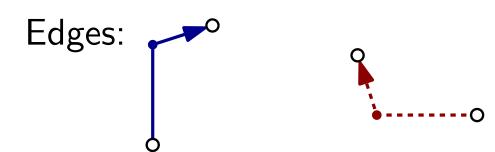


- Combine x-order and y-order.
- Keep slanted segm. short in 1 dim.

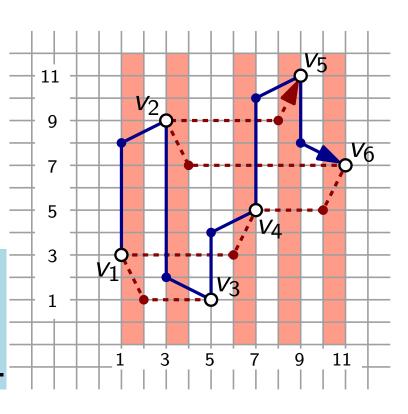


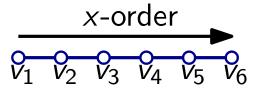


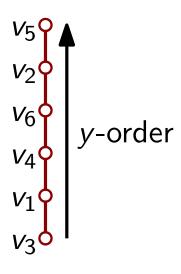


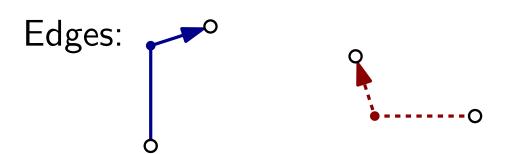


- Combine x-order and y-order.
- Keep slanted segm. short in 1 dim.

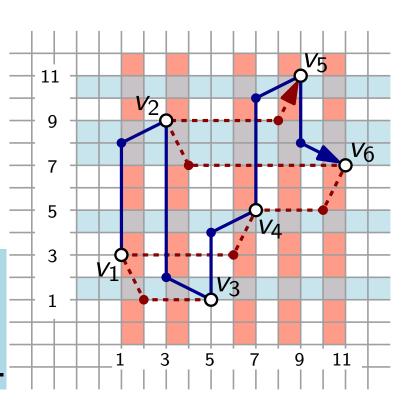




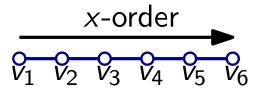


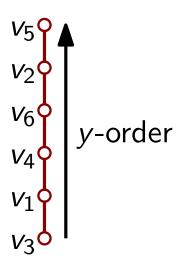


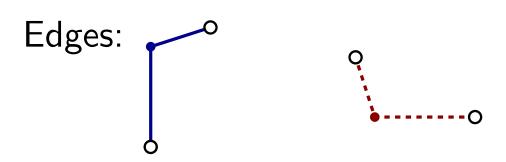
- Combine x-order and y-order.
- Keep slanted segm. short in 1 dim.

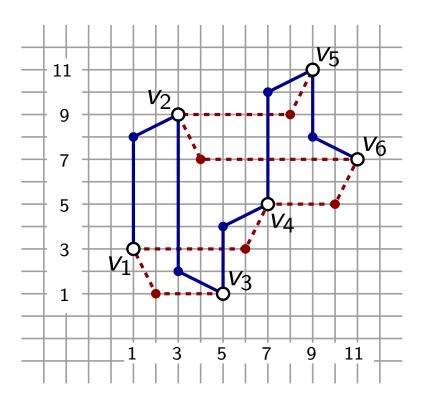


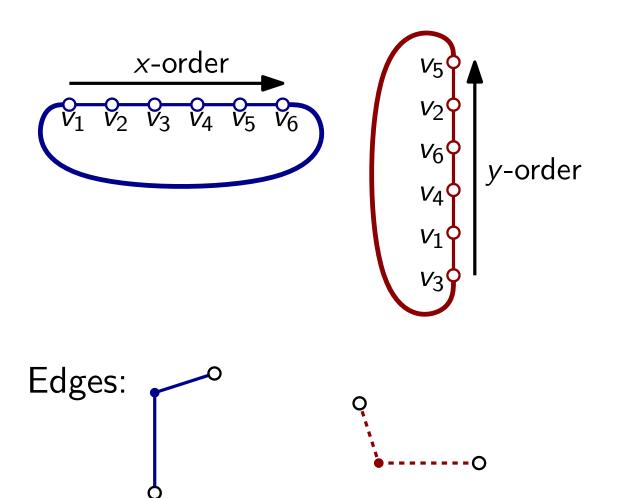
Cycle \times Cycle

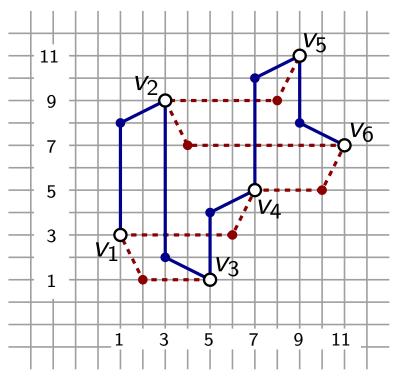


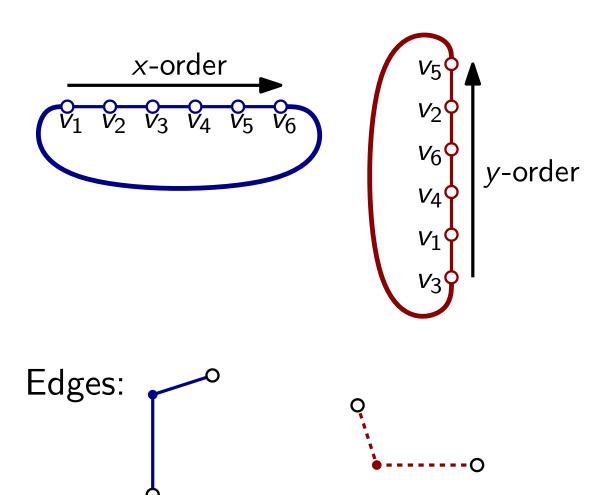


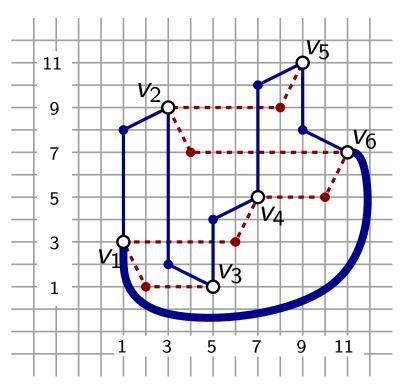


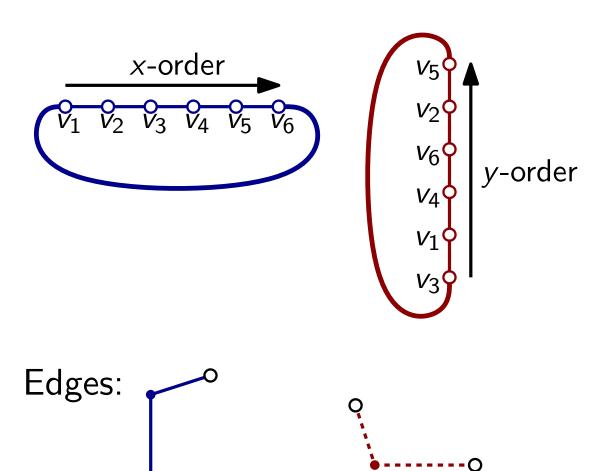


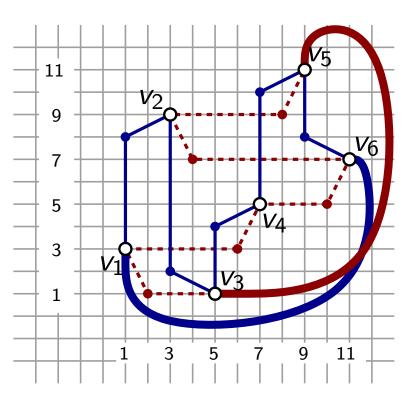




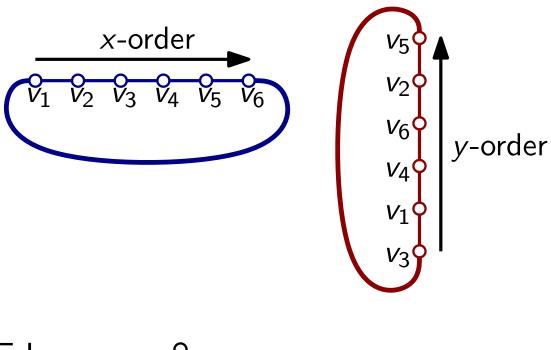


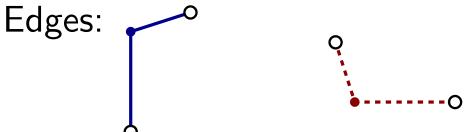


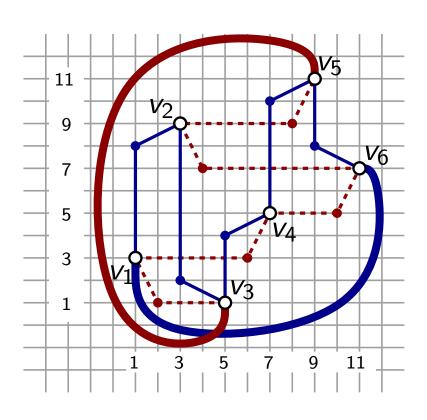


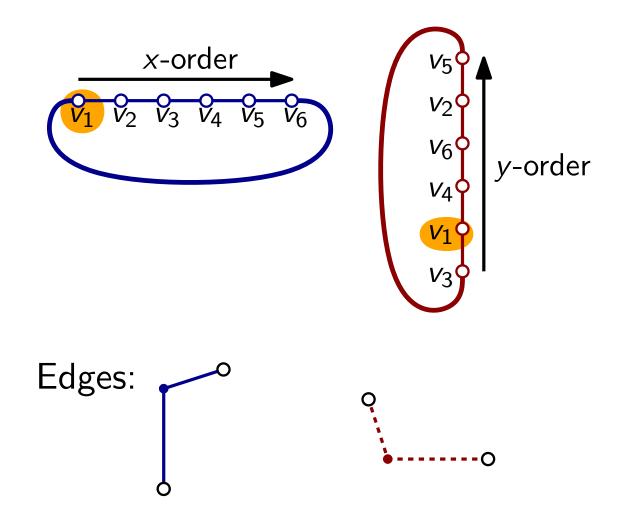


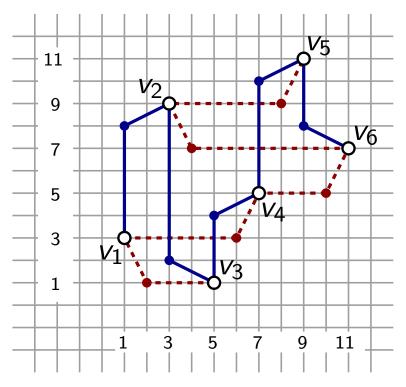
Cycle \times Cycle



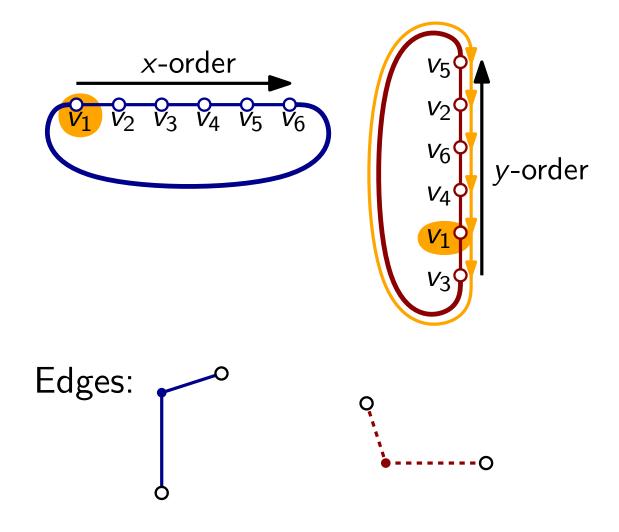


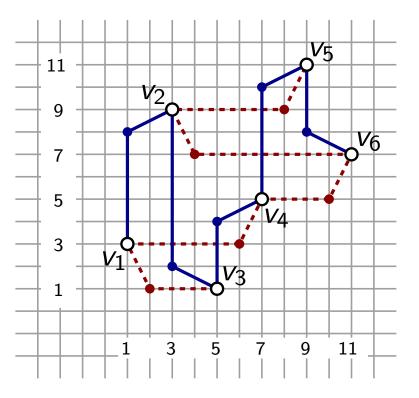


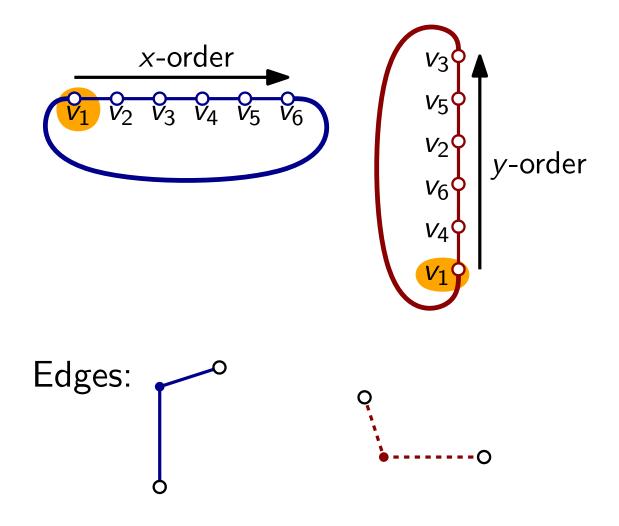


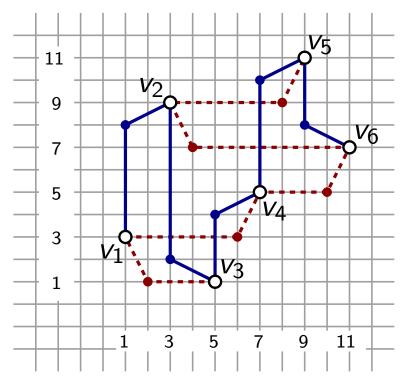


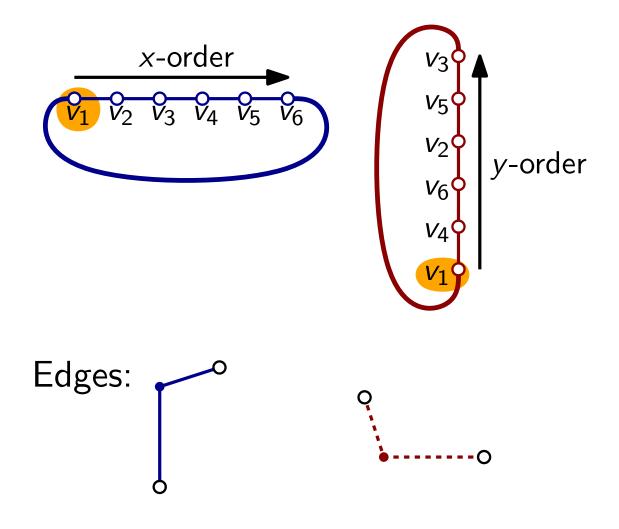
Cycle \times Cycle

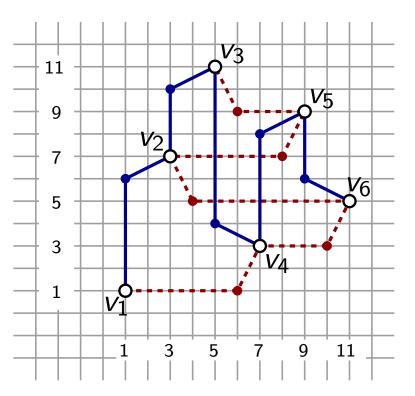


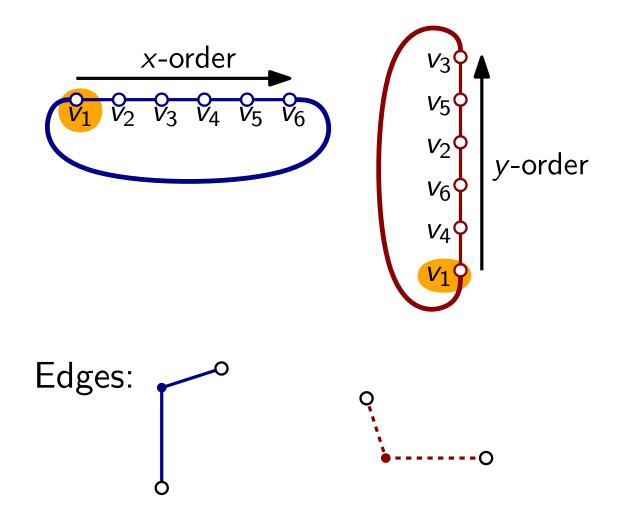


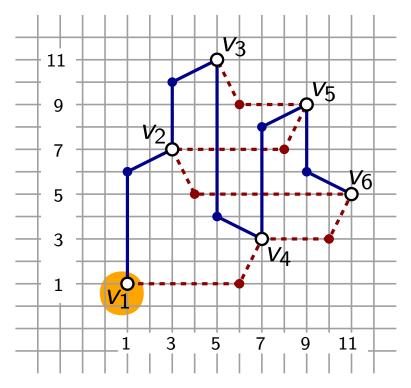


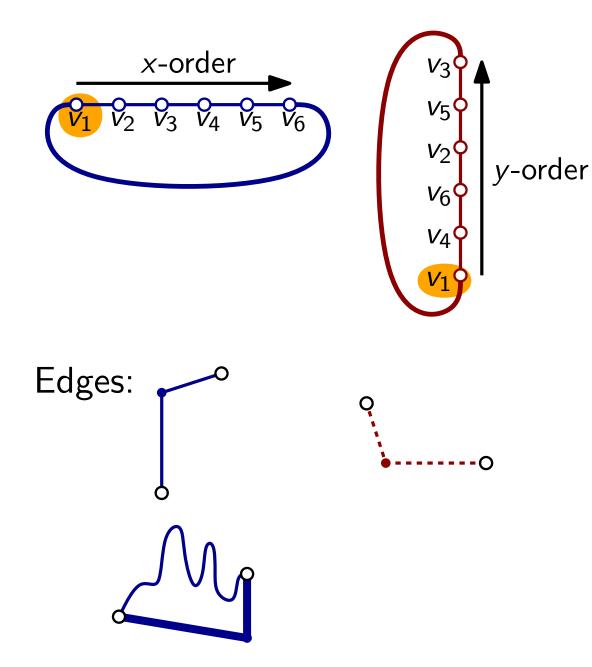


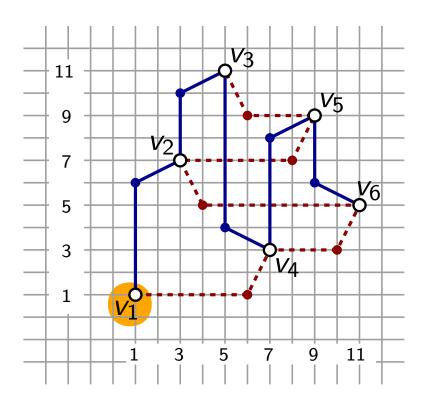




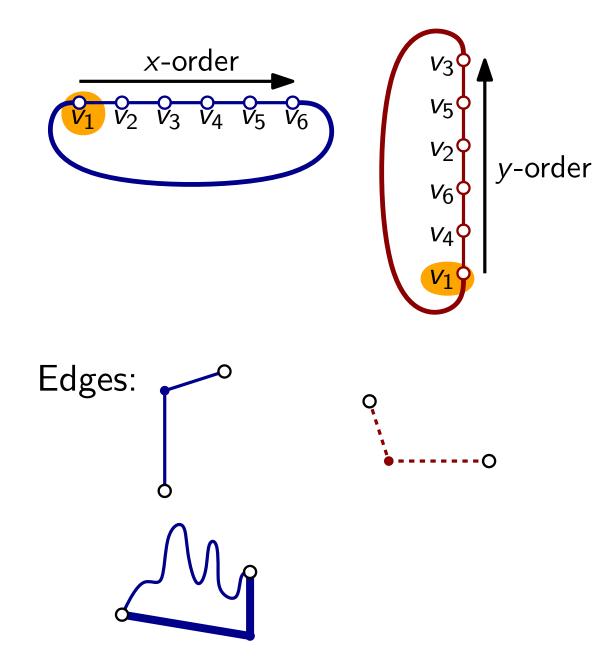


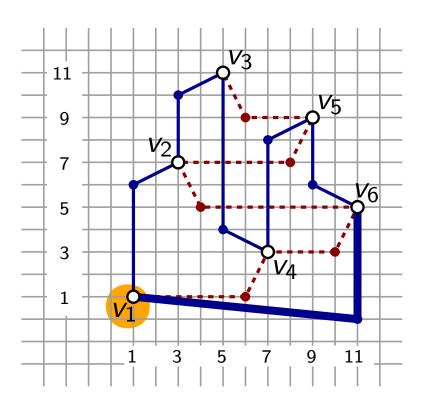




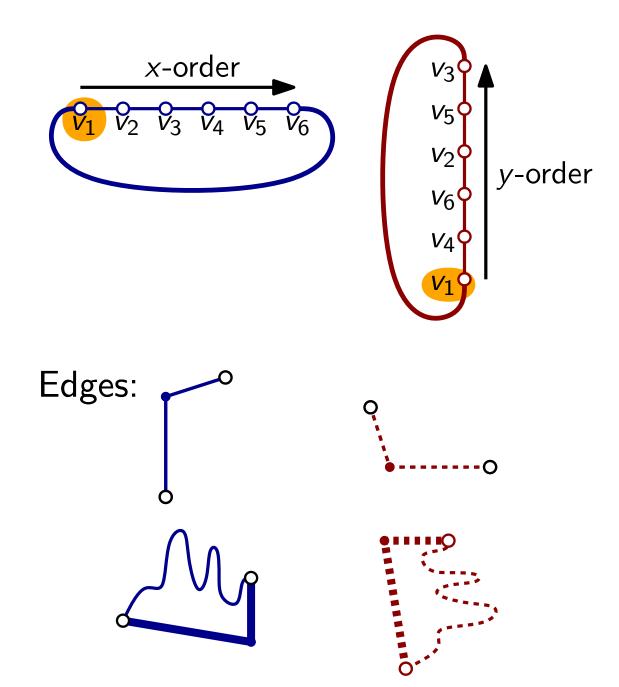


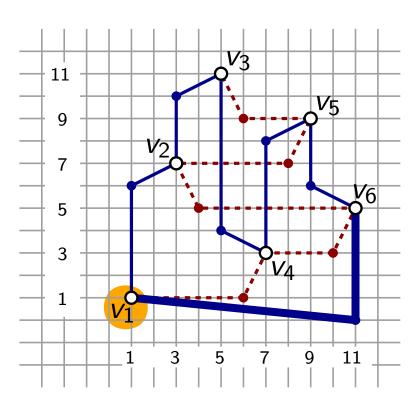
Cycle × Cycle



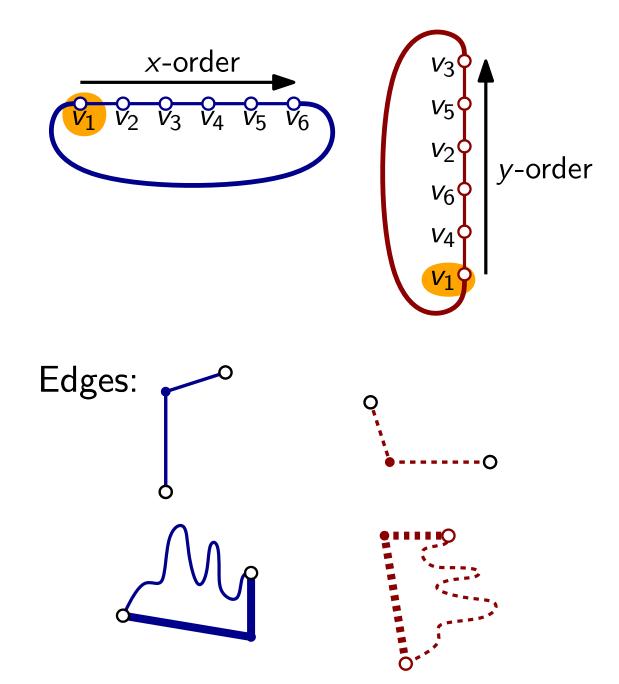


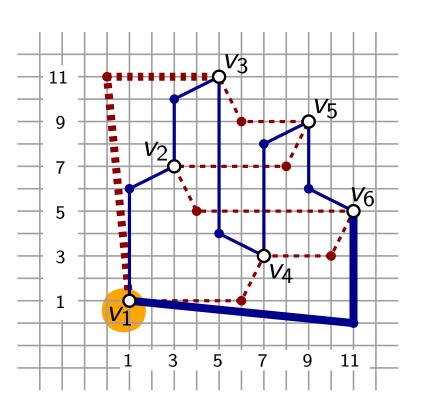
Cycle \times Cycle



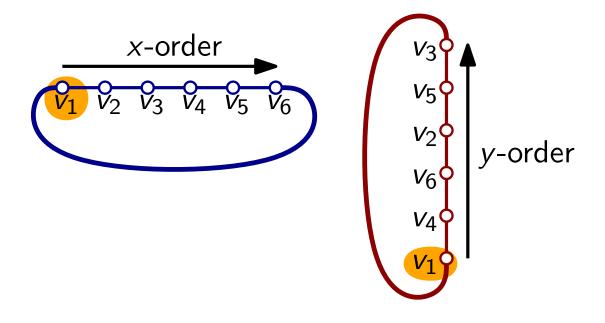


Cycle \times Cycle

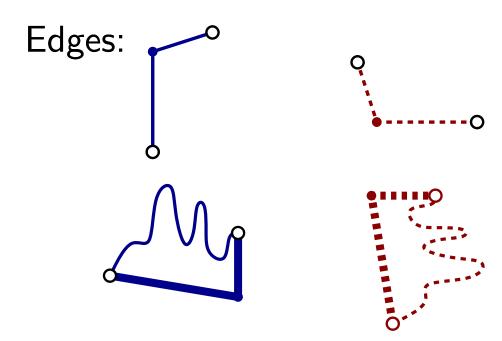


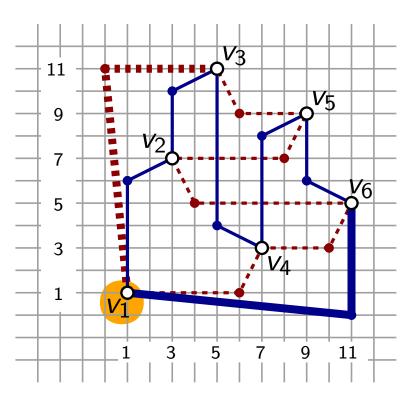


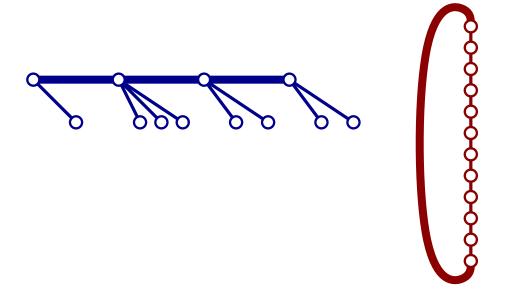
Cycle × Cycle



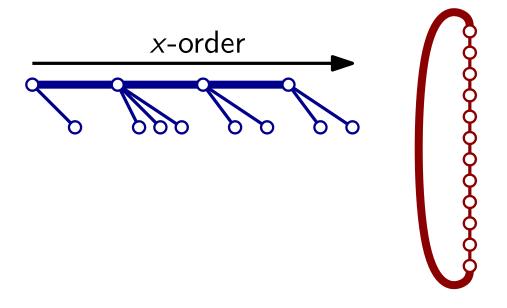
Bends: 1×1 Grid size: $(2n-1)^2$

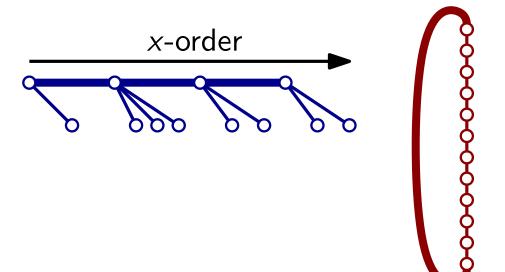


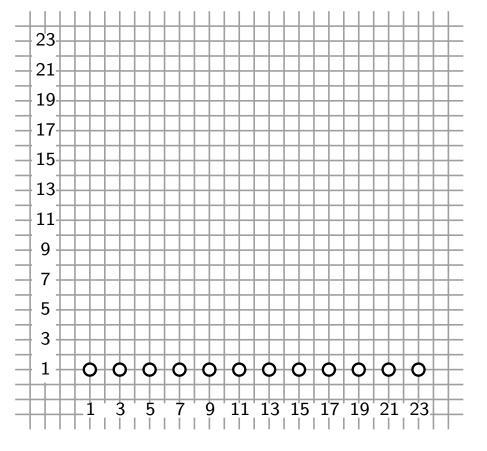


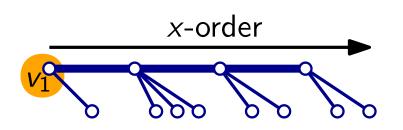


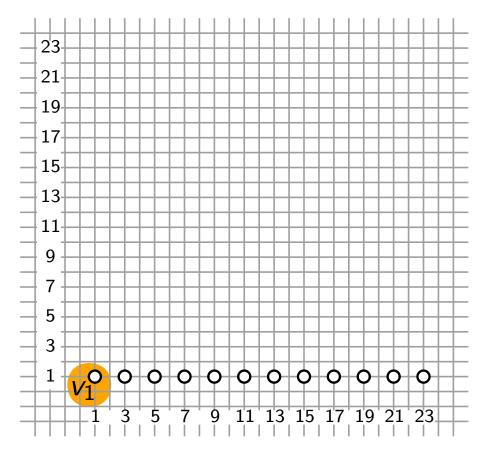
$\mathsf{Caterpillar} \times \mathsf{Cycle}$



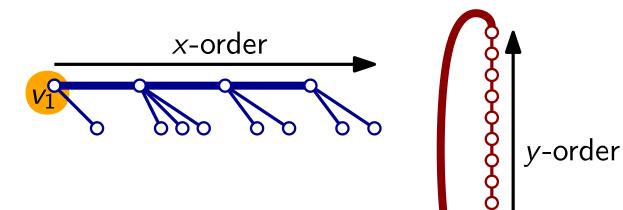


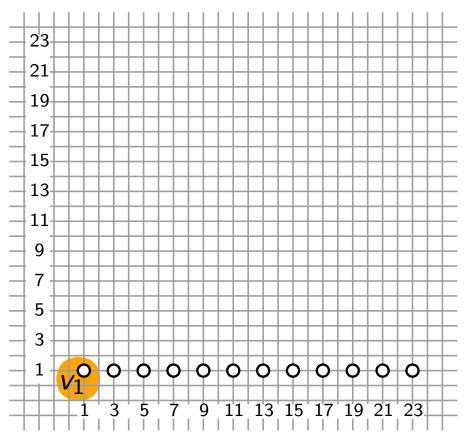




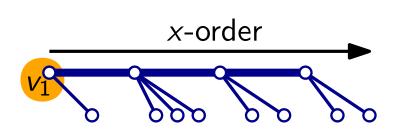


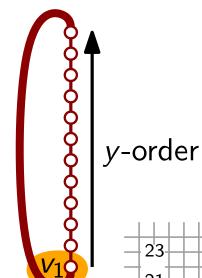
Caterpillar × Cycle

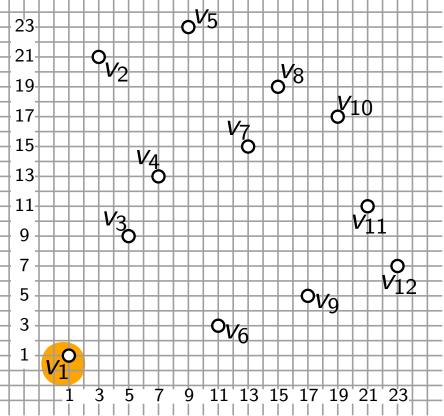




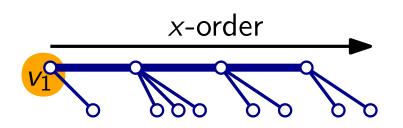
Caterpillar × Cycle



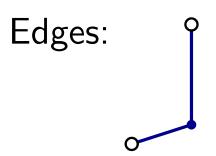


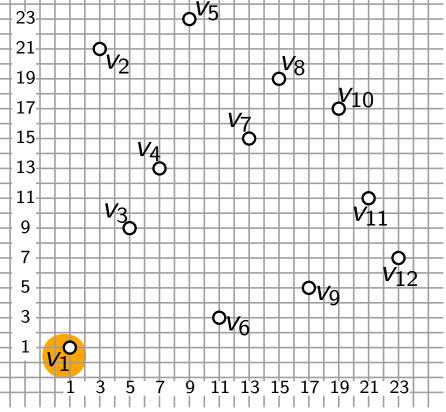


${\sf Caterpillar} \times {\sf Cycle}$

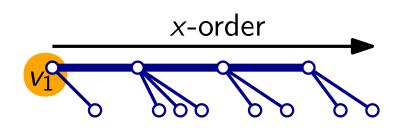


y-order

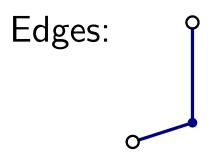


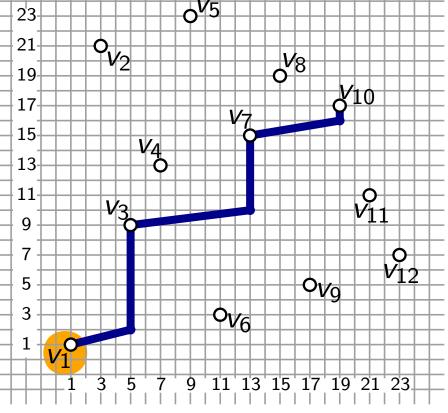


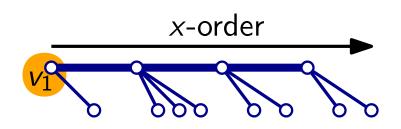
${\sf Caterpillar} \times {\sf Cycle}$



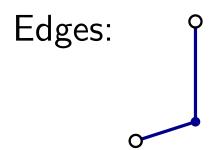
y-order

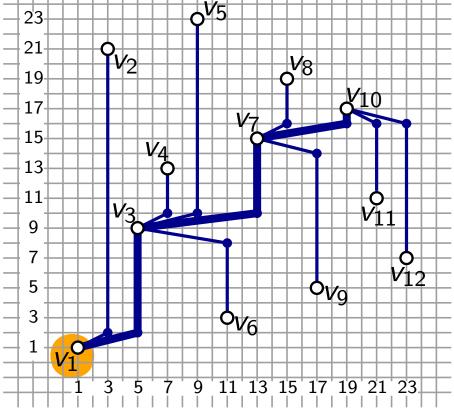


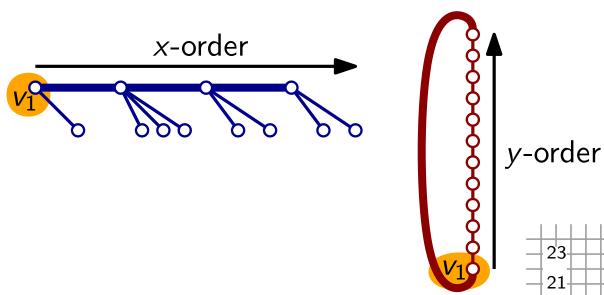


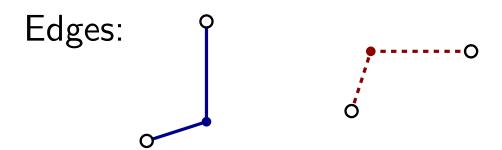


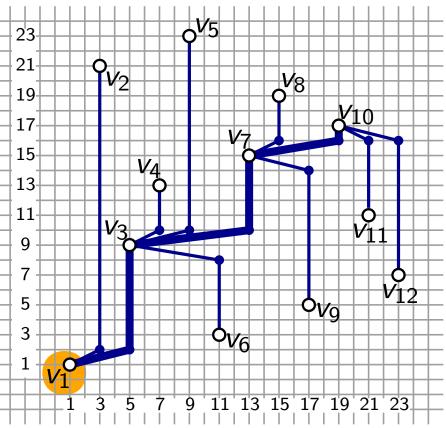
y-order

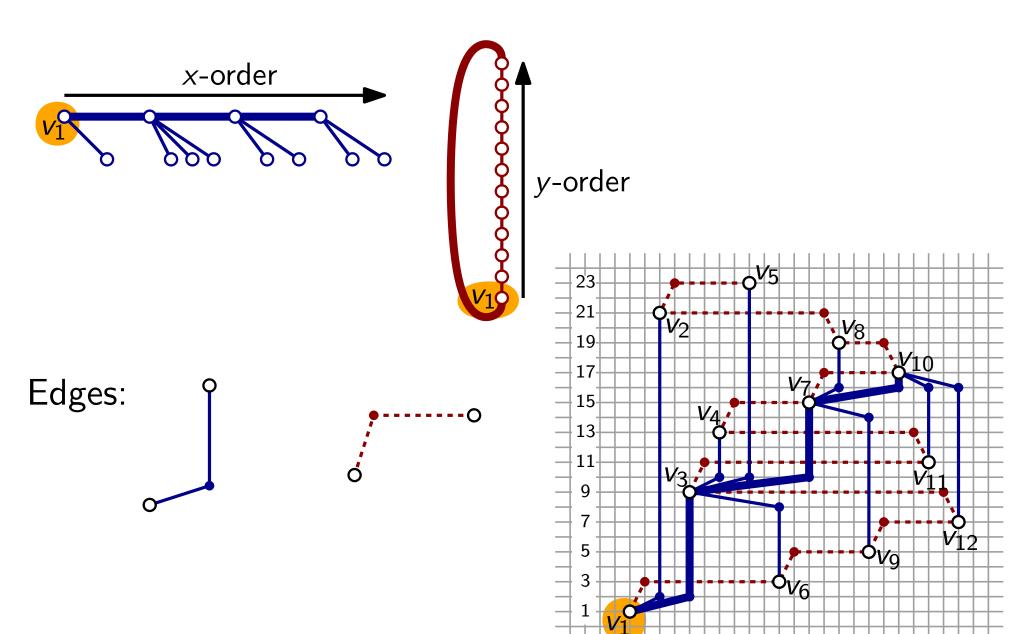


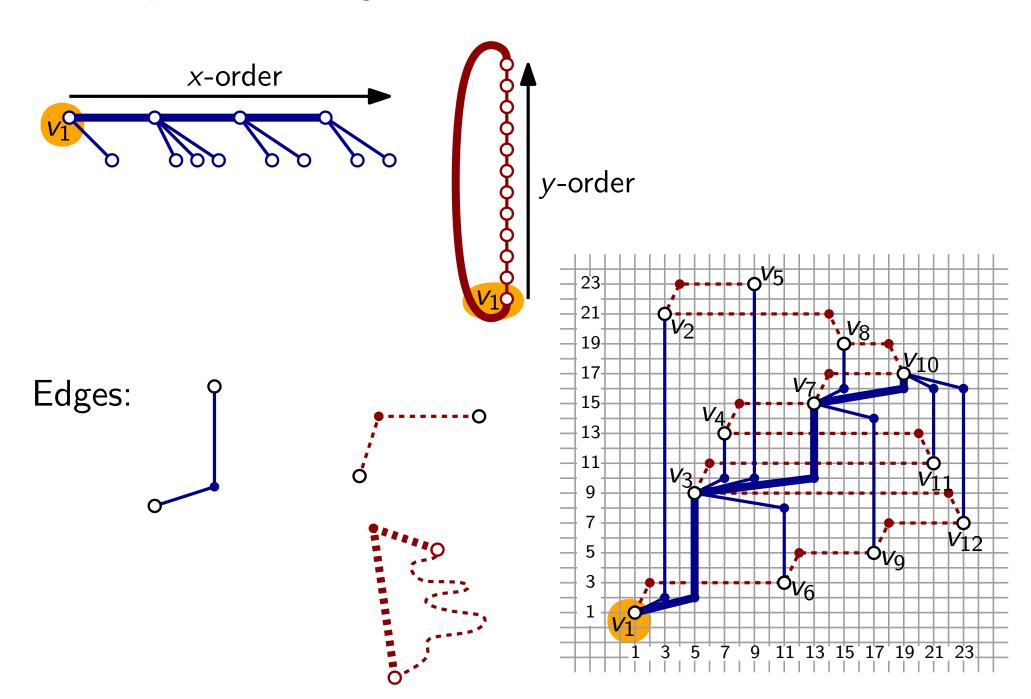


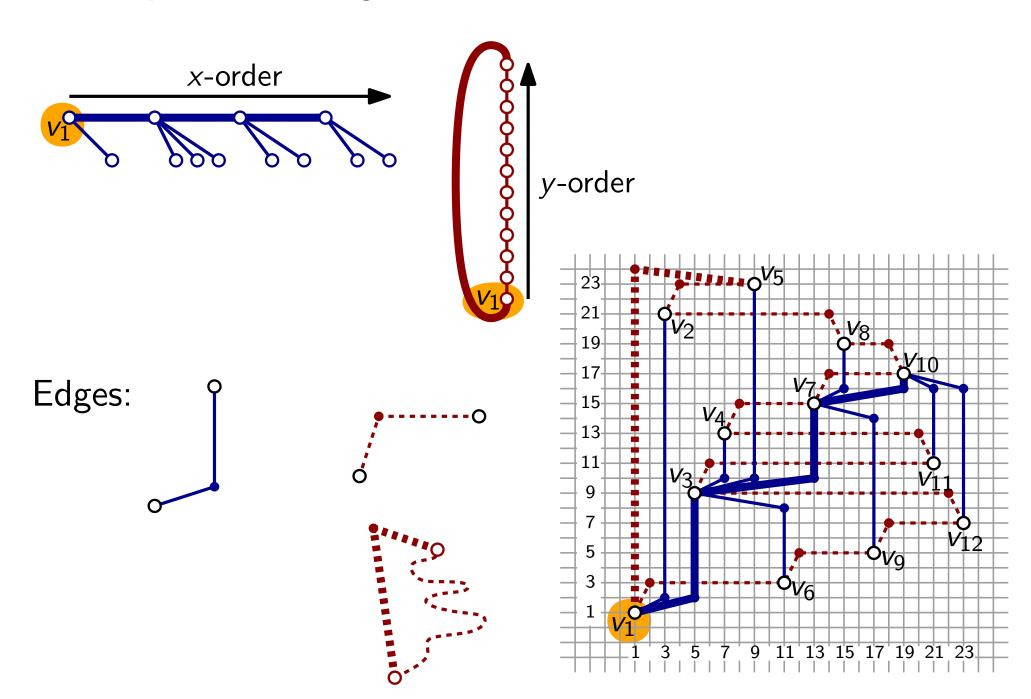


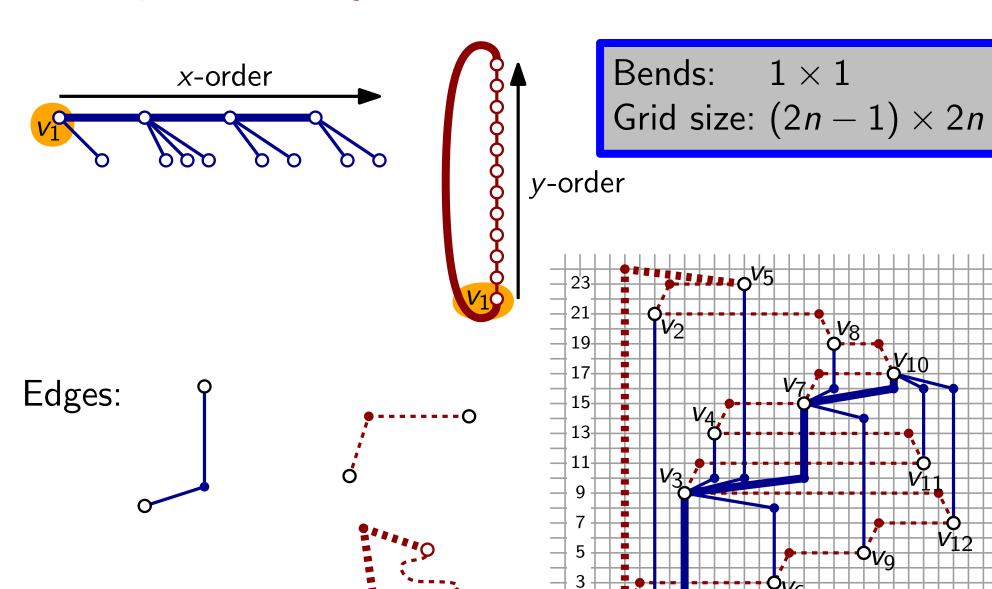










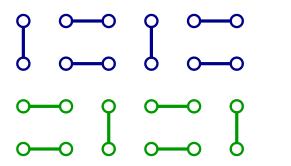


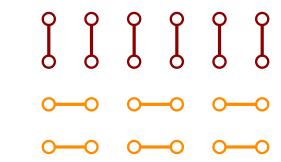
Overview

Graph classes

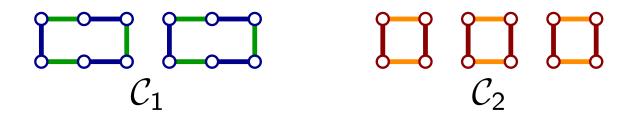
Number of bends

Cycle	×	Cycle	1×1
Caterpillar	×	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1×0
Wheel	×	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	×	Outerplanar	3×3
2-page book emb.	X	2-page book emb.	4×4
Planar	X	Planar	6×6

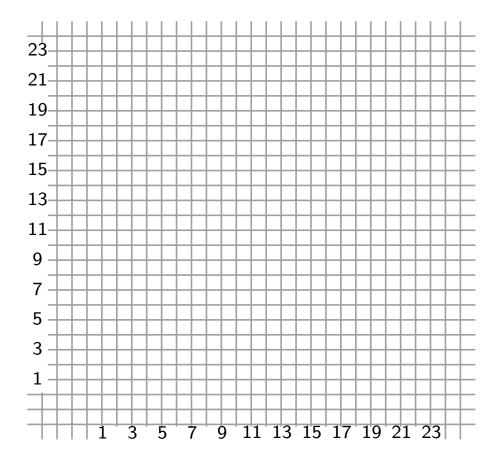


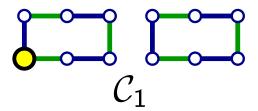


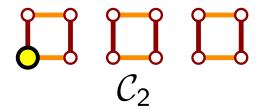
Combine \Rightarrow two sets of cycles C_1 , C_2



Combine \Rightarrow two sets of cycles C_1 , C_2



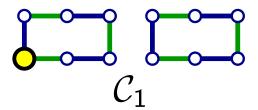


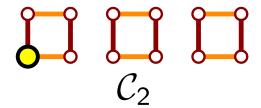


Placement algorithm:

 \circ Pick v_1

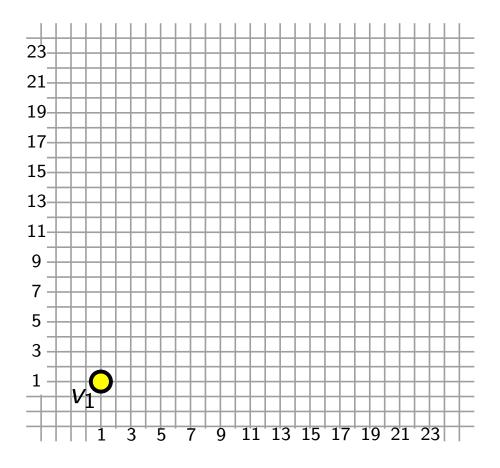


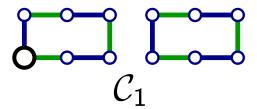


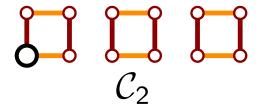


Placement algorithm:

 \bigcirc Pick v_1 , place it

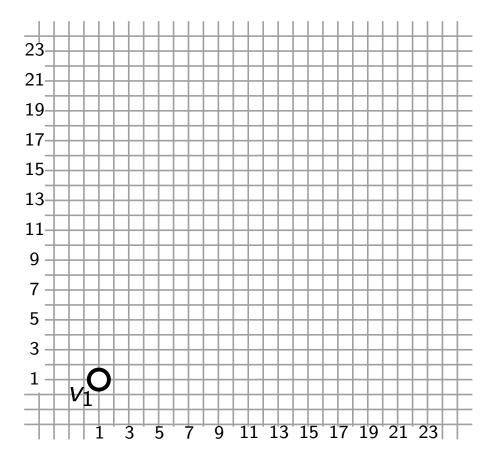


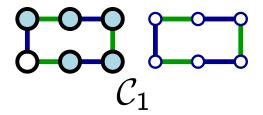


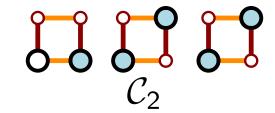


Placement algorithm:

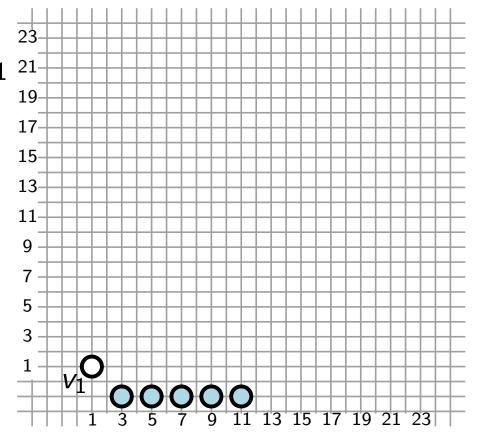
 \bigcirc Pick v_1 , place it

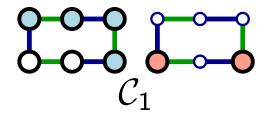


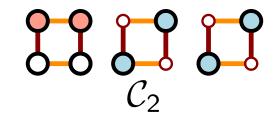




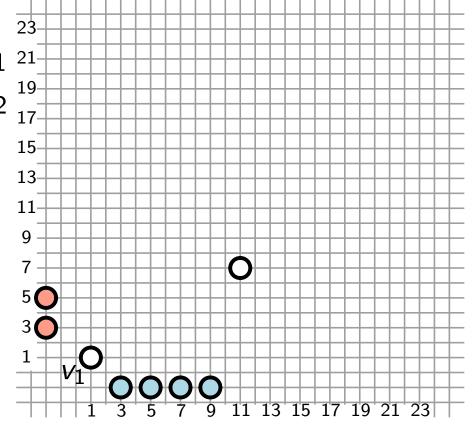
- \bigcirc Pick v_1 , place it
- lacktriangle Assign *x*-coords. to cycle in \mathcal{C}_1

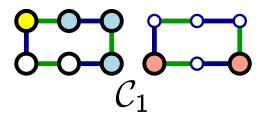


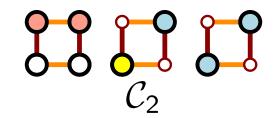




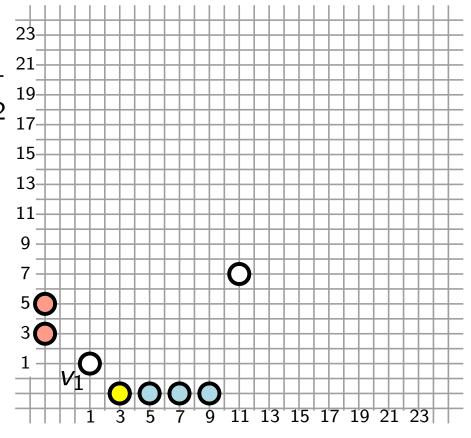
- \bigcirc Pick v_1 , place it
- lacktriangle Assign x-coords. to cycle in \mathcal{C}_1
- lacktriangle Assign y-coords. to cycle in \mathcal{C}_2

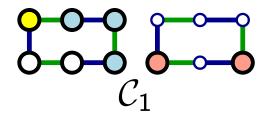


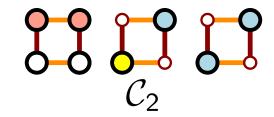




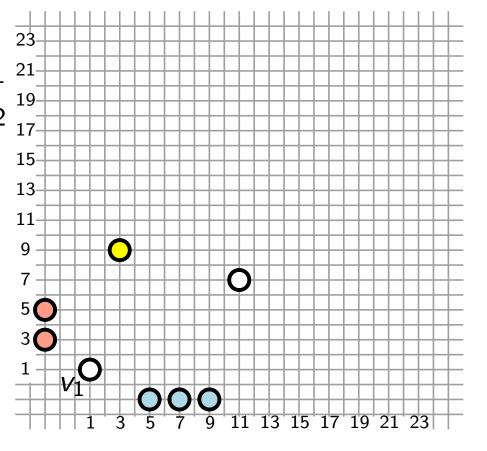
- \bigcirc Pick v_1 , place it
- Assign x-coords. to cycle in C_1
- lacktriangle Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.

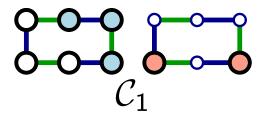


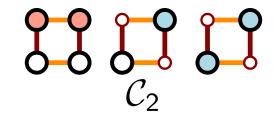




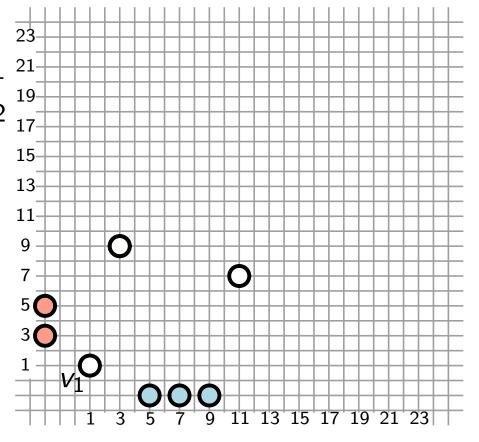
- \bigcirc Pick v_1 , place it
- Assign x-coords. to cycle in \mathcal{C}_1
- lacktriangle Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

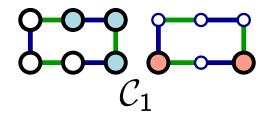


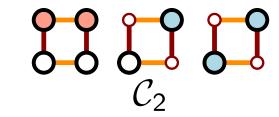




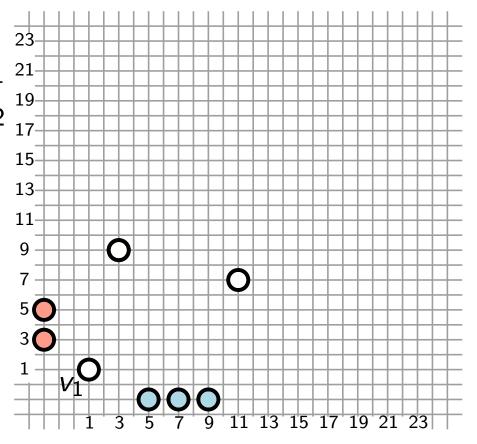
- \bigcirc Pick v_1 , place it
- Assign x-coords. to cycle in C_1
- lacktriangle Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

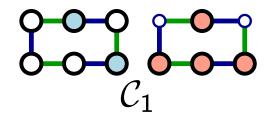


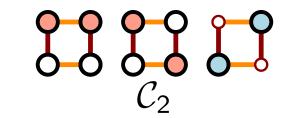




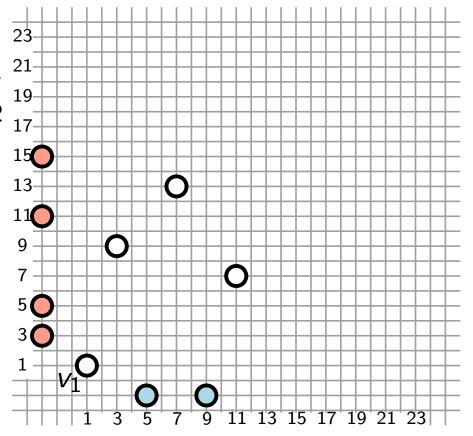
- ho Pick v_1 , place it
- lack Assign x-coords. to cycle in \mathcal{C}_1
- ullet Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

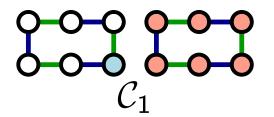


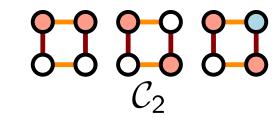




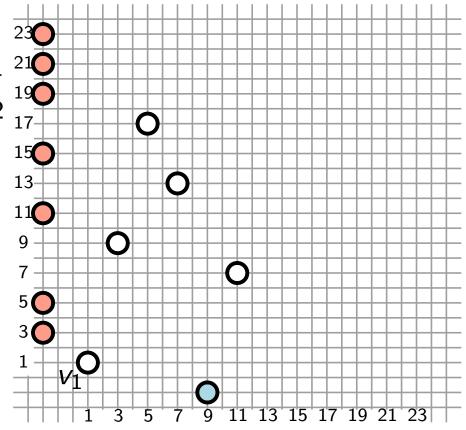
- m
 ho Pick v_1 , place it
- lack Assign x-coords. to cycle in \mathcal{C}_1
- Assign y-coords. to cycle in C_2
- Pick v with 1 assigned coord.
- Place v

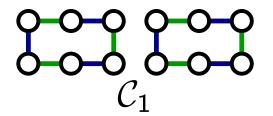


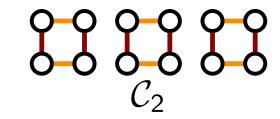




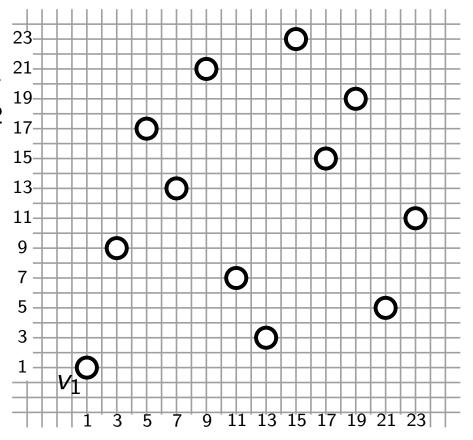
- ho Pick v_1 , place it
- Assign x-coords. to cycle in \mathcal{C}_1
- Assign y-coords. to cycle in C_2
- Pick v with 1 assigned coord.
- Place v

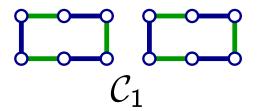


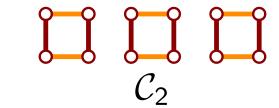




- ho Pick v_1 , place it
- lack Assign x-coords. to cycle in \mathcal{C}_1
- ullet Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v







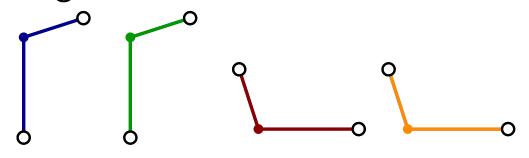
- ho Pick v_1 , place it
 - Assign x-coords. to cycle in \mathcal{C}_1
- ullet Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

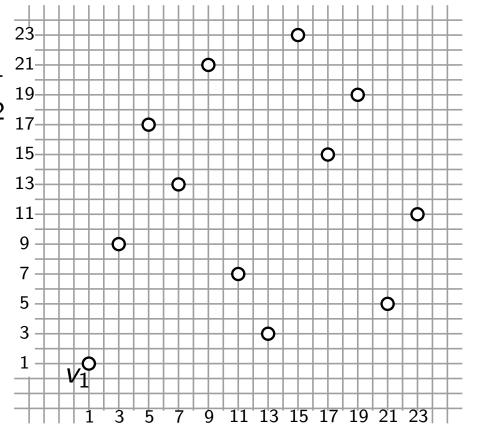


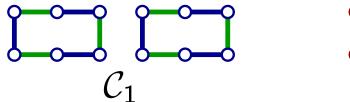
Placement algorithm:

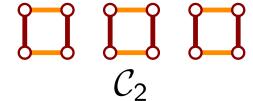
- ightharpoonup Pick v_1 , place it
- Assign x-coords. to cycle in \mathcal{C}_1
- ullet Assign y-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

Edges:





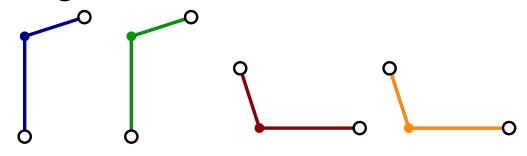


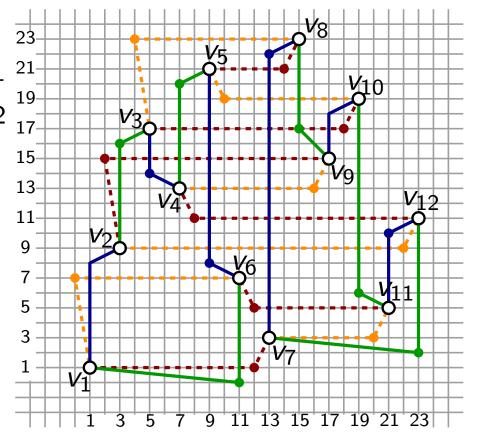


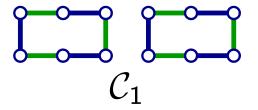
Placement algorithm:

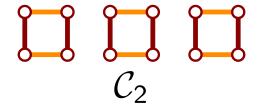
- ho Pick v_1 , place it
- lack Assign x-coords. to cycle in \mathcal{C}_1
- ullet Assign *y*-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

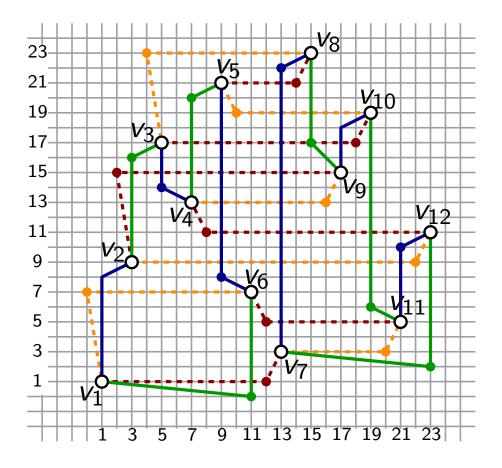
Edges:

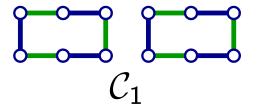


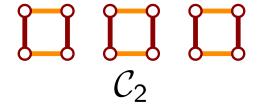


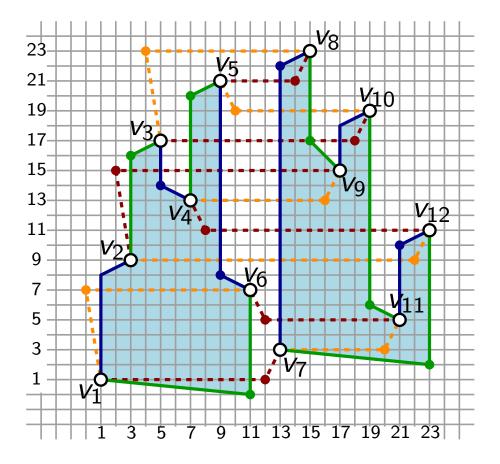


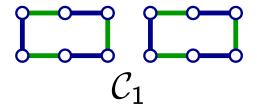


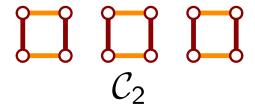


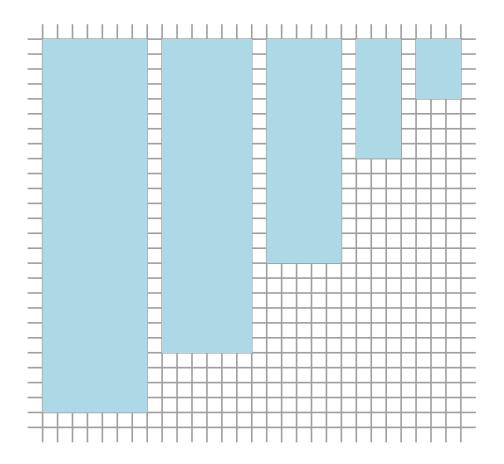


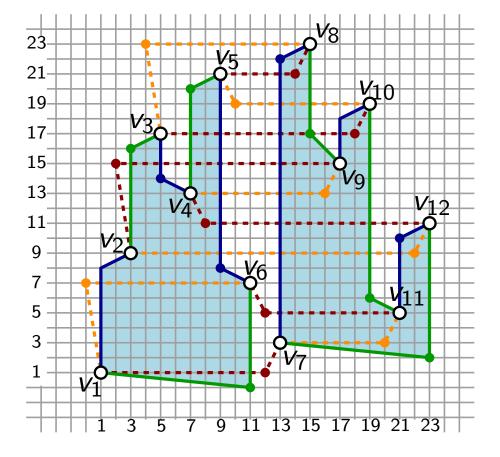


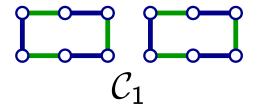


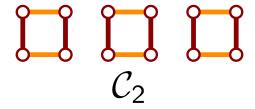


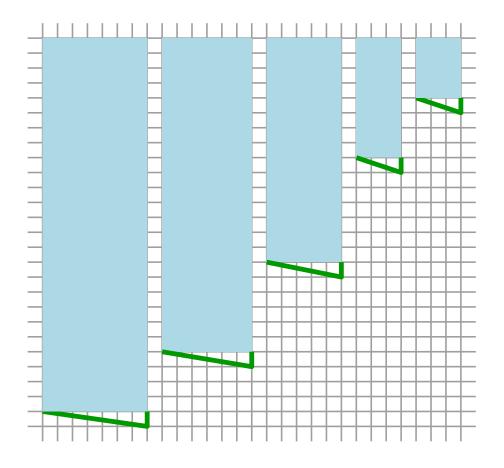


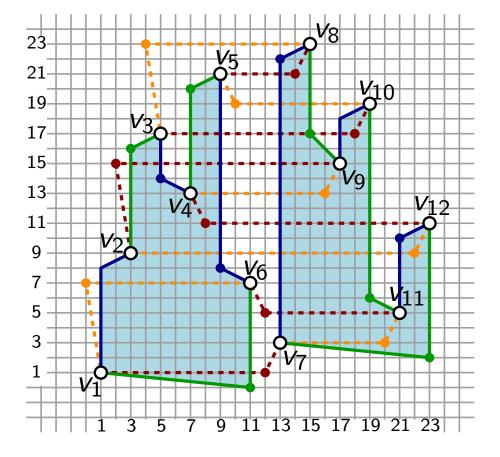


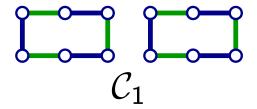


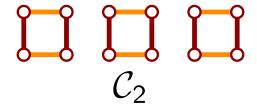


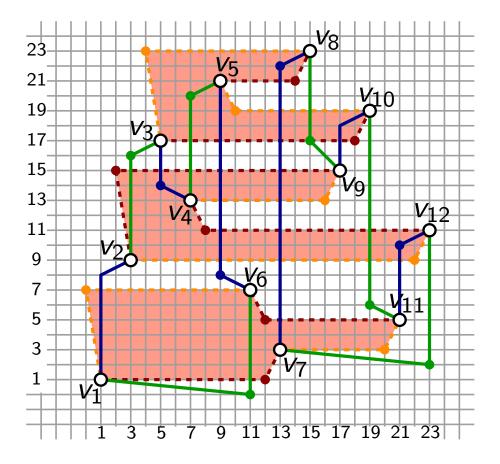


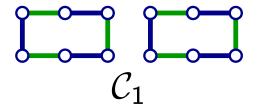


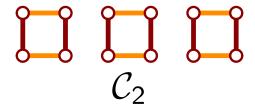


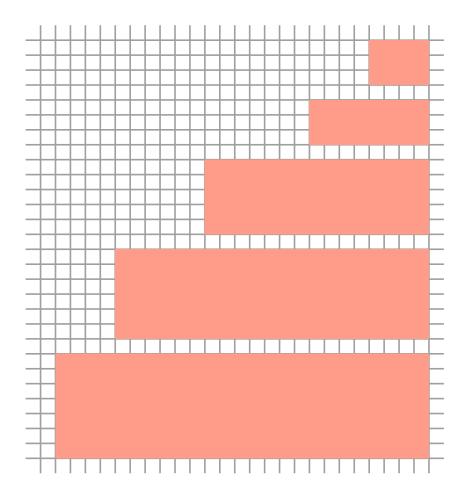


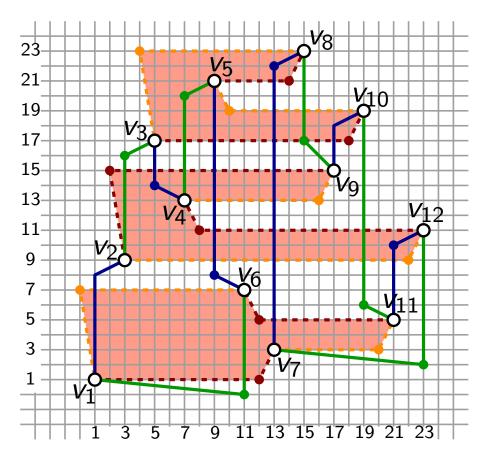


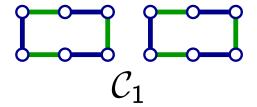


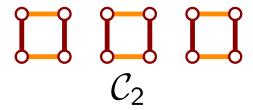


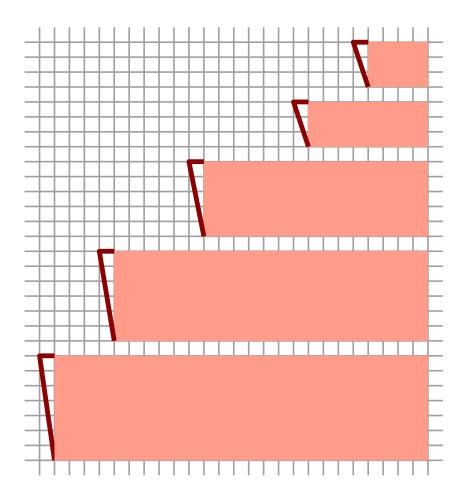


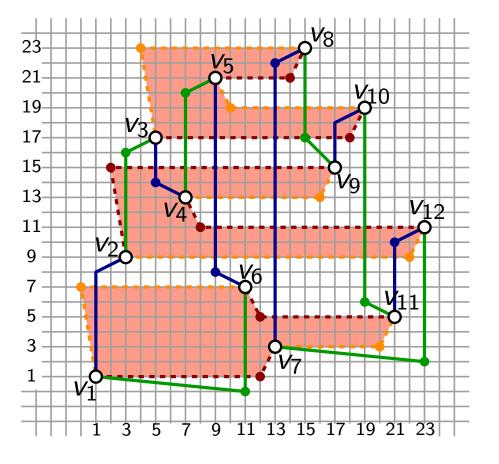


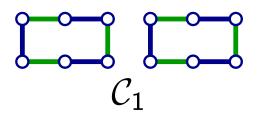


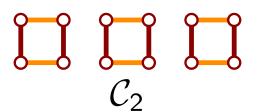












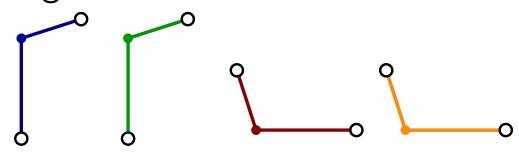
Bends: 1×1

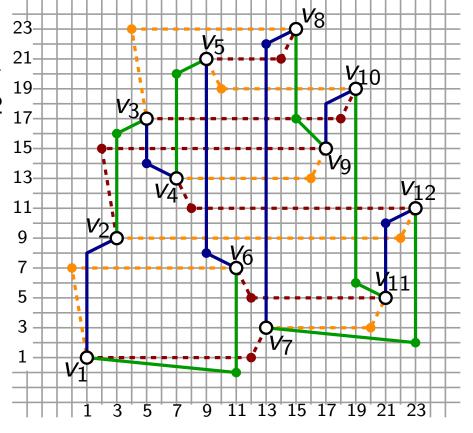
Grid size: $2n \times 2n$

Placement algorithm:

- ho Pick v_1 , place it
 - Assign *x*-coords. to cycle in \mathcal{C}_1
- lacktriangle Assign *y*-coords. to cycle in \mathcal{C}_2
- Pick v with 1 assigned coord.
- Place v

Edges:





Overview

Graph classes		Number of bends	
Cycle	×	Cycle	1 imes 1
Caterpillar	×	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	X	Matching	1×0
Wheel	X	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	X	Outerplanar	3×3
2-page book emb.	×	2-page book emb.	4×4
Planar	×	Planar	6×6

Idea:

Matching edges horizontal, tree edges with 1 bend

Idea: O Matching edges horizontal, tree edges with 1 bend

• Place matching edges inductively \Rightarrow *y*-coord.

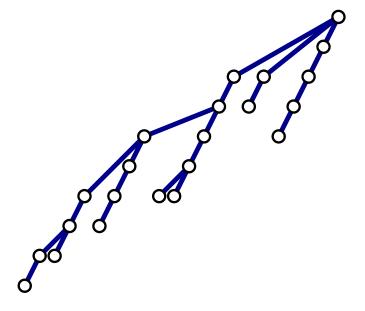
Idea:
Matching edges horizontal, tree edges with 1 bend

• Place matching edges inductively \Rightarrow *y*-coord.

• Use post-order on tree \Rightarrow *x*-coord.

Idea: O Matching edges horizontal, tree edges with 1 bend

- Place matching edges inductively \Rightarrow *y*-coord.
- Use post-order on tree $\Rightarrow x$ -coord.



Idea: O Matching edges horizontal, tree edges with 1 bend

• Place matching edges inductively \Rightarrow *y*-coord.

• Use post-order on tree $\Rightarrow x$ -coord.

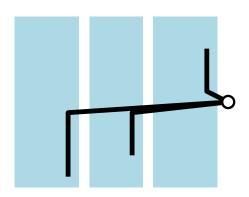
 \circ \Rightarrow Subtrees in disjoint *x*-intervals

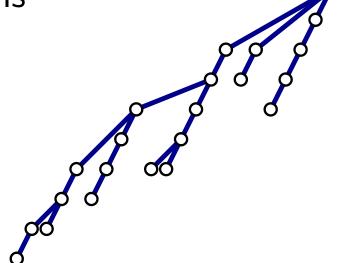
Idea: O Matching edges horizontal, tree edges with 1 bend

• Place matching edges inductively \Rightarrow *y*-coord.

• Use post-order on tree $\Rightarrow x$ -coord.

 \circ \Rightarrow Subtrees in disjoint *x*-intervals





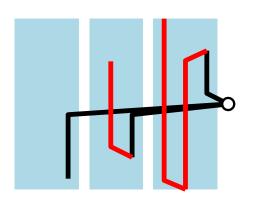
Idea: O Matching edges horizontal, tree edges with 1 bend

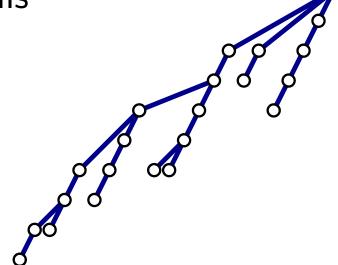
• Place matching edges inductively \Rightarrow *y*-coord.

• Use post-order on tree $\Rightarrow x$ -coord.

 \circ \Rightarrow Subtrees in disjoint *x*-intervals

Problem:





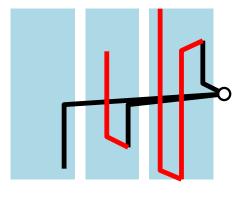
Idea: O Matching edges horizontal, tree edges with 1 bend

 \bigcirc Place matching edges inductively $\Rightarrow y$ -coord.

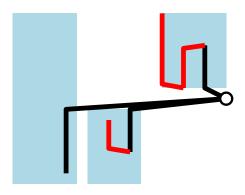
• Use post-order on tree $\Rightarrow x$ -coord.

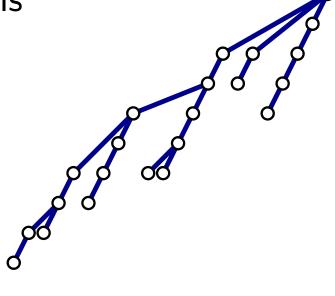
 \circ \Rightarrow Subtrees in disjoint *x*-intervals

Problem:



Solution:





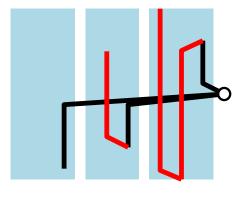
Idea: O Matching edges horizontal, tree edges with 1 bend

ullet Place matching edges inductively $\Rightarrow y$ -coord.

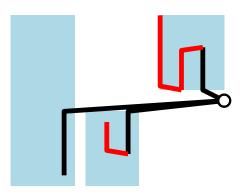
• Use post-order on tree $\Rightarrow x$ -coord.

 \circ \Rightarrow Subtrees in disjoint *x*-intervals

Problem:



Solution:



All but one subtree completely above or completely below.

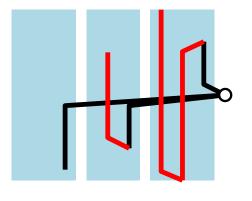
Idea: O Matching edges horizontal, tree edges with 1 bend

• Place matching edges inductively \Rightarrow *y*-coord.

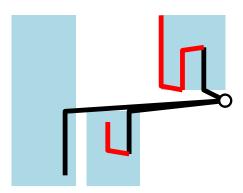
• Use post-order on tree $\Rightarrow x$ -coord.

 \circ \Rightarrow Subtrees in disjoint *x*-intervals

Problem:



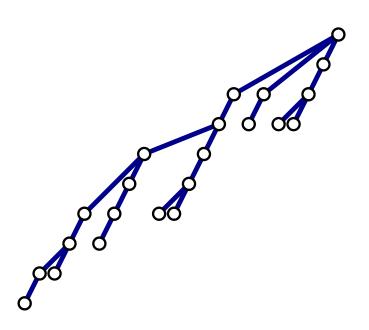
Solution:

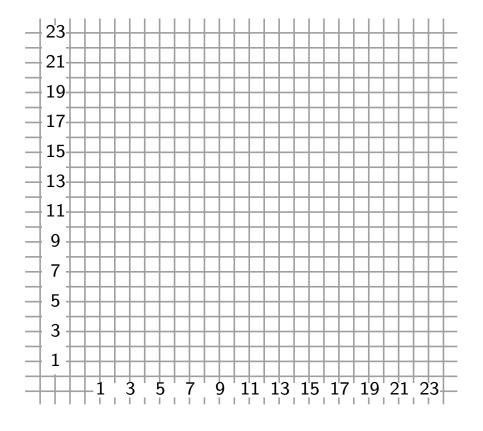


All but one subtree completely above or completely below.

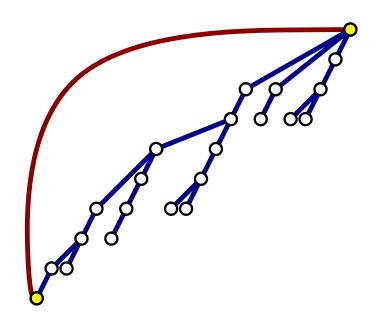
Main ideas adopted from [Cabello et al. JGAA'11, Di Giacomo et al. JGAA'09].

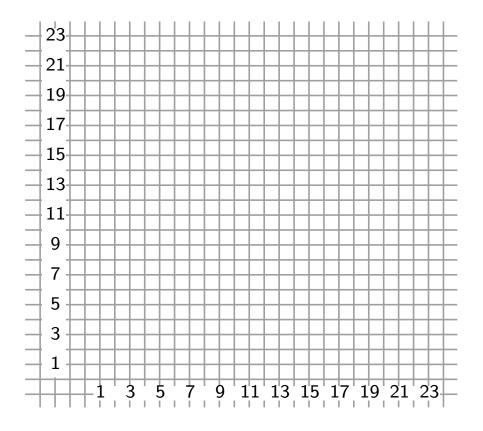
Place root + matching at the top



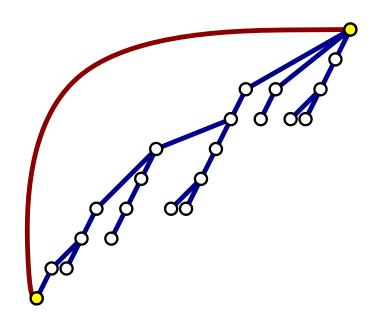


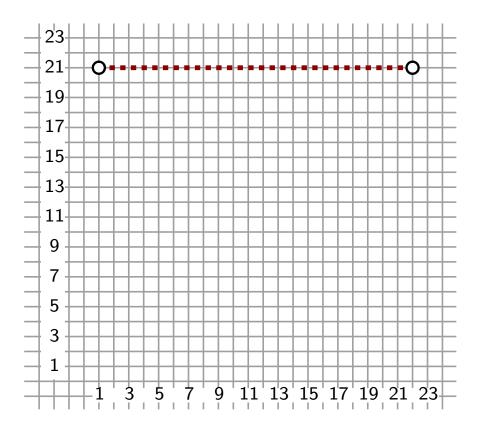
Place root + matching at the top



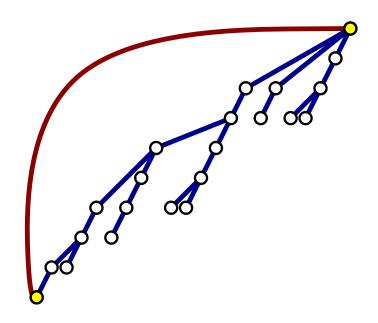


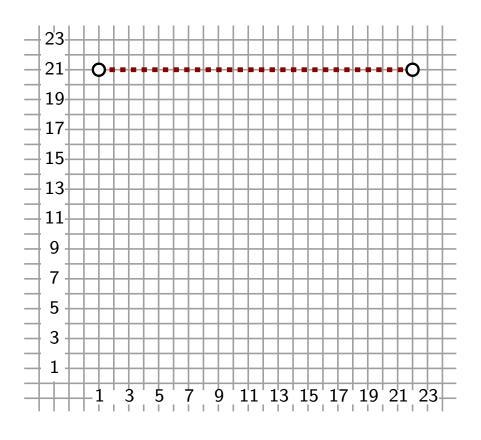
Place root + matching at the top



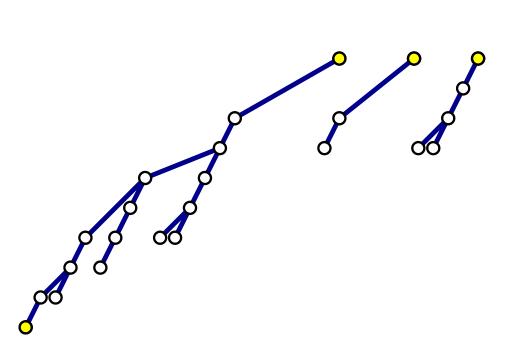


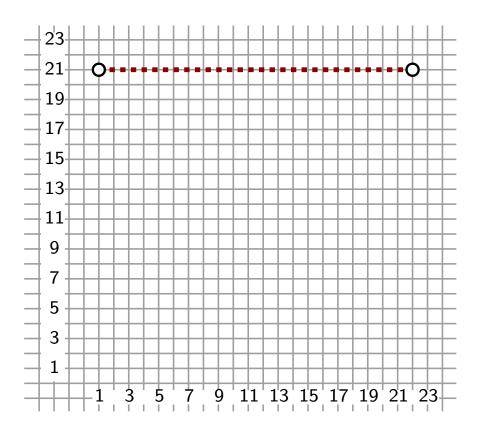
- Place root + matching at the top
- Split the tree



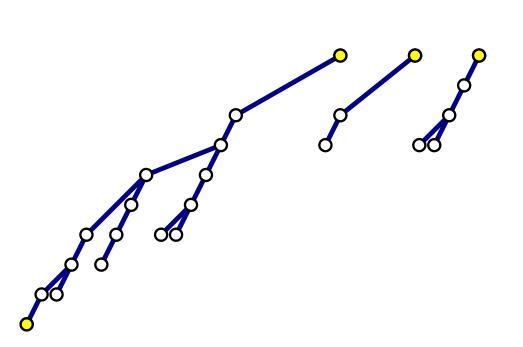


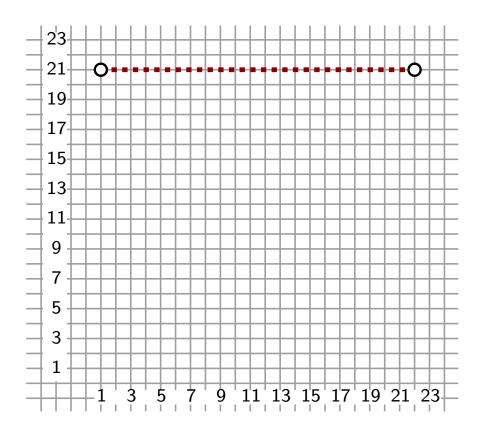
- Place root + matching at the top
- Split the tree



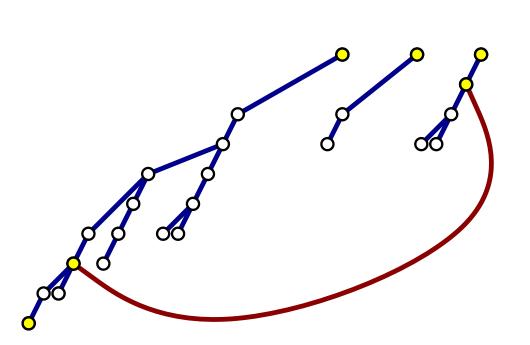


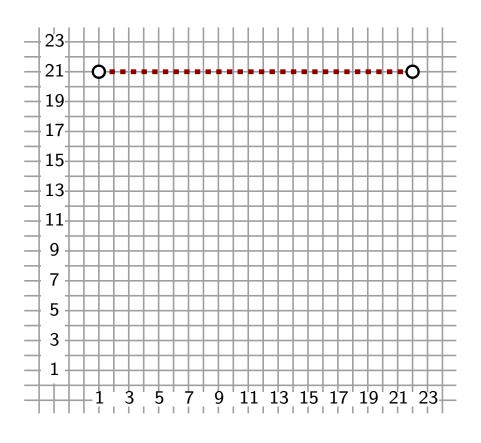
- Place root + matching at the top
- Split the tree
- Place vertex adj. to placed vertex (+ matching) at the top



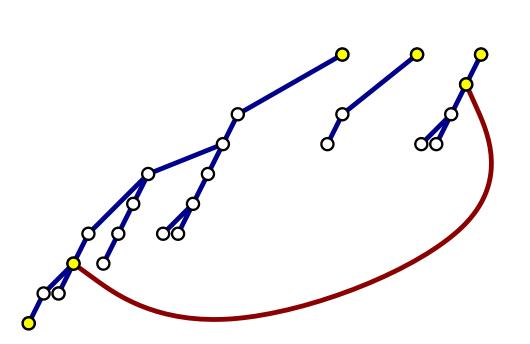


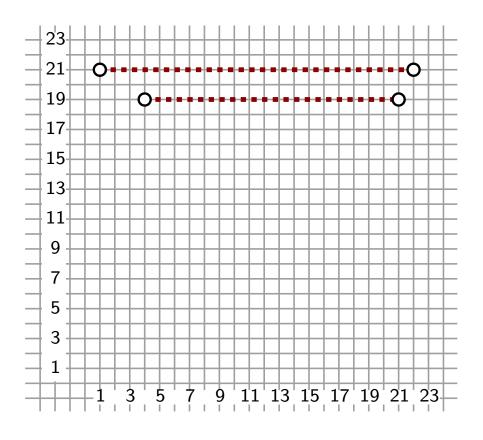
- Place root + matching at the top
- Split the tree
- Place vertex adj. to placed vertex (+ matching) at the top



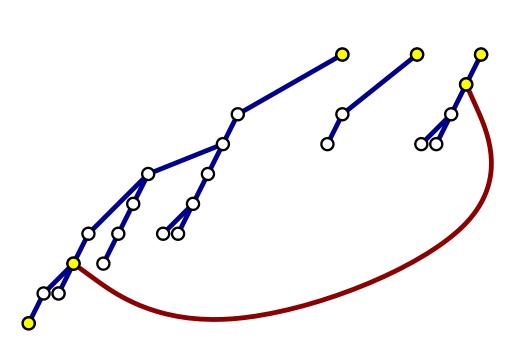


- Place root + matching at the top
- Split the tree
- Place vertex adj. to placed vertex (+ matching) at the top



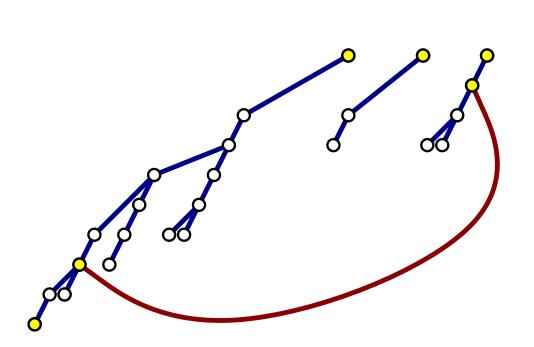


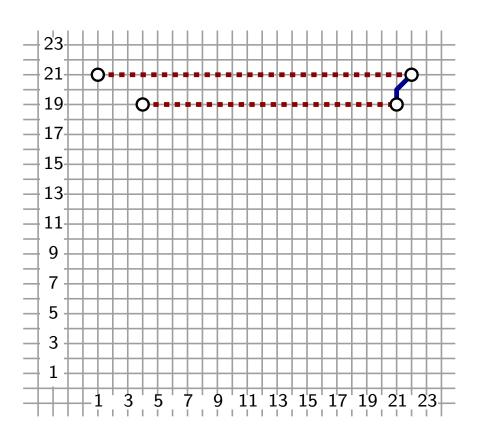
- Place root + matching at the top
- Split the tree
- Place vertex adj. to placed vertex (+ matching) at the top



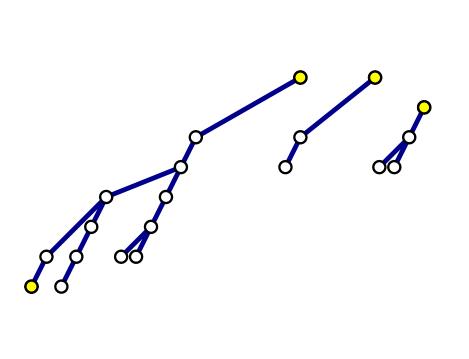


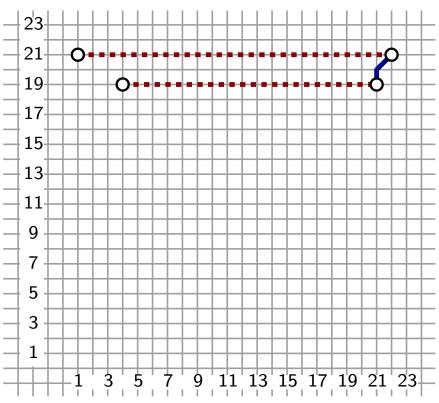
- Place root + matching at the top
- ►○ Split the tree
- - \circ Place vertex adj. to placed vertex (+ matching) at the top



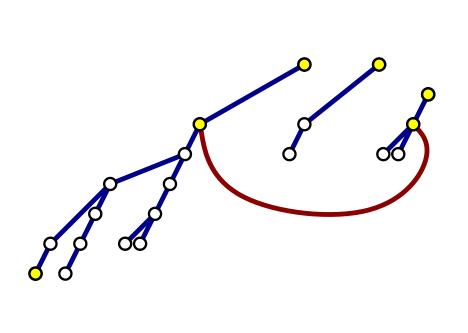


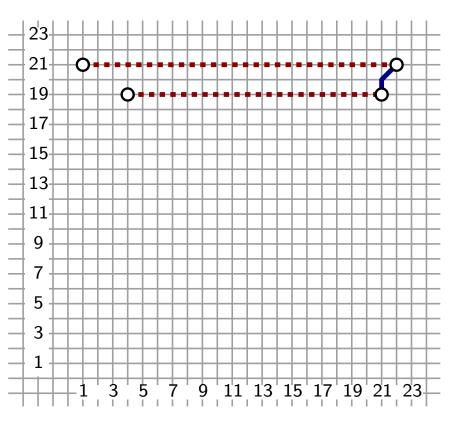
- Place root + matching at the top
- ►○ Split the tree
- - \circ Place vertex adj. to placed vertex (+ matching) at the top



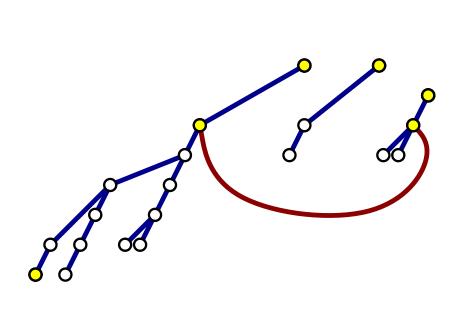


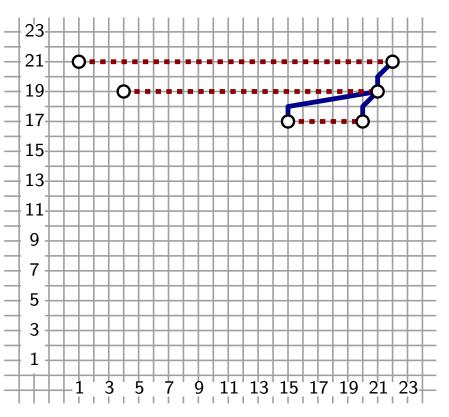
- Place root + matching at the top
- ►○ Split the tree
- - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



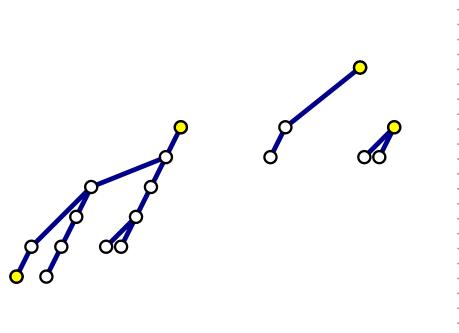


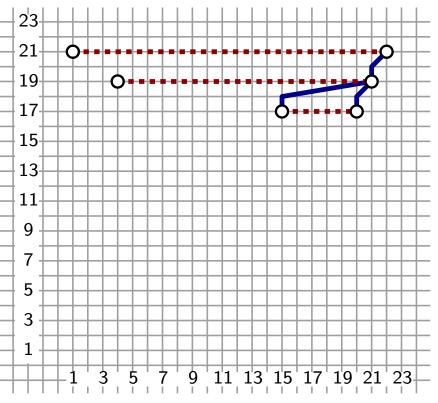
- Place root + matching at the top
- ►○ Split the tree
- - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



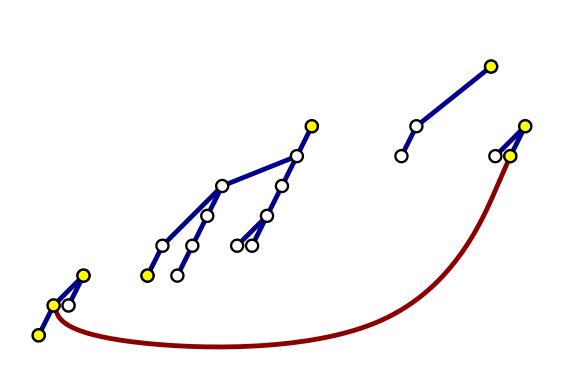


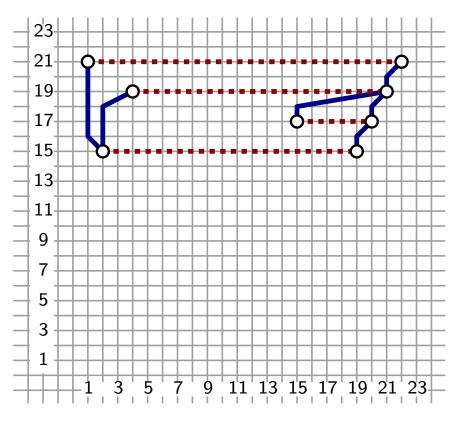
- Place root + matching at the top
- ►○ Split the tree
- - \circ Place vertex adj. to placed vertex (+ matching) at the top



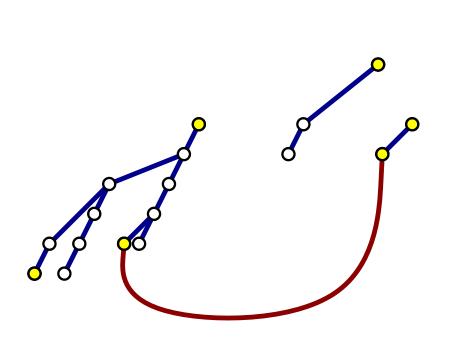


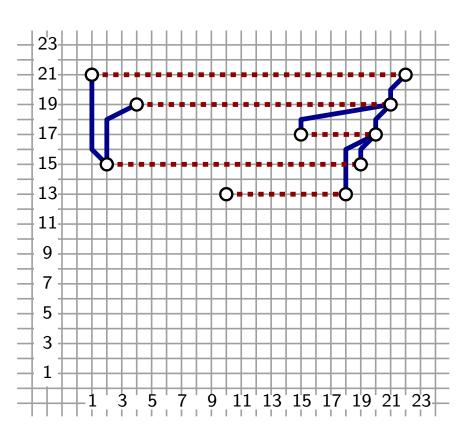
- Place root + matching at the top
- ►○ Split the tree
- - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



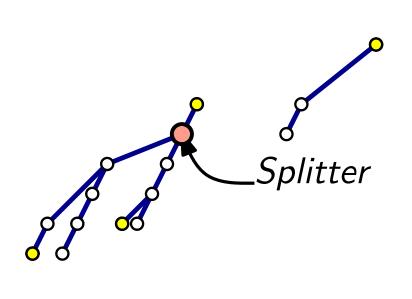


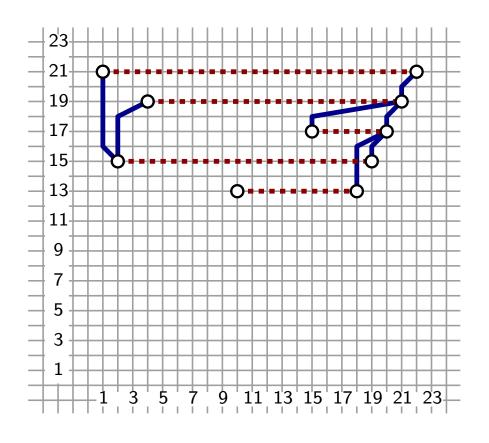
- Place root + matching at the top
- ►○ Split the tree
- - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



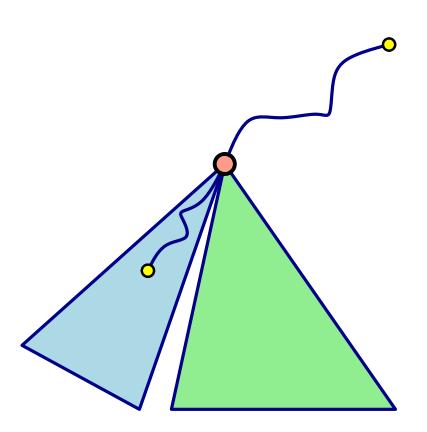


- Place root + matching at the top
- Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top

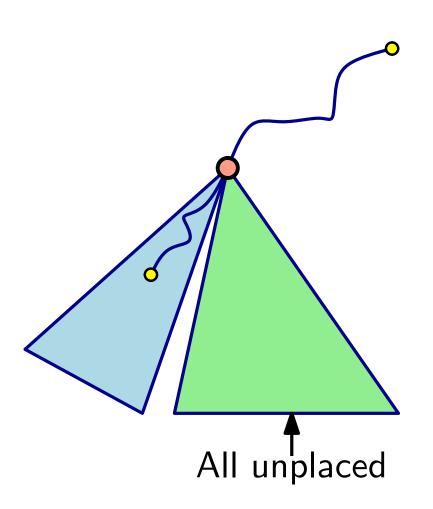




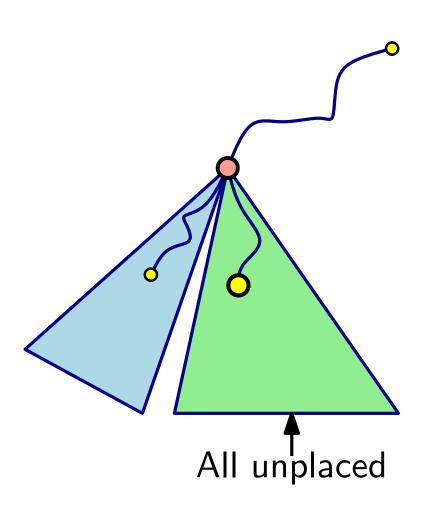
- Place root + matching at the top
- Split the tree
 - Place vertex adj. to placed vertex (+ matching) at the top



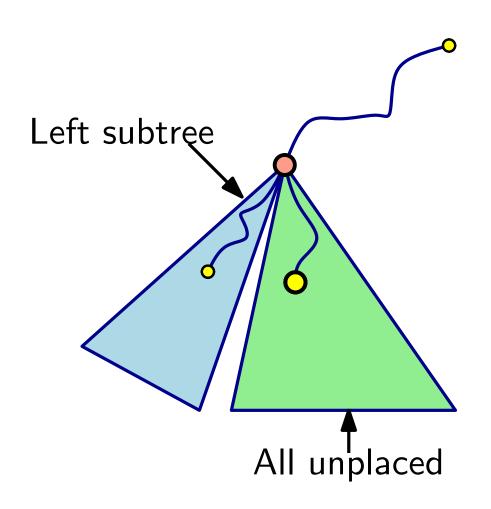
- Place root + matching at the top
- Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



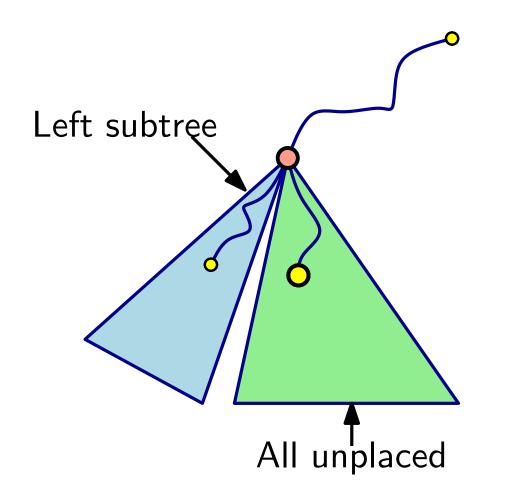
- Place root + matching at the top
- Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



- Place root + matching at the top
- Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



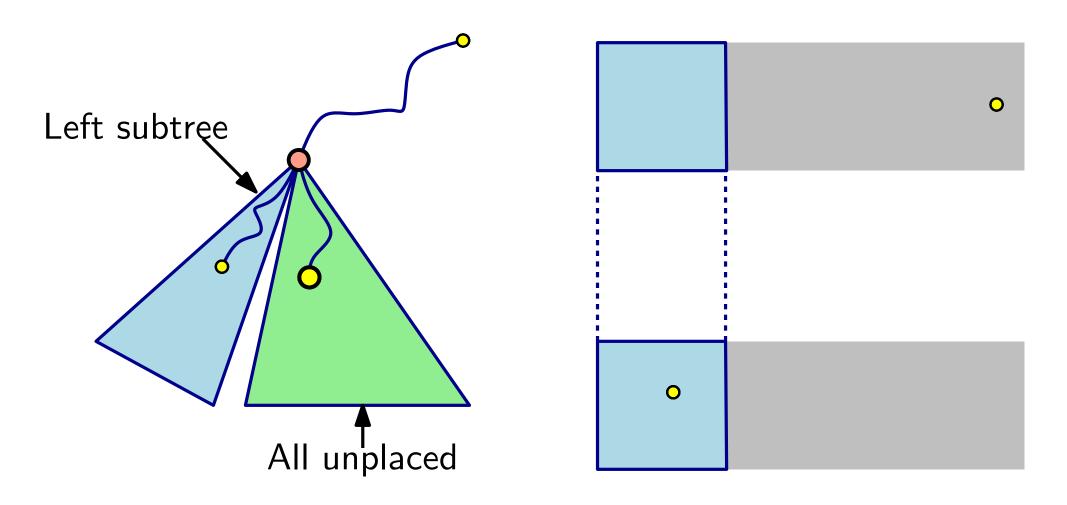
- Place root + matching at the top
- Split the tree
 - - \circ Place vertex adj. to placed vertex (+ matching) at the top



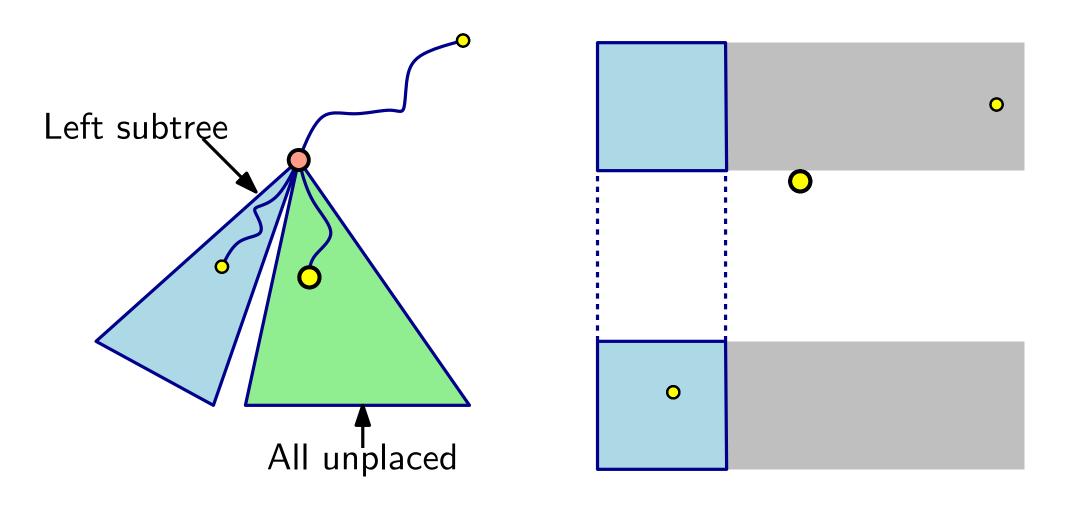
Placed vertices

Placed vertices

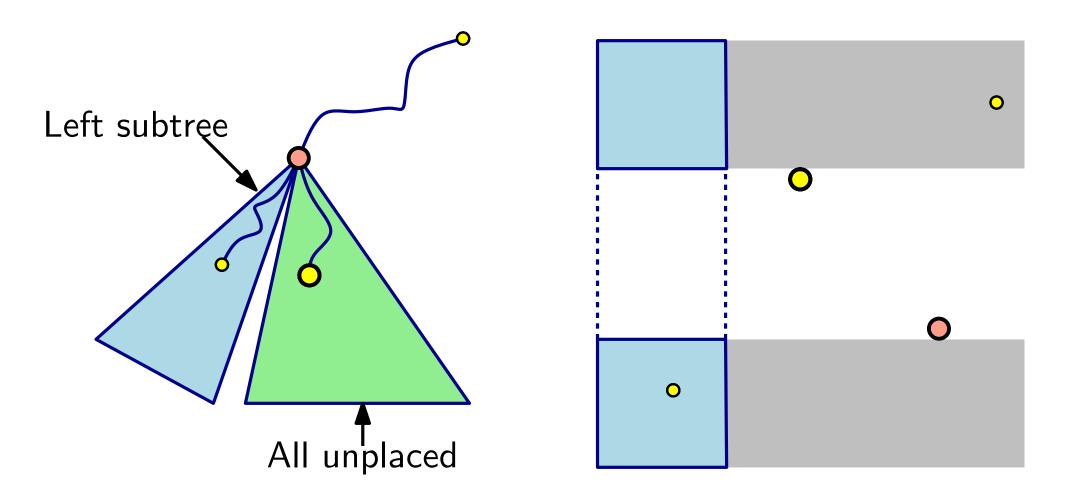
- Place root + matching at the top
- Split the tree
 - - \circ Place vertex adj. to placed vertex (+ matching) at the top



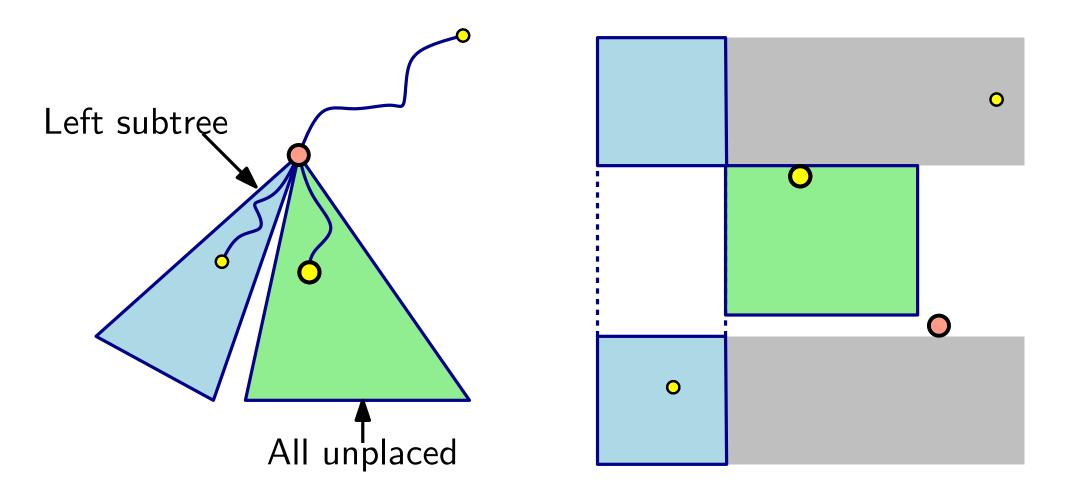
- Place root + matching at the top
- Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



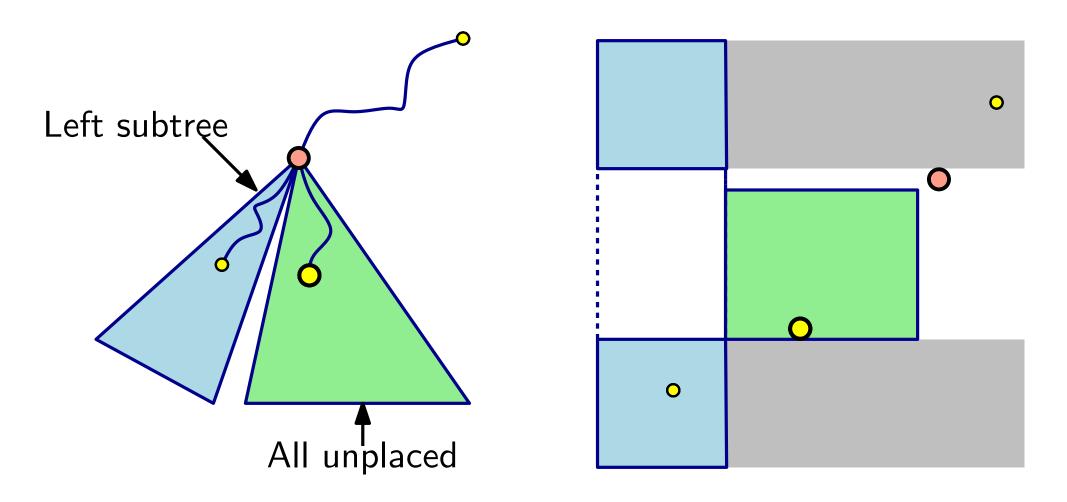
- Place root + matching at the top
- Split the tree
 - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top



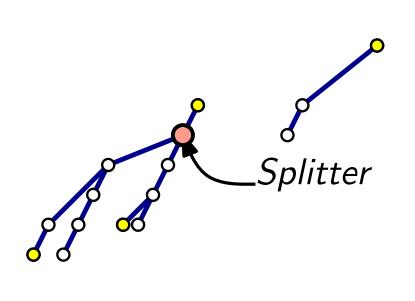
- Place root + matching at the top
- Split the tree
 - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top

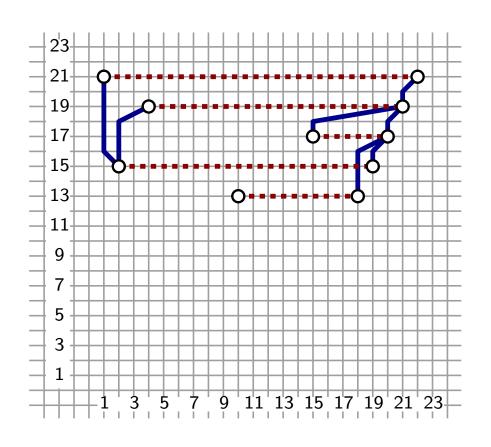


- Place root + matching at the top
- Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top

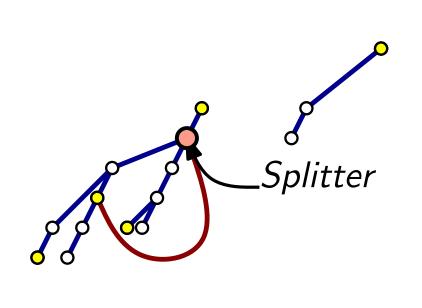


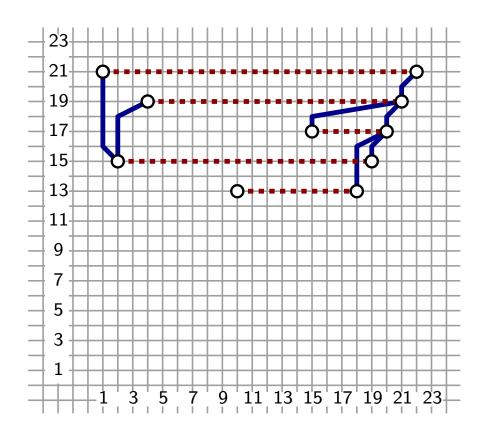
- Place root + matching at the top
- ►○ Split the tree
- \cdot Place vertex adj. to placed vertex (+ matching) at the top
- If splitter: place on opposite side



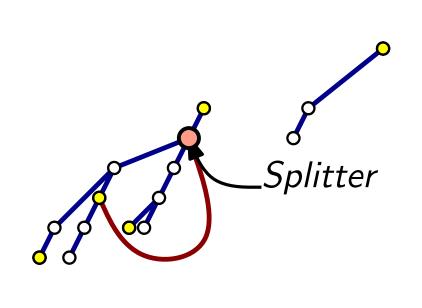


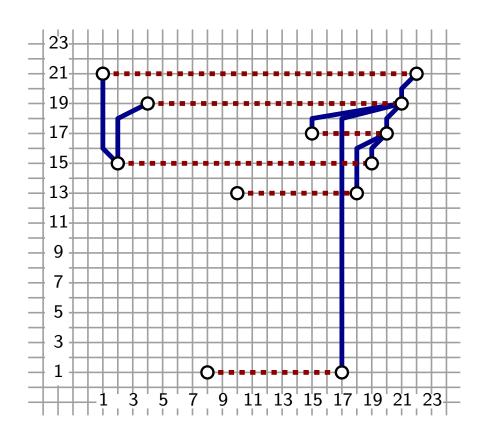
- Place root + matching at the top
- ►○ Split the tree
- - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top
- If splitter: place on opposite side



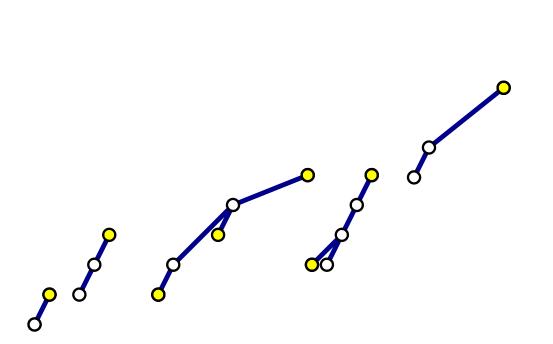


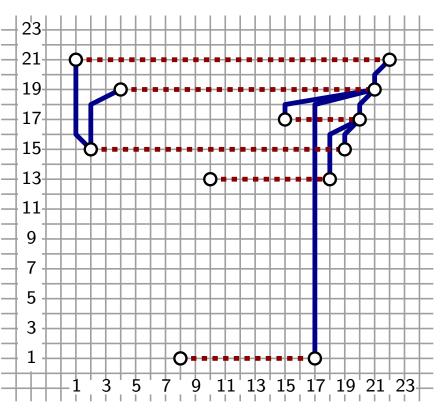
- Place root + matching at the top
- **➣** Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top
 - If splitter: place on opposite side



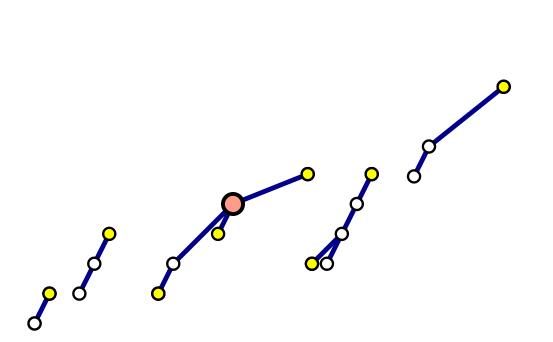


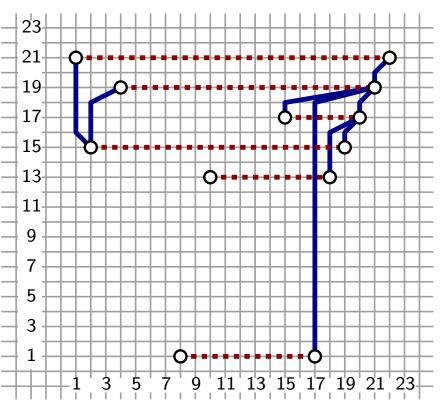
- Place root + matching at the top
- ►○ Split the tree
- \cdot Place vertex adj. to placed vertex (+ matching) at the top
- If splitter: place on opposite side



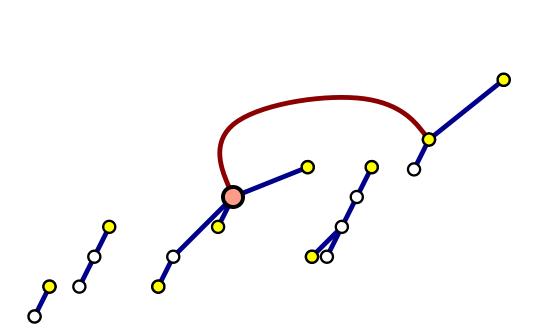


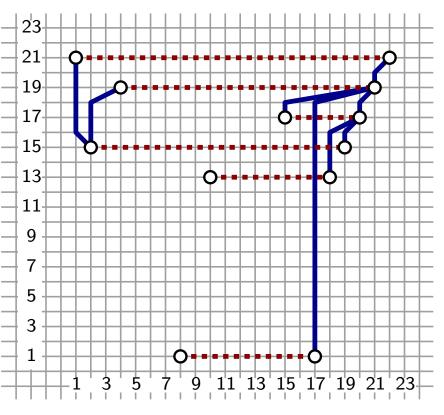
- Place root + matching at the top
- ►○ Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top
 - If splitter: place on opposite side



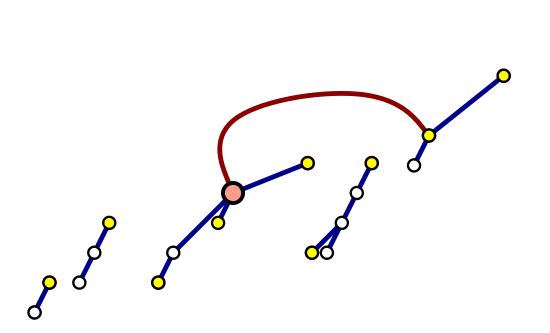


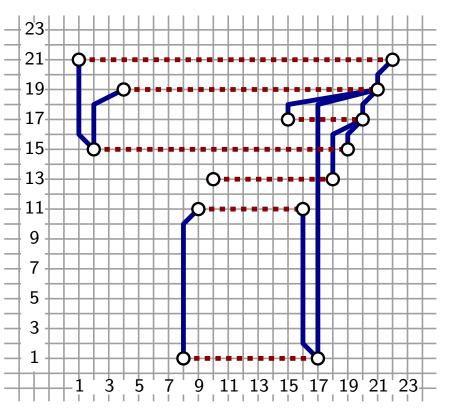
- Place root + matching at the top
- ►○ Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top
 - If splitter: place on opposite side



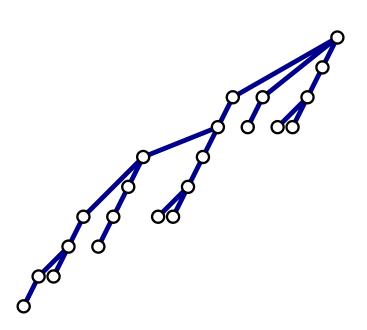


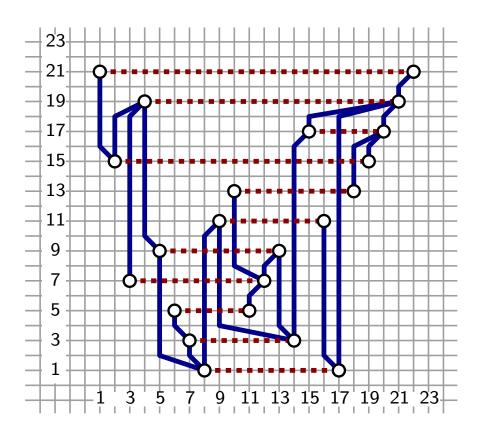
- Place root + matching at the top
- ►○ Split the tree
 - - \bigcirc Place vertex adj. to placed vertex (+ matching) at the top
 - If splitter: place on opposite side





- Place root + matching at the top
- Split the tree
 Place vertex adj. to placed vertex (+ matching) at the top
 - If splitter: place on opposite side

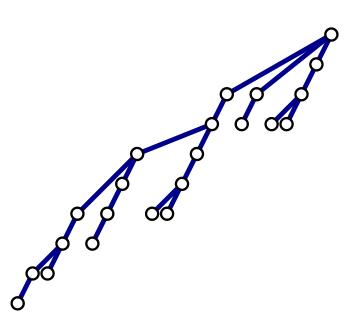


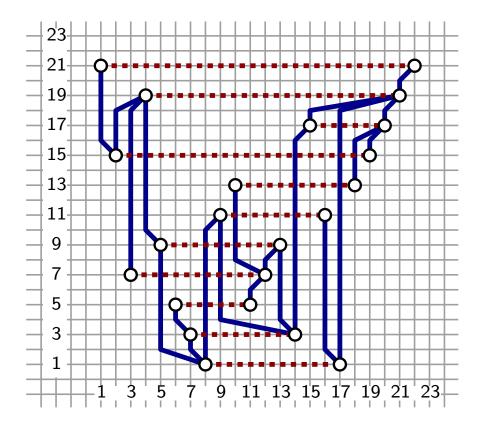


- Place root + matching at the top
- Split the tree
 Place vertex adj. to placed vertex (+ matching) at the top
 - If splitter: place on opposite side

Bends: 1×0

Grid size: $n \times (n-1)$



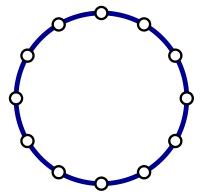


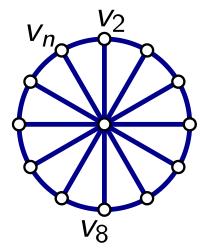
Overview

Graph classes

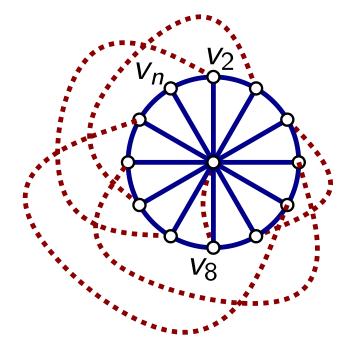
Number of bends

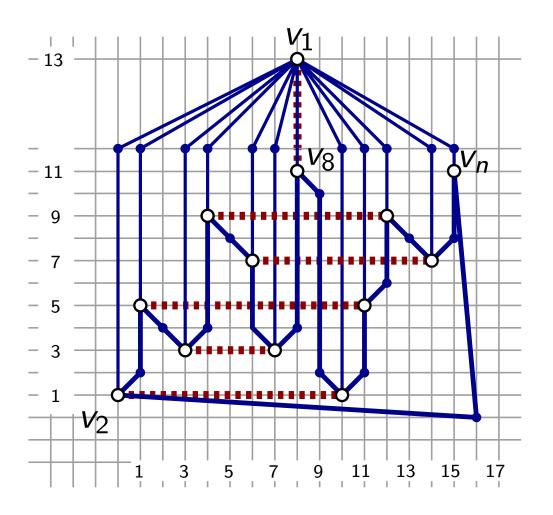
Cycle	X	Cycle	1 imes 1
Caterpillar	×	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1 imes 0
Wheel	×	Matching	2×0
Outerpath	×	Matching	2 imes 1
Outerplanar	×	Outerplanar	3×3
2-page book emb.	×	2-page book emb.	4×4
Planar	×	Planar	6×6

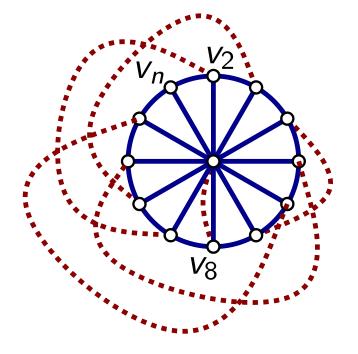






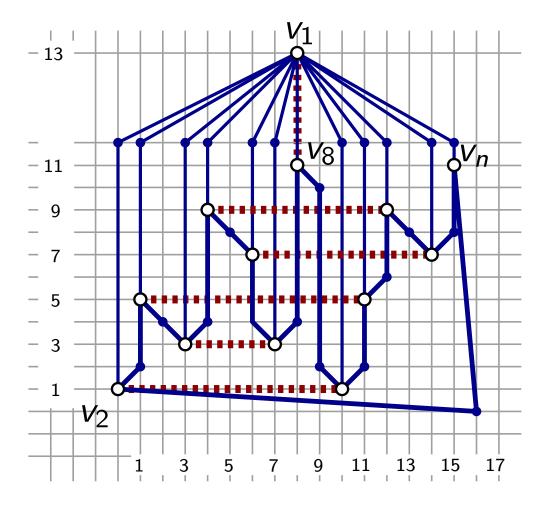


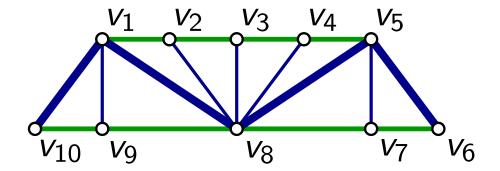




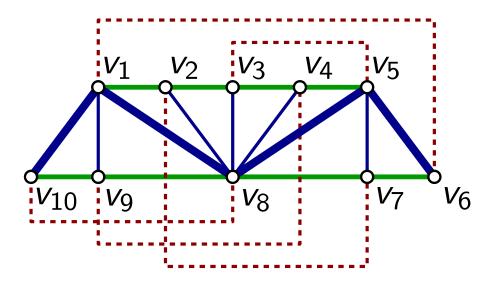
Bends: 2×0

Grid size: $(1.5n - 1) \times (n + 2)$

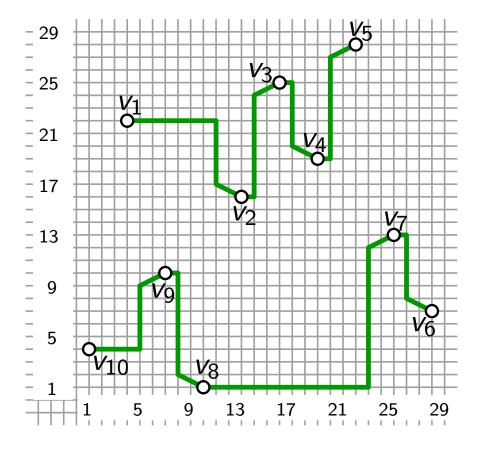


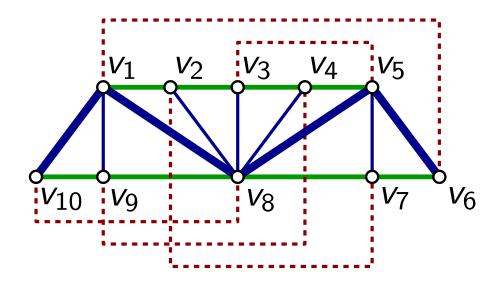


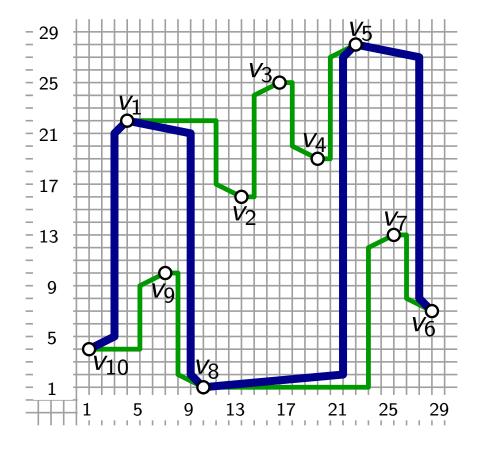
Outerpath \times Matching

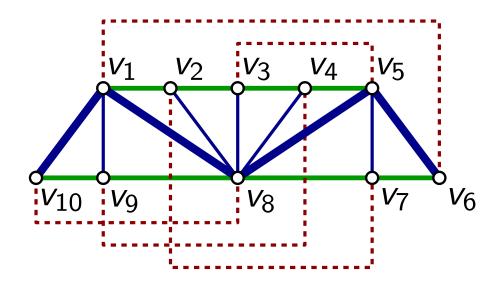


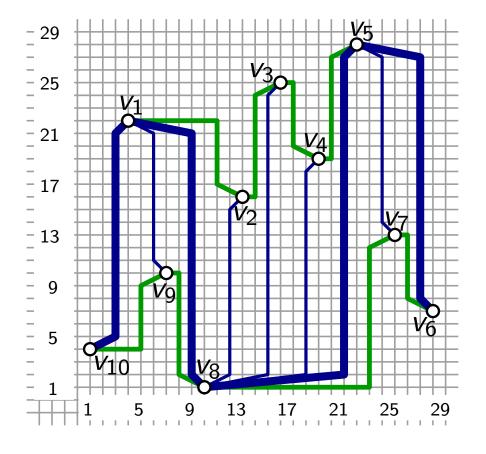


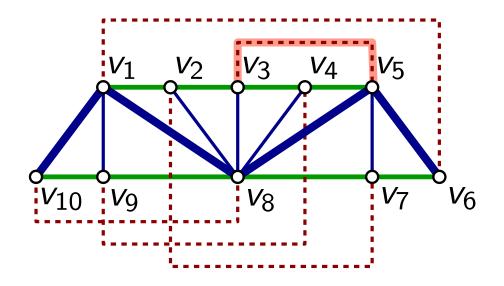


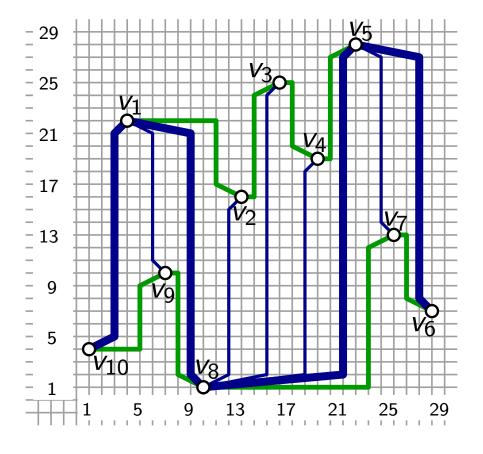


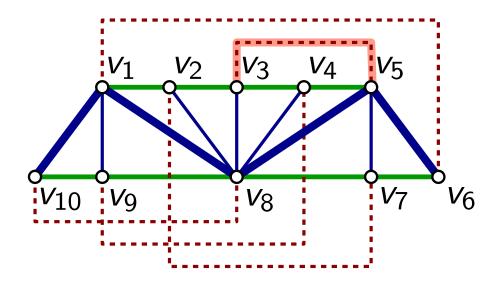


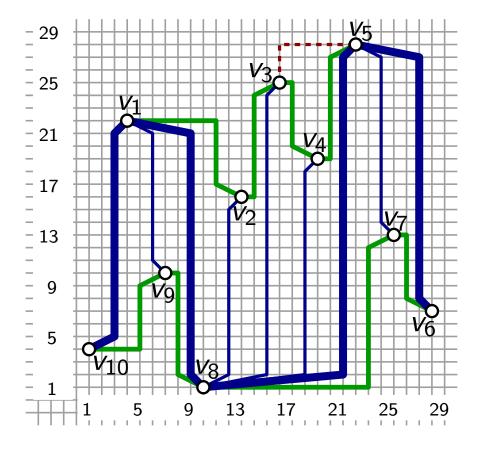


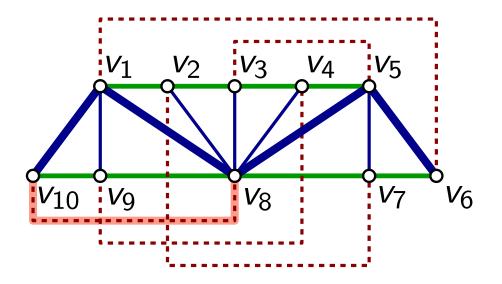


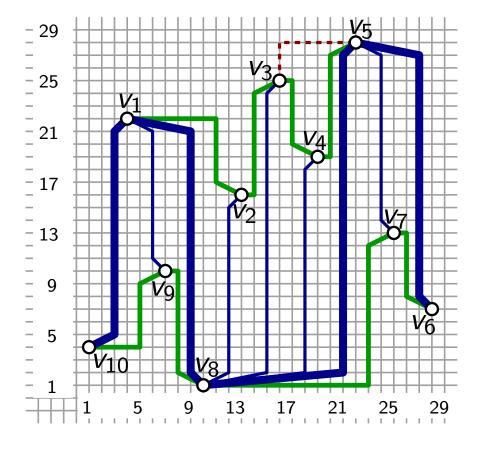


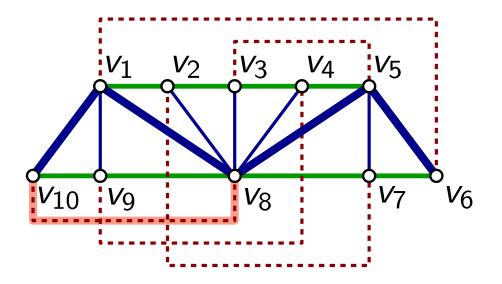


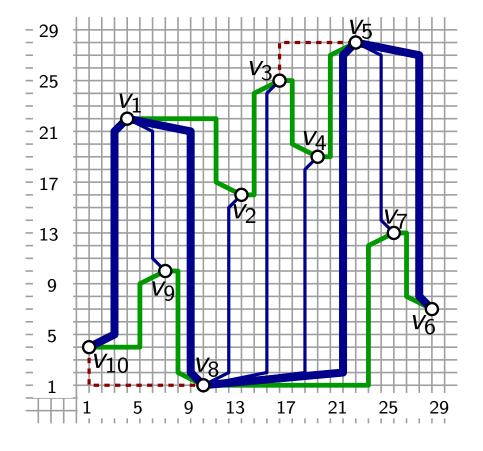


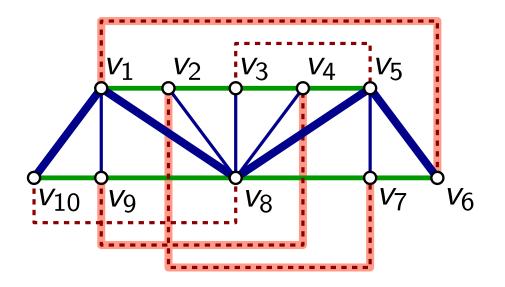


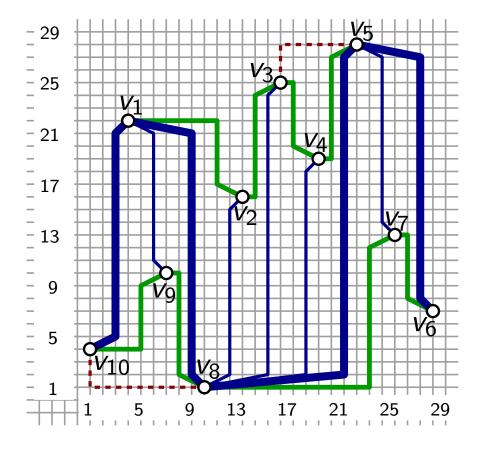


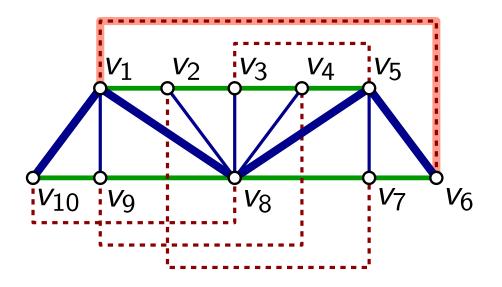


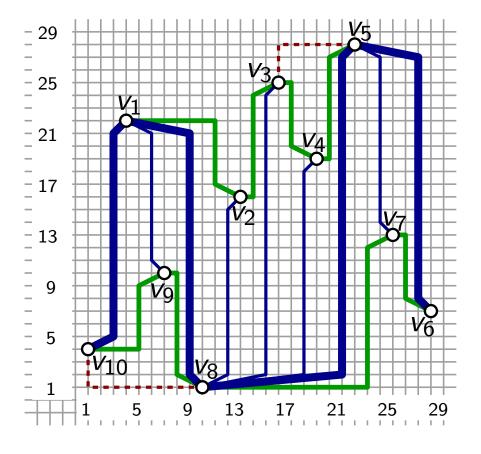


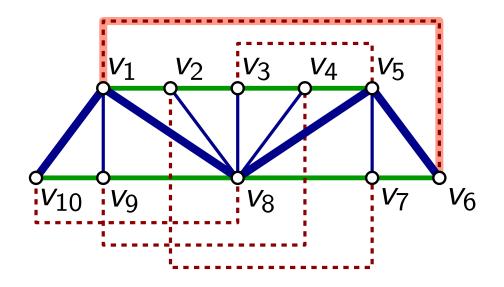


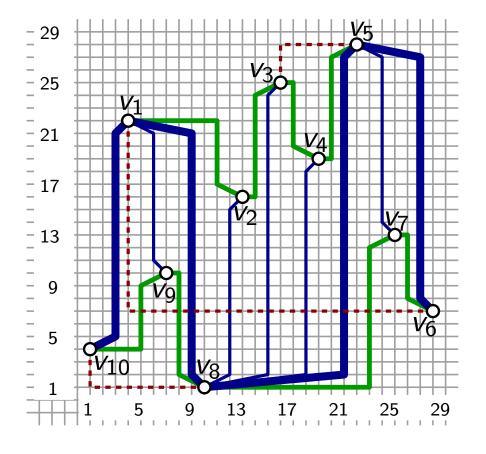


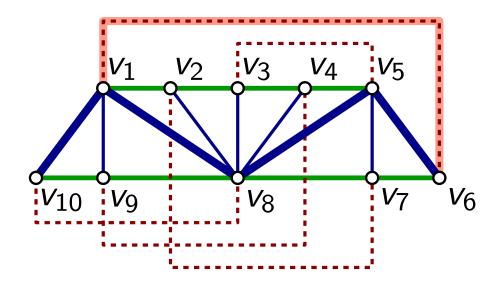


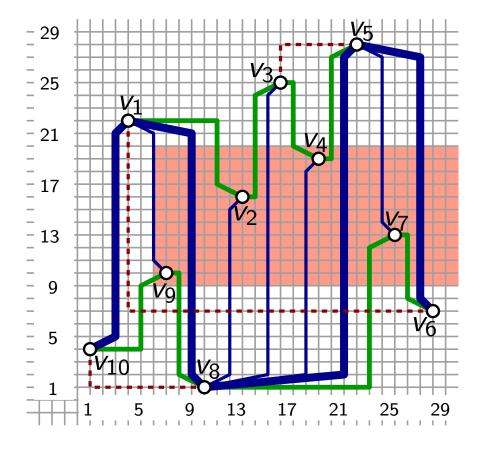


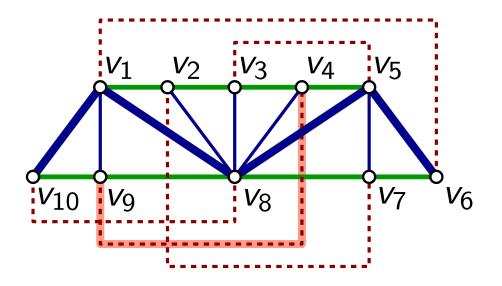


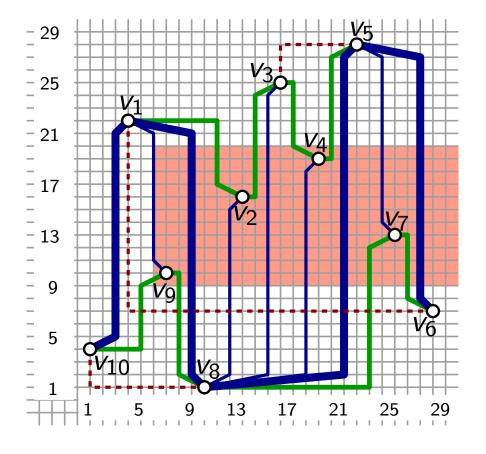


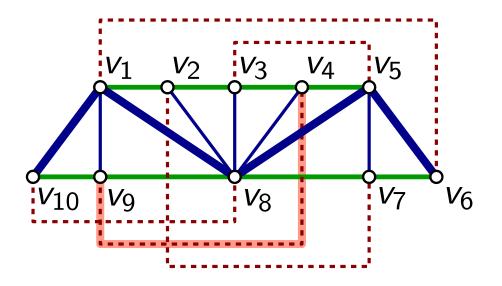


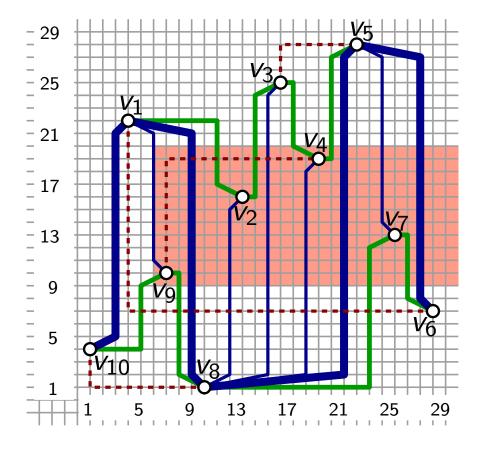


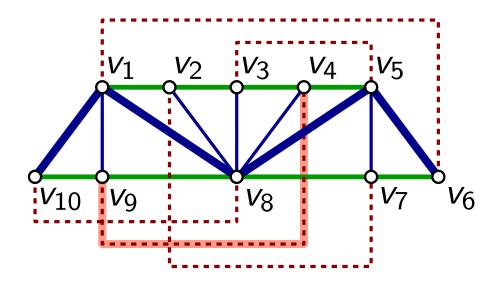


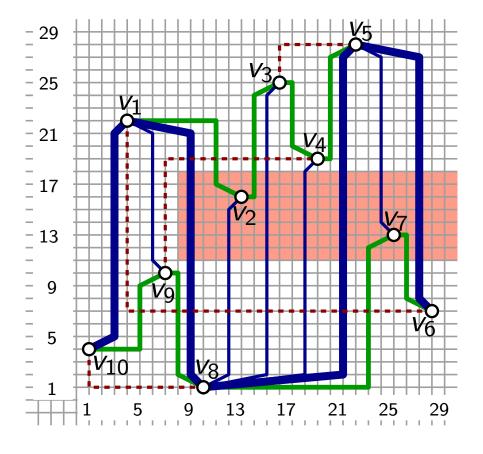


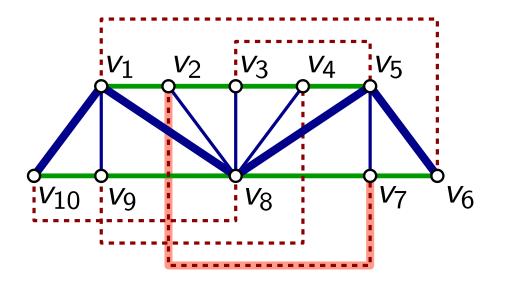


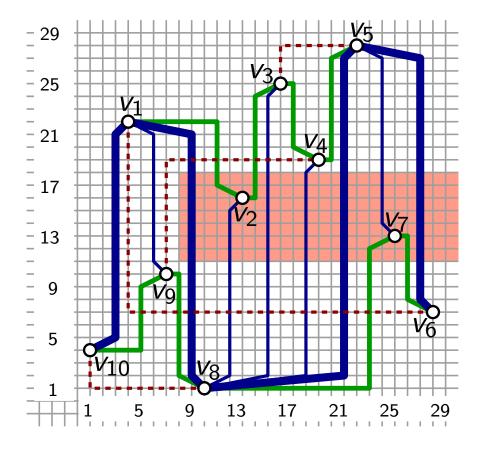


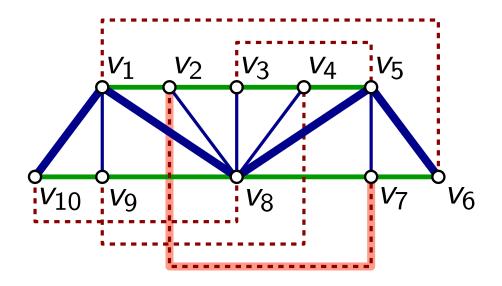


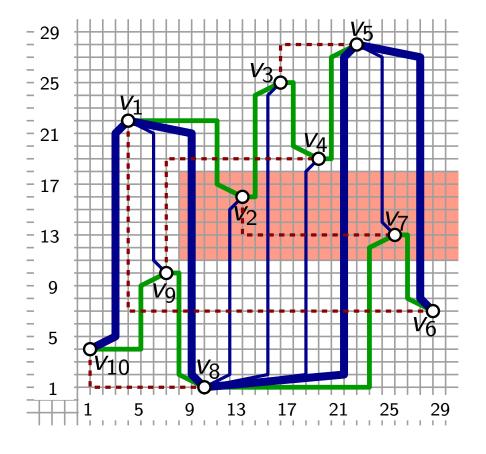


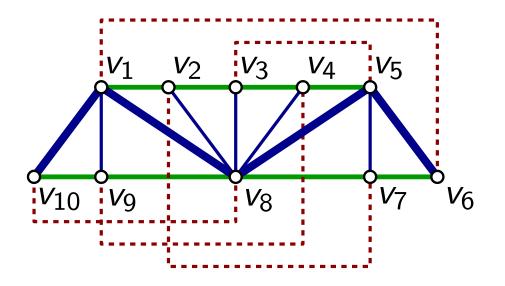


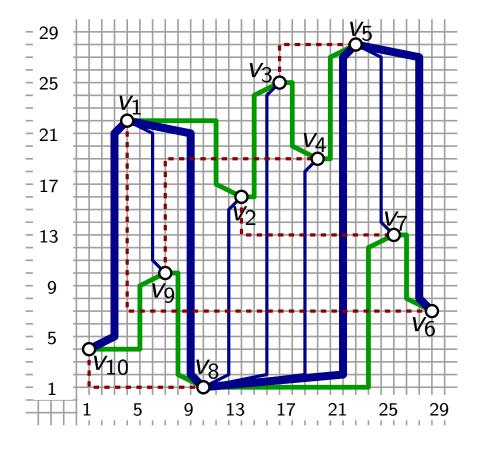






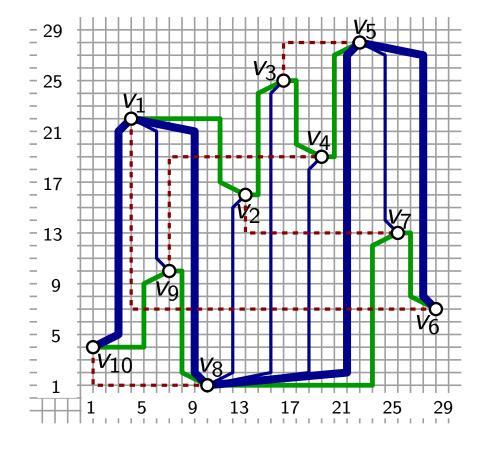








Bends: 2×1 Grid size: $(3n-2)^2$

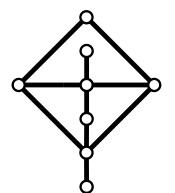


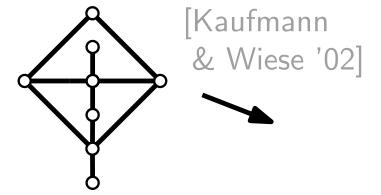
Overview

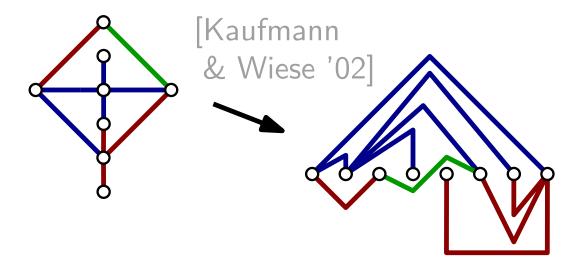
Graph classes

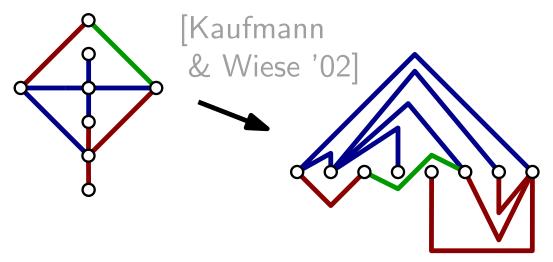
Number of bends

Cycle	X	Cycle	1×1
Caterpillar	×	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1×0
Wheel	×	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	×	Outerplanar	3×3
2-page book emb.	×	2-page book emb.	4×4
Planar	X	Planar	6×6

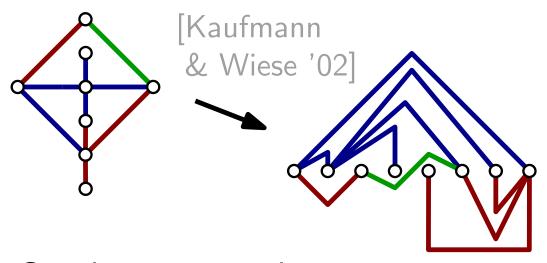




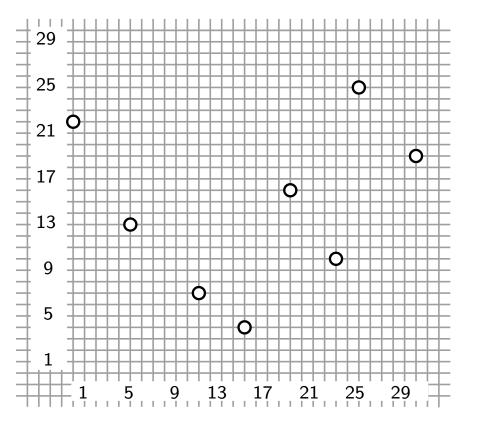


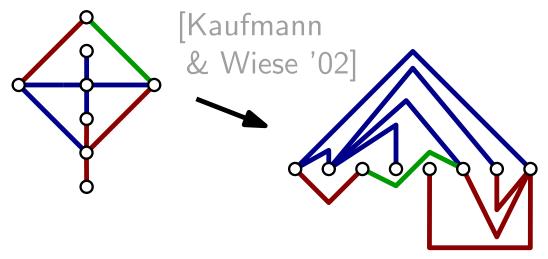


Graph 1: x-coordinates

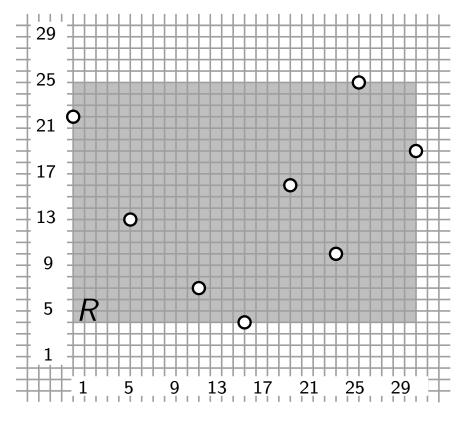


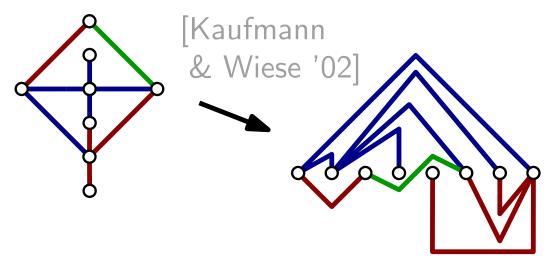
Graph 1: *x*-coordinates





Graph 1: x-coordinates

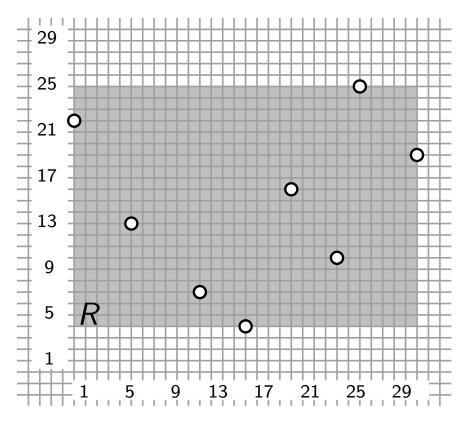


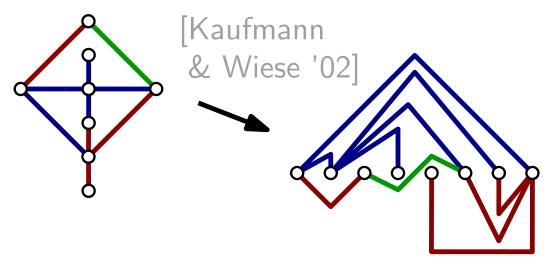


Graph 1: *x*-coordinates

In R: All segments vertical

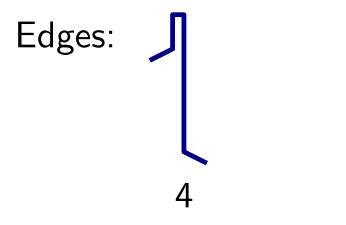
or slanted of *y*-length 1.

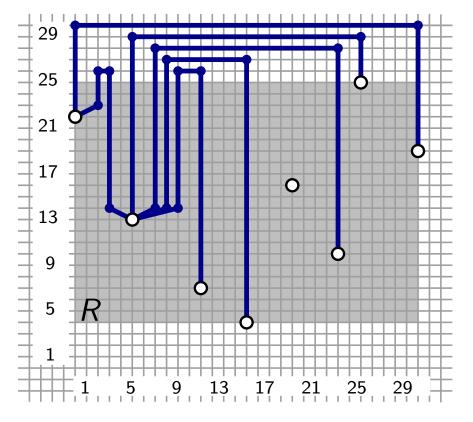


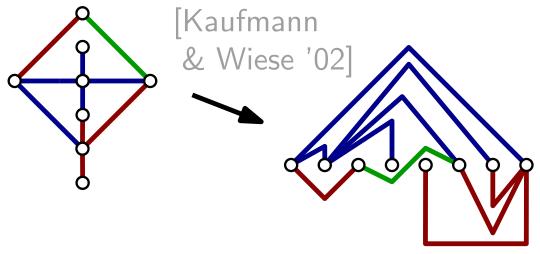


Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.







New idea:

Place turns outside of R!

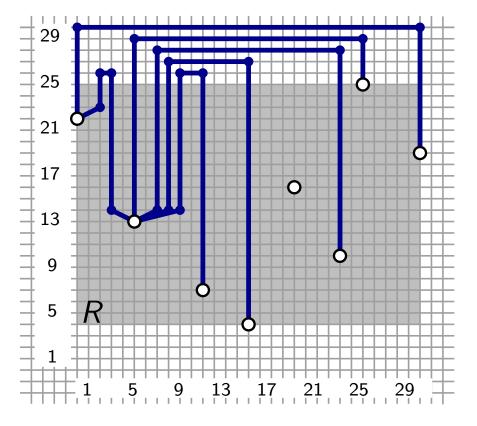
Graph 1: *x*-coordinates

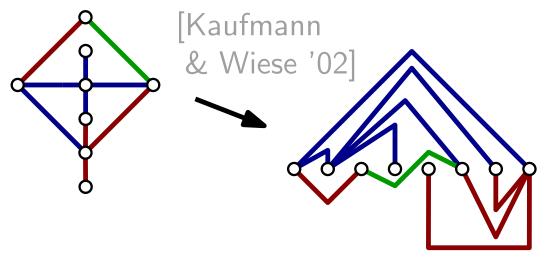
In R: All segments vertical or slanted of y-length 1.

Graph 2: *y*-coordinates

Edges:

4





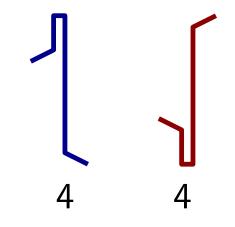
New idea:

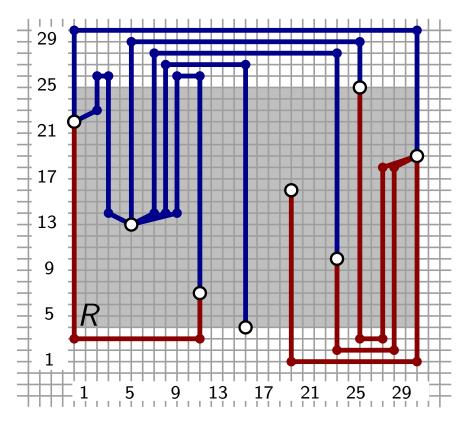
Place turns outside of R!

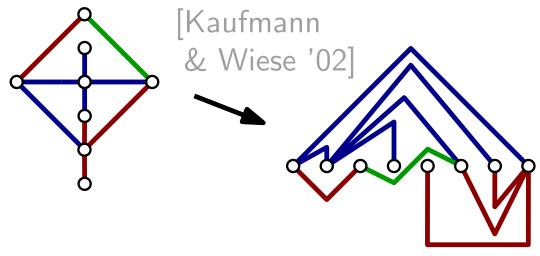
Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: *y*-coordinates







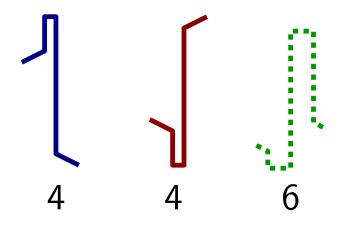
New idea:

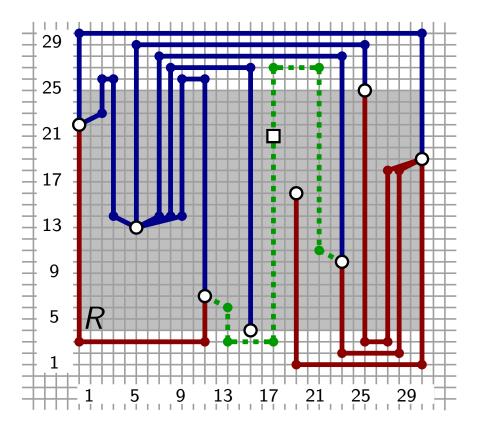
Place turns outside of R!

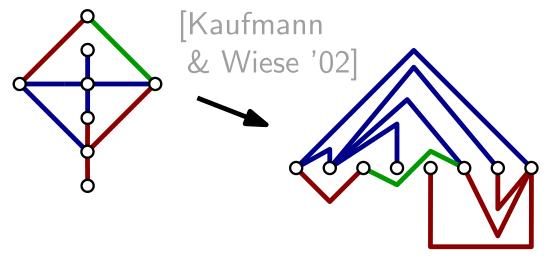
Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: *y*-coordinates





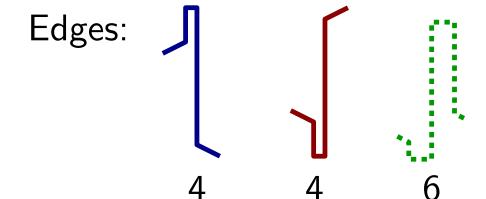


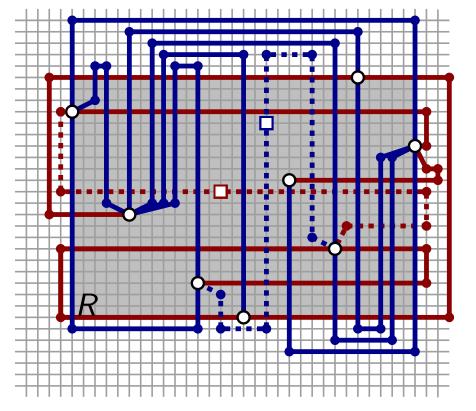
New idea:

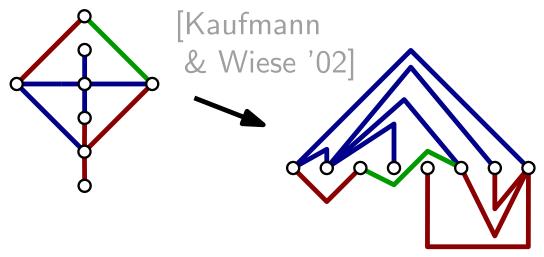
Place turns outside of R!

Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.



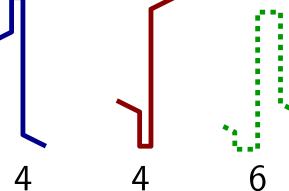


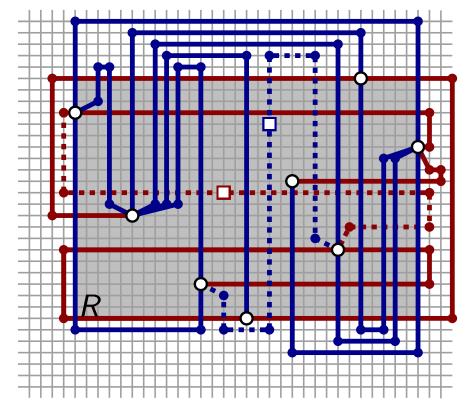


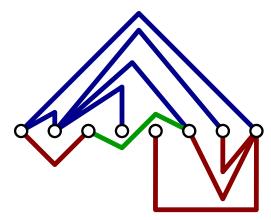
Bends: 6×6 Grid size: $(14n - 26)^2$

Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.



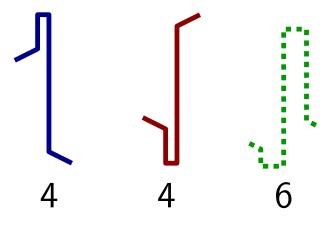


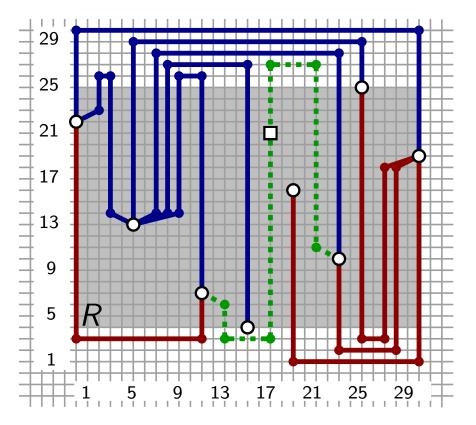


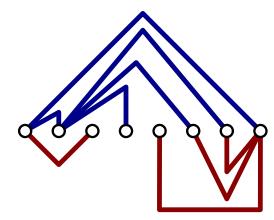
Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates



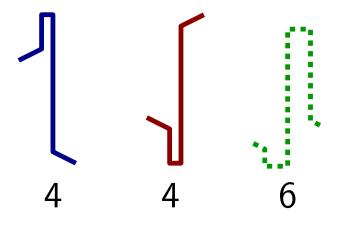


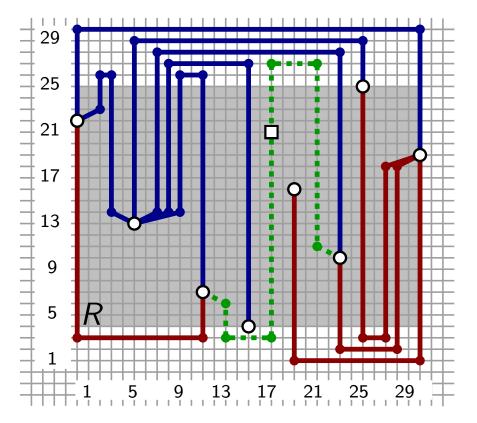


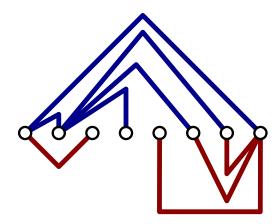
Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates



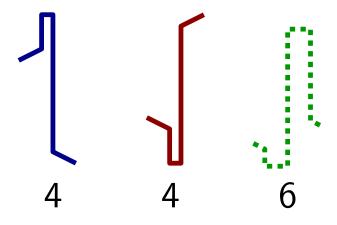


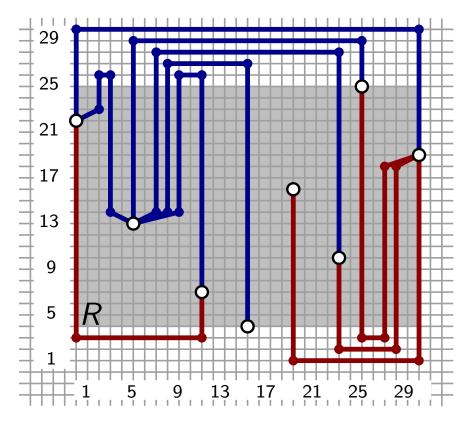


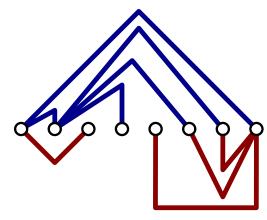
Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates



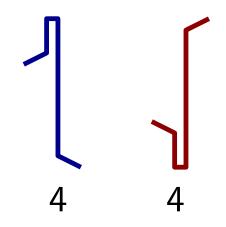


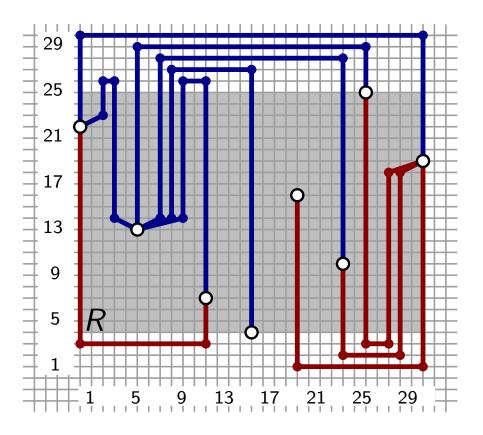


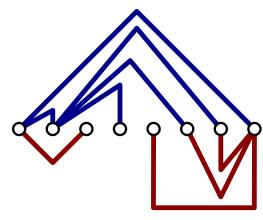
Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates





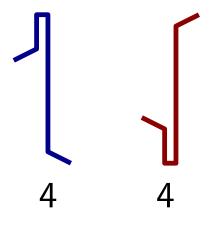


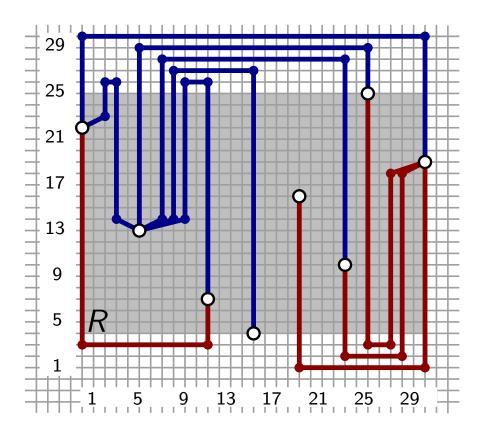
Bends: 4×4 Grid size: $(11n - 32)^2$

Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates



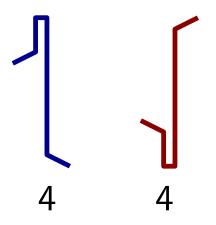


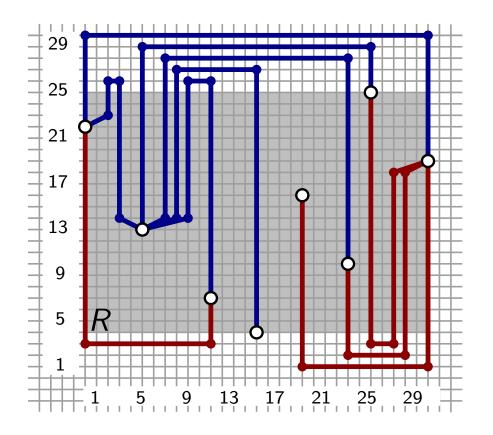
Bends: 4×4 Grid size: $(11n - 32)^2$

Graph 1: *x*-coordinates

In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates



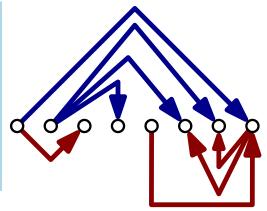


Outerplanar × Outerplanar

Decompose into two forests...

[Nash-Williams '64] do o

and direct them!

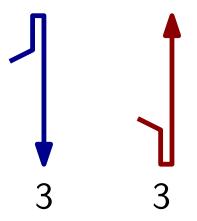


Graph 1: x-coordinates

In R: All segments vertical or slanted of y-length 1.

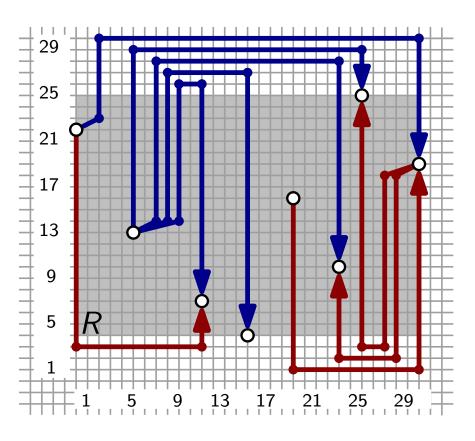
Graph 2: y-coordinates

Edges:



Bends: 3×3

Grid size: $(7n - 10)^2$



Outerplanar × Outerplanar

Decompose into two forests...

[Nash-Williams '64]

and direct them!

Bends: 3×3

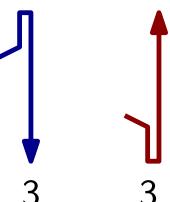
Grid size: $(7n - 10)^2$

Graph 1: x-coordinates

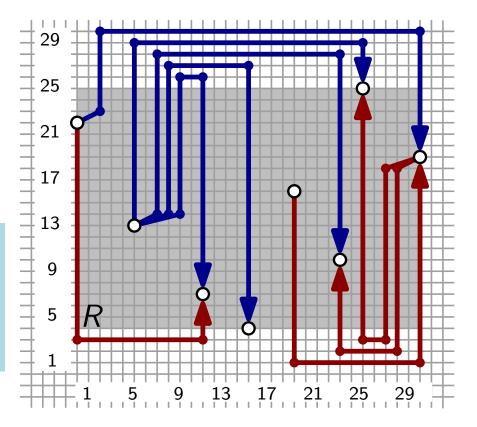
In R: All segments vertical or slanted of y-length 1.

Graph 2: y-coordinates

Edges:



Every vertex has ≤ 1 incoming edge from above and ≤ 1 from below.



Conclusions

Graph classes

Number of bends

Cycle	×	Cycle	1×1	
Caterpillar	×	Cycle	1 imes 1	
Four Matchings			1 imes 1 imes 1 imes 1	
Tree	×	Matching	1×0	
Wheel	×	Matching	2×0	
Outerpath	×	Matching	2×1	
Outerplanar	×	Outerplanar	3×3	$\sqrt{}$
2-page book emb.	×	2-page book emb.	4×4	
Planar	X	Planar	6×6	$\sqrt{}$
				-

Conclusions

Graph classes

Number of bends

Cycle	×	Cycle	1 imes 1
Caterpillar	×	Cycle	1 imes 1
Four Matchings			1 imes 1 imes 1 imes 1
Tree	×	Matching	1×0
Wheel	×	Matching	2×0
Outerpath	×	Matching	2×1
Outerplanar	×	Outerplanar	3×3
2-page book emb.	×	2-page book emb.	4×4
Planar	X	Planar	6×6

- All graphs are drawn on the $O(n) \times O(n)$ -grid.
- \circ All algorithms run in O(n) time.

Reduce bend numbers!

- Reduce bend numbers!
- Relax constraints on crossing resolution
 - \Rightarrow LacSim

(Simultaneous Embedding with Large-Angle Crossings)

- Reduce bend numbers!
- Relax constraints on crossing resolution
 - \Rightarrow LacSim

(Simultaneous Embedding with Large-Angle Crossings)

Computational complexity:

Given n points and two n-vertex planar graphs, do they admit a RACSIM drawing with $\leq k$ bends per edge?

- Reduce bend numbers!
- Relax constraints on crossing resolution
 - \Rightarrow LacSim

(Simultaneous Embedding with Large-Angle Crossings)

Computational complexity:

Given n points and two n-vertex planar graphs, do they admit a RACSIM drawing with $\leq k$ bends per edge?

SIMRAC instead of RACSIM:
 Draw each graph RAC (but ignore crossing angles).

- Reduce bend numbers!
- Relax constraints on crossing resolution
 - \Rightarrow LacSim

(Simultaneous Embedding with Large-Angle Crossings)

Computational complexity:

Given n points and two n-vertex planar graphs, do they admit a RACSIM drawing with $\leq k$ bends per edge?

- SIMRAC instead of RACSIM:
 Draw each graph RAC (but ignore crossing angles).
- RACSEFE instead of RACSIM:
 Cross at right angles and fix common edges!

- Reduce bend numbers!
- Relax constraints on crossing resolution
 - \Rightarrow LacSim

(Simultaneous Embedding with Large-Angle Crossings)

- Computational complexity:
 - Given n points and two n-vertex planar graphs, do they admit a RACSIM drawing with $\leq k$ bends per edge?
- SIMRAC instead of RACSIM:
 Draw each graph RAC (but ignore crossing angles).
- RACSEFE instead of RACSIM:
 Cross at right angles and fix common edges!
- Can we do (const, const)-SEFE in polynomial area? [FHK'15]

- Reduce bend numbers!
- Relax constraints on crossing resolution
 - \Rightarrow LacSim

(Simultaneous Embedding with Large-Angle Crossings)

- Computational complexity:
 - Given n points and two n-vertex planar graphs, do they admit a RACSIM drawing with $\leq k$ bends per edge?
- SIMRAC instead of RACSIM:
 Draw each graph RAC (but ignore crossing angles).
- RACSEFE instead of RACSIM:
 Cross at right angles and fix common edges!
- ullet Can we do (const, const)-SEFE in polynomial area? [FHK'15]

Our Results (Journal Version)

Graph classes				Number of bends	RAC- SEFE
	Cycle	×	Cycle	1 imes 1	
	Caterpillar	×	Cycle	1 imes 1	
	Four Matchings			1 imes 1 imes 1 imes 1	·
	Tree	×	Matching	1×0	
	Wheel	×	Matching	2×0	
	Outerpath	×	Matching	2×1	
	Outerplanar	×	Outerplanar	3×3	•
	2-page book emb.	×	2-page book emb.	4×4	
	Planar	×	Planar	6×6	

- All graphs are drawn on the $O(n) \times O(n)$ -grid.
- \circ All algorithms run in O(n) time.