Researcher: ,
Date:

Research

Click each research item to view details on it.

Eyeball icon
Gainsburg, J., Rodriguez-Lluesma, C., & Bailey, D. (2010). A “knowledge profile” of an engineering occupation: Temporal patterns in the use of engineering knowledge. Engineering Studies, 2(3), 197-219.

Abstract

"Each engineering occupation is distinguished by the body of specific knowledge it has built up over time. Some scholars argue that the instrumentality of this historically established knowledge in the solution of everyday design problems renders formal education more important than experience; others counter that engineering work primarily demands practice-generated knowledge that individuals construct in the course of everyday activities. We address this argument by documenting the frequency with which engineers apply different types of knowledge with different derivations. Through field observations of structural engineers, we constructed a “knowledge profile” that indicated that two-thirds of the knowledge engineers employed was practice generated. Knowledge profiles like this could help differentiate among engineering occupations and serve as the foundation for conceptualizing occupations in a world of “knowledge work.” In addition, knowledge profiles could help university engineering education programs better target and mirror the knowledge demands of the profession."

Magnifying glass iconView more details...

Eyeball icon
Gainsburg, J. (2013). Learning to model in engineering. Mathematical Thinking and Learning, 15(4), 259-290.

Abstract

Policymakers and education scholars recommend incorporating mathematical modeling into mathematics education. Limited implementation of modeling instruction in schools, however, has constrained research on how students learn to model, leaving unresolved debates about whether modeling should be reified and explicitly taught as a competence, whether it should be taught holistically or atomistically, and whether students’ limited domain knowledge is a barrier to modeling. This study used the theoretical lens of legitimate peripheral participation to explore how learning about modeling unfolds in a community of practice—civil engineering—known to develop modeling expertise among its members. Twenty participants were selected to represent various stages of engineering education, from first-year undergraduates to veteran practitioners. The data, comprising interviews, “think-aloud” problem-solving sessions, and observations of engineering courses, were analyzed to produce a description of how this professional community organizes learning about mathematical models and resolves general debates about modeling education.

Magnifying glass iconView more details...