Dept. of Chemistry & Biochemistry

18111 Nordhoff Street
Northridge, California 91330-8262

Phone: (818) 677-3381
Fax: (818) 677-4068
E-mail: chemistry@csun.edu

Office: 2102 Eucalyptus Hall

Hours: Mon-Fri 8:00am-5:00pm

Contact the Department Webmaster

 


Paula L. Fischhaber

Paula Fischhaber

ASSOCIATE PROFESSOR

Department of Chemistry and Biochemistry
California State University, Northridge
Northridge, California, 91330-8262

telephone: (818) 677-4503
fax: (818) 677-4068

e-mail: paula.fischhaber@csun.edu


office: 3107 Citrus Hall

EDUCATION

  • B.A. Biochemistry, University of Colorado, Boulder
  • Ph.D., University of Washington, Seattle

POSTDOCTORAL APPOINTMENT

  • University of Texas Southwestern Medical Center at Dallas

COURSES TAUGHT

  • CHEM 101, General Chemistry I
  • CHEM 101D, General Chemistry I Discussion
  • CHEM 365, Intro to Biochemistry
  • CHEM 464, Principles of Biochemistry
  • CHEM 464L, Principles of Biochemistry laboratory
  • CHEM 461, Biochemistry I
  • CHEM 462, Biochemistry II
  • CHEM 462L, Biochemistry II Laboratory
  • CHEM 566, DNA-Protein Interactions
  • SCI 100, Science for Life
  • UNIV 100, Freshman Seminar

RESEARCH INTERESTS

Biochemistry

Dr. Fischhaber's group is investigating the protein biochemistry of DNA repair in S. cerevisiae (baker’s yeast).  In human beings, failure to repair covalent modifications to DNA (DNA damage) by the biologic repair pathways results in genetic mutations and cancer, particularly skin cancer. DNA damage is ubiquitous in living cells and much of it is unavoidable, so DNA repair pathways are crucial for survival.

We use a variety of in vitro biochemical techniques as well as fluorescence microscopy to establish the temporal and spatial relationships among key proteins participating in DNA repair.  The ultimate goal is to understand precisely how cells direct themselves toward the most appropriate DNA repair pathway to avoid burdensome levels of mutations that could otherwise give rise to cancer.



 

M. S. THESES

  • “Alternative roles for Rad7 in NER and Rad51 in SSA”, Joseph Benoun, (M.S. Biochemistry, May 2013)
  • “Recruitment of the Rad1-Rad10 Protein Complex to sites of DNA Double Strand Break Repair and Nucleotide Excision Repair in Saccharomyces cerevisiae: Examination of Rad52, Rad51 and Mre11 in DNA Double Strand Break Repair and Rad1 genetic mutations in DNA Nucleotide Excision Repair by Fluorescence Microscopy”, Destaye Moore, (M.S. Biochemistry, May 2011)
  • “Rad51 Strand Exchange Activity Mediates Rad1-Rad10 Recruitment to Synthesis-Dependent Strand Annealing Sites”, Justin Karlin, (M.S. Biochemistry, May 2010)
  • “The Temporal Relationship of Nucleotide Excision Repair Factors Rad14 and Rad1-Rad10”, Armen Mardiros, (M.S. Biochemistry, May 2009)

REPRESENTATIVE PUBLICATIONS

  1. "SAW1 is Required for SDSA Double-Strand Break Repair in S. cerevisiae". Diamante, G., Phan, C., Celis, A.S., Krueger, J., Kelson, E.P. and Fischhaber, P.L. Biochem. Biophys. Res Commun (2014), 445, 602-607.

  2. "Rad51 ATP binding but not hydrolysis is required to recruit Rad10 in synthesis-dependent strand annealing sites in S. cerevisiae". Karlin, J. and Fischhaber, P.L. Adv. Biol. Chem. (2013), 3, 295-303.

  3. "Rad10-YFP focus induction in response to UV depends on RAD14 in yeast". Mardiros, A., Benoun, J.M., Haughton, R., Baxter, K., Kelson, E.P. and Fischhaber, P.L. Acta Histochem. (2011), 113, 409-415.

  4. "Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae". Moore, D. M., Karlin, J., González-Barrera, S., Mardiros, A., Lisby, M., Doughty, A., Gilley, J., Rothstein, R., Friedberg, E.C. and Fischhaber, P.L. Nucleic Acids Res. (2009) 37(19), 6429-6438.

  5. "DNA polymerases for translesion DNA synthesis: enzyme purification and mouse models for studying their function". Fischhaber, P. L., McDaniel, L. D. and Friedberg, E. C., Methods Enzymol. (2006) 408, pp. 355-378.

  6. "How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis?" Fischhaber, P. L. and Friedberg, E. C. DNA Repair (Amst). (2005) 4(2), 279-83.

  7. "DNA repair in yeast". Friedberg, E. C., Fischhaber, P. L. Encyclopedia of Molecular Cell Biology and Molecular Medicine 2nd Ed. Meyers, R. A., Editor (2004) 3, 427-447.

  8. "Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis". Guo, C., Fischhaber, P. L., Luk-Paszyc, M., Masuda, Y., Zhou, J., Kamiya, K., Kisker, C. and Friedberg, E. C. EMBO Journal (2003) 22(24), 6621-6630.

  9. "TB or not TB: How Mycobacterium tuberculosis may evade drug treatment". Friedberg, E. C. and Fischhaber, P. L. Cell (2003) 113, 139-140.

  10. "DNA replication fidelity". Friedberg, E. C. and Fischhaber, P. L. Nature Encyclopedia of the Human Genome (2003), 2, 167-171.

  11. "Human polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides". Fischhaber, P. L., Gerlach, V. L., Feaver, W. J., Hatahet, Z., Wallace, S. S. and Friedberg, E. C. J. Biol. Chem. (2002), 277(40), 37604-37611.

  12. "Error-prone DNA polymerases: novel structures and the benefits of infidelity". Friedberg, E. C., Fischhaber, P. L. and Kisker, C. L. Cell (2001) 107, 9-12.

  13. "Purification and characterization of Pol kappa, a DNA polymerase encoded by the human DINB1 gene". Gerlach, V. L., Feaver, W. J., Fischhaber, P. L. and Friedberg, E. C. J. Biol. Chem. (2001) 276(1), 92-98.