Contact info

Dept. Chemistry & Biochemistry

18111 Nordhoff Street
Northridge, California
91330-8262

Phone: (818) 677-3381
Fax: (818) 677-4068
E-mail: chemistry@csun.edu

Office: 2102 Eucalyptus Hall

Hours: Mon-Fri 8:00am-5:00pm

Contact the Department Webmaster

 


Katsu Ogawa

Katsu Ogawa

ASSISTANT PROFESSOR

Department of Chemistry and Biochemistry
California State University, Northridge
Northridge, California, 91330-8262

telephone:(818) 677-4239
e-mail:
katsu.ogawa@csun.edu
fax:(818) 677-4068

Office:Eucalyptus 2305

Ogawa Research Group Web Page

EDUCATION

  • B.S., Minnesota State University, Mankato, 2000
  • Ph.D., North Dakota State University, 2005

POSTDOCTORAL APPOINTMENT

  • University of Florida, 2005-2009

COURSES TAUGHT

  • Chemistry 411, Synthesis
  • Chemistry 433, Organic Analysis

RESEARCH INTERESTS

Organic/Organometallic Materials Chemistry
Two major research areas of Ogawa group are 1) design and development of highly ordered 2-dimensional conjugated polymer matrixes for photovoltaic and electroluminescent devices and 2) development of fluorescent chemo-sensing materials for biologically active small molecules and ions.

Two Dimensional Conjugated Polymer Matrixes:
Dr. Ogawa is interested in controlling morphologies of 2-dimensional conjugated polymer sheets by taking advantage of two orthogonal polymerization methods: transition metal catalyzed chemical polymerization and electrochemical oxidative polymerization. A solution processable 1-dimensional polymer can be obtained by chemical polymerization. Then it can be spin coated onto an electrode followed by oxidative polymerization to achieve the final product. One goal is to control the morphology via self assembly of the 1-D polymer. Another goal is to control the photophysical/electrochemical properties of the 2-D polymers.

Chemo-sensing Materials:
Another major interest for Dr. Ogawa is design and development of fluorometric or colorimetric sensors for biologically important species, such as metal ions and endocrine disrupting chemicals. Sensors consist of two major parts: receptor and reporter. Receptors bind to analytes, which causes conformational changes or alteration of electronic environment of lumophore/chromophore (reporter). Such changes result in variation of optical signals. The research involves optimization of both receptor and reporter moieties.

Multidisciplinary nature of the research in Ogawa group requires a wide variety of techniques. Students are involved in organic/organometallic syntheses, photophysical measurements, and electrochemical analyses/syntheses.

For more detailed descriptions of the projects and instrumentations, please see Ogawa Research Group Web Page



REPRESENTATIVE PUBLICATIONS

  1. "Low-Band-Gap Platinum Acetylide Polymers as Active Materials for Organic Solar Cells" Mei, J.; Ogawa, K.; Kim, Y.-G.; Heston, N. C.; Arenas, D. J.; Nasrollahi, Z.; McCarley, T. D.; Tanner, D. B.; Reynolds, J. R. and Schanze, K. S., ACS Applied Materials & Interfaces (2009) 1, 150-161.
  2. "Synthetic approaches to band gap control in conjugated polymeric materials" Rasmussen, S. C.; Ogawa, K. and Rothstein, S. D. in Handbook of Organic Electronics and Photonics, ed. Nalwa, H. S.; American Scientific Publishers, Stevenson Ranch, CA, 2008, Chapter 1, pp. 1-50.
  3. "Polyelectrolyte-based fluorescent sensors" Ogawa, K.; Achyuthan, K. E.; Chemburu, S.; Ji, E.; Liu, Y.; Lopez, G. P.; Schanze, K. S. and Whitten, D. G. in Organic Semiconductors in Sensor Applications, eds. Bernards, D. A.; Owens, R. M. and Malliaras, G. G.; Springer, New York, 2008, Chapter 2, pp. 39-60.
  4. "Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C" Liu, Y.; Ogawa, K. and Schanze, K. S., Analytical Chemistry (2008) 80, 150-158.
  5. "Conjugated polyelectrolyte-grafted silica microspheres" Ogawa, K.; Chemburu, S.; Lopez, G. P.; Whitten, D. G. and Schanze, K. S., Langmuir (2007) 23, 4541-4548.
  6. "N-functionalized poly(dithieno[3,2-b : 2 ',3 '-d]pyrrole)s: Highly fluorescent materials with reduced band gaps" Ogawa, K. and Rasmussen, S. C., Macromolecules (2006) 39, 1771-1778.
  7. "Highly fluorescent oligothiophenes through the incorporation of central dithieno[3,2-b:2',3'-d]pyrrole units" Radke, K. R.; Ogawa, K. and Rasmussen, S. C., Organic Letters (2005) 7, 5253-5256.
  8. "A simple and efficient route to N-functionalized dithieno[3,2-b:2',3'-d]pyrroles: Fused-ring building blocks for new conjugated polymeric systems" Ogawa, K. and Rasmussen, S. C., Journal of Organic Chemistry (2003) 68, 2921-2928.
For other publications, see Curriculum Vitae or Research Group Web Page


M. S. THESES

  • .....