
Differentiated Service Queuing Disciplines in NS-3

Robert Chang, Mahdi Rahimi, and Vahab Pournaghshband

Advanced Network and Security Research Laboratory
California State University, Northridge

Northridge, California, USA
{robert.i.chang, mahdi.r.rahimi}@ieee.org

vahab@csun.edu

Abstract—Network Simulator 3 (ns-3) is a powerful tool for
modeling the behavior of computer networks using simulation.
We have developed three well known differentiated service packet
queuing methods: strict priority queuing, weighted fair queuing,
and weighted round robin queuing, in the simulation framework.
In this paper, we present the implementation details of the three
modules as well as their usage. By implementing these modules
in ns-3 and demonstrating their use, we intend to facilitate
further research and experimentation with our contributions.
We believe that our work will be utilized in solving outstanding
problems that would have been impractical to investigate without
our modules. Lastly, through validation, we confirm that our
introduced modules simulate these queuing methods correctly.

Keywords–strict priority queuing; weighted fair queuing;
weighted round robin; differentiated service; ns-3

I. INTRODUCTION

We are presenting three new modules for three scheduling
strategies: strict priority queuing, weighted fair queuing, and
weighted round robin. These queuing methods offer differen-
tiated service to network traffic flows, optimizing performance
based on administrative configurations.

The network simulator 3 (ns-3) [1] is a popular and
valuable research tool which can be used to simulate systems
and evaluate network protocols. ns-3 organizes components
logically into modules. The official modules included by
default are able to create basic simulated networks using
common protocols, and users can add additional components
by creating specialized modules. This has been used to add a
leaky bucket scheduler [2] and to add and evaluate a DiffServ
framework implementation [3].

DiffServ is a network architecture that provides a way to dif-
ferentiate and manage network flows. A DiffServ network can
give priority to real-time applications, such as Voice over IP, to
ensure acceptable performance, or prevent malfunctioning and
malicious applications from occupying all of the bandwidth
and starving other communication. Two of the main compo-
nents of DiffServ are classification and scheduling. DiffServ
networks classify the packets in a network flow to determine
what kind of priority or service to provide and schedule
packets according to their classification. Differentiated service
queuing disciplines, such as those described in this paper,
are responsible for executing the flow controls required by
DiffServ networks.

This paper is organized as follows: first, a brief overview
of the theoretical background behind each of our modules is

Figure 1. A strict priority queue

presented in Section II. In Section III, we overview existing
simulation tools for differentiated service queuing. Section
III describes our design choices and implementation details.
Section IV showcases experiments using our modules and
presents an analysis of the results to validate their correctness
by comparing the observed behavior to analytically-derived
expectations. In Section V, we provide instructions to configure
these modules in an ns-3 simulation, and finally. we consider
future work in Section VI.

II. BACKGROUND

A. Strict Priority Queuing

Strict priority queuing (SPQ) [4] classifies network packets
as either priority or regular traffic and ensures that priority
traffic will always be served before low priority. Priority
packets and regular packets are filtered into separate FIFO
queues, the priority queue must be completely empty before
the regular queue will be served. The advantage of this method
is that high priority packets are guaranteed delivery so long
as their inflow does not exceed the transmission rate on the
network. The potential disadvantage is a high proportion of
priority traffic will cause regular traffic to suffer extreme
performance degradation [4]. Figure 1 gives an example of
strict priority queuing; packets from flow 2 cannot be sent
until the priority queue is completely emptied of packets from
flow 1.

B. Weighted Fair Queuing

Weighted fair queuing (WFQ) [5] offers a more balanced
approach than SPQ. Instead of giving certain traffic flows
complete precedence over others, WFQ divides traffic flows
into two or more classes and gives a proportion of the available
bandwidth to each class based on the idealized Generalized
Processor Sharing (GPS) model [6].

Figure 2. A weighted fair queue

In GPS, each queue i is assigned a class of traffic and
weight wi. At any given time the weights corresponding to
nonempty queues wj are normalized to determine the portion
of bandwidth allocated to the queue as shown in (1).

w∗i =
wi∑
wj

(1)

w∗i is between zero and one and is equal to the share of
the total bandwidth allocated to queue i. For any t seconds on
a link capable of sending b bits per second, each nonempty
queue sends b ∗ t ∗ w∗i bits.

WFQ approximates GPS by calculating the order in which
the last bit of each packet would be sent by a GPS scheduler
and dequeues packets in this order [7]. The order of the last
bits is determined by calculating the virtual finish time of each
packet. WFQ assigns each packet a start time and a finish time,
which correspond to the virtual times at which the first and
last bits of the packet, respectively, are served in GPS. When
the kth packet of flow i, denoted by P ki , arrives at the queue,
its start time and finish time are determined by (2) and (3).

Ski = max(F k−1i , V (Aki)) (2)

F ki = Ski +
Lki
wi

(3)

where F 0
i = 0, Aki is the actual arrival time of packet P ki ,

Lki is the length of P ki , and wi is the weight of flow i. Here
V (t) is the virtual time at real time t to denote the current
round of services in GPS and is defined in (4).

dV (t)

dt
=

c∑
i∈B〈t〉

wi
(4)

where V (0) = 0, c is the link capacity, and B〈t〉 is the set
of backlogged connections at time t under the GPS reference
system. WFQ then chooses which packet to dequeue based on
the minimal virtual finish time. Figure 2 gives an example of
weighted fair queuing; packets are sent in the order determined
by their virtual finish times.

C. Weighted Round Robin

Weighted round robin (WRR) queuing is a round robin
scheduling algorithm that approximates GPS in a less com-
putationally intensive way than WFQ. Every round each
nonempty queue transmits an amount of packets proportional
to its weight. If all packets are of uniform size, each class of
traffic is provided a fraction of bandwidth exactly equal to its
assigned weight. In the more general case of IP networks with
variable size packets, the weight factors must be normalized
using the mean packet size. Normalized weights are then used
to determine the number of packets serviced from each queue.
If wi is the assigned weight for a class and Li is the mean
packet size, the normalized weight of each queue is given by
(5).

w∗i =
wi
Li

(5)

Then the smallest normalized weight, w∗min, is used to
calculate the number packets sent from queue i each round
as shown in (6) [8]. ⌈

w∗i
w∗min

⌉
(6)

WRR has a processing complexity of O(1), making it useful
for high speed interfaces on a network. The primary limitation
of WRR is that it only provides the correct proportion of
bandwidth to each service class if all packets are of uniform
size or the mean packet size is known in advance, which is
very uncommon in IP networks. To ensure that WRR can
emulate GPS correctly for variably sized packets, the average
packet size of each flow must be known in advance; making
it unsuitable for applications where this is hard to predict.
More effective scheduling disciplines, such as deficit round
robin and weighted fair queuing were introduced to handle the
limitations of WRR. Figure 3 gives an example of weighted
round robin queuing; because packets sent are rounded up,
each round two packets will be sent from flow 1 and one
packet from flow 2.

III. RELATED WORK

The predecessor to ns-3, ns-2 [9], had implemented
some scheduling algorithms such fair queuing, stochastic fair
queuing, smoothed round robin, deficit round robin, priority
queuing, and class based queuing as official modules. Ns-2
and ns-3 are essentially different and incompatible environ-
ments, ns-3 is a new simulator written from scratch and is

Figure 3. A weighted round robin queue

not an evolution of ns-2. At the time of writing, the latest
version, ns-3.32, contains no official differentiated service
queuing modules. Several modules have been contributed by
others, such as a leaky bucket queue implementation [2] and
the previously mentioned DiffServ evaluation module [3].

IV. DESIGN AND IMPLEMENTATION

In the DiffServ architecture, there is a distinction between
edge nodes, which classifies packets and set the DS fields
accordingly, and internal nodes, which queue these packets
based on their DS value. In the design framework, we used
for all modules, each queue operates independently; we do
not utilize the DS field and packets are reclassified at each
instance.

WFQ, WRR, and SPQ all inherit from the Queue class in
ns-3. Queue provides a layer of abstraction that hides the
scheduling algorithm and allows easy utilization of our classes
wherever the Queue class or any of its inherited classes exist.

The Queue API has three main public members related
to functionality: Enqueue(), Dequeue(), and Peek(). In the
Point To Point module, PointToPointNetDevice passes outgo-
ing packets to Queue::Enqueue() when it has finished pro-
cessing them. PointToPointNetDevice calls Queue::Dequeue()
when the outgoing link is free and begins transmitting the
returned packet. Our modules were built specifically with Point
To Point in mind, but can be included with any ns-3 module
that utilizes Queue.

Classes that inherit from Queue must implement the abstract
methods DoEnqueue(), DoDequeue(), and DoPeek() which are
called by the public methods Enqueue(), Dequeue(), and Peek()
respectively.

DoEnqueue() takes a packet as an argument, attempts to
queue it, and indicates whether the packet was successfully
queued or dropped. DoDequeue() takes no arguments, attempts
to pop the next scheduled packet, and returns the packet if
successful or an error otherwise. DoPeek() takes no arguments
and returns the next scheduled packet without removing it from
the queue.

Our classes follow the same functional design pattern:
DoEnqueue() calls Classify() which determines the correct
queue based on user provided parameters. DoDequeue() and
DoPeek() both implement the module-specific scheduling al-
gorithm and return the next the scheduled packet.

To handle user provided criteria for classification, we cre-
ated an input format modeled after Cisco System’s IOS con-
figuration commands. For each of our modules, the classifier
sorts incoming packets into separate classes based on these
criteria: source IP address, source port number, destination IP
address, destination port number, and TCP/IP protocol number
(TCP or UDP).

The source and destination address criteria could be either
a single host or a range of IP addresses. An optional subnet
mask can be provided along with the criteria to distinguish
the incoming packets from a particular network. We chose
to adopt an inverse mask instead of normal mask (0.0.0.255
instead of 255.255.255.0) for consistency with Cisco IOS.

Each set of user-defined match criteria is stored as an Access
Control List (ACL). An ACL consists of a set of entries,
where each entry is a combination of the mentioned five-tuple
values to uniquely identify a group of packets. After ACLs are
introduced to the system, each ACL is linked to a CLASS,
which matching packets are associated to. Besides an ACL,
a CLASS also has attributes such as weight and queue size.
Each instance of CLASS must have at least one associated
ACL and each ACL can only relate to one class.

Upon arrival of a new packet, our module attempts to
classify the packet into an existing CLASS based on ACLs.
If a match is found, the packet is placed into the reserved
queue for the corresponding CLASS, however if a match is not
found, it will be grouped into the predefined default CLASS.
Each reserved queue is a first-in first-out queue with a tail
drop policy. An example for configuring the ACL input file is
included in the usage section.

A. Strict Priority Queuing

1) Design: SPQ has two internal queues, Q1 and Q2, Q1
is the priority queue and Q2 is the default queue. A single
port or IP address can be set by the user and matching traffic
is sorted into the priority queue, all other traffic is sorted into
the lower priority default queue.

In some SPQ implementations, outgoing regular priority
traffic will be preempted in mid-transmission by the arrival of
an incoming high priority packet. We chose to only implement
prioritization at the time packets are scheduled.

2) Implementation: DoEnqueue() calls the function Clas-
sify() on the input packet to get a class value. Classify() checks
if the packet matches any of the priority criterion and indicates
priority queue if it does or default queue if it does not. The
packet is pushed to the tail if there is room in the queue;
otherwise, it is dropped.

DoDequeue() attempts to dequeue a packet from the priority
queue. If the priority queue is empty then it will attempt to
schedule a packet from the regular queue for transmission.

B. Weighted Fair Queuing

1) Design: Our class based WFQ assigns each packet a
class on its arrival. Each class has a virtual queue with which
packets are associated. For the actual packet buffering, they are
inserted into a sorted queue based on their finish time values.
Class (and queue) weight is represented by a floating point
value.

A WFQ’s scheduler calculates the time each packet finishes
service under GPS and serves packets in order of finish time.
To keep track of the progression of GPS, WFQ uses a virtual
time measure, V (t), as presented in (4). V (t) is a piecewise
linear function whose slope changes based on the set of active
queues and their weights under GPS. In other words, its slope
changes whenever a queue becomes active or inactive.

Therefore, there are mainly two events that impact V (t):
first, a packet arrival that is the time an inactive queue becomes
active and second, when a queue finishes service and becomes

inactive. The WFQ scheduler updates virtual time on each
packet arrival [7]. Thus, to compute virtual time, it needs
to take into account every time a queue became inactive
after the last update. However, in a time interval between
two consecutive packet arrivals, every time a queue becomes
inactive, virtual time progresses faster. This makes it more
likely that other queues become inactive too. Therefore, to
track current value of virtual time, an iterative approach is
needed to find all the inactive queues, declare them as inactive,
and update virtual time accordingly [7]. The iterated deletion
algorithm [10] shown in Figure 4 was devised for that purpose.

while true do
F = minimum of Fα

δ = t− tchk
if F <= Vchk + δ ∗ L

sum then
declare the queue with Fα = F inactive
tchk = tchk + (F − Vchk) ∗ sumL
Vchk = F
update sum

else
V (t) = Vchk + δ ∗ L

sum
Vchk = V (t)
tchk = t
exit

end if
end while

Figure 4. The iterated deletion algorithm

Here, α is an active queue, Fα is the largest finish time
for any packet that has ever been in queue α, sum is the
summation of the weights of actives queues at time t, and L
is the link capacity.

We maintain two state variables: tchk and Vchk = V (tchk).
Because there are no packet arrivals in [tchk, t], no queue can
become active and therefore sum is strictly non-increasing in
this period. As a result a lower bound for V (t) can be found as
Vchk+(t− tchk)∗ L

sum . If there is a Fα less than this amount,
the queue α has become inactive some time before t. We
find the time this happened, update tchk and Vchk accordingly
and repeat this computation until no more queues are found
inactive at time t.

After the virtual time is updated, the finish time is calculated
for the arrived packet and it is inserted into a priority queue
sorted by finish time. To calculate the packet’s finish time,
first its start time under GPS is calculated, which is equal to
the greater of current virtual time and largest finish time of a
packet in its queue or last served from the queue. Then, this
amount is added to the time it takes GPS to finish the service
of the packet. This is equal to packet size divided by weight.

2) Implementation: Similarly to SPQ’s implementation,
DoEnqueue() calls Classify() on input packets to get a class
value. Classify() returns the class index of the first matching
criteria, or the default index if there is no match. This class
value maps to one of the virtual internal queues, if the queue
is not full the packet is accepted, otherwise it is dropped.

Current virtual time is updated as previously described
and if the queue was inactive it is made active. The packet
start time is calculated by (2) using updated virtual time
and queue’s last finish time. Then packet finish time is set
by CalculateFinishTime(). This method uses (3) to return the
virtual finish time. The queue’s last finish time is then updated
to the computed packet finish time. Finally the packet is
inserted into a sorted queue based on the finish numbers. A
priority queue from C++ container library was used for that
purpose.

DoDequeue() pops the packet at the head of priority queue.
This packet has the minimum finish time number.

C. Weighted Round Robin

1) Design: WRR has the same number of internal queues,
assigned weight representation, and classification logic as
WFQ. The weight must be first normalized with respect to
packet size. In an environment with variably sized packets,
weighted round robin needs to assign a mean packet size si
for each queue. These parameters are identified by the prior to
the simulation in order to correctly normalize the weights. The
normalized weight and number of packets sent are calculated
by (5) and (6).

2) Implementation: Before the start of the simulation, Cal-
culatePacketsToBeServed() determines the number of packets
sent from each queue using (6). Similar to SPQ and WFQ,
DoEnqueue() uses Classify() to find the class index of the
incoming packets and then puts them in the corresponding
queue.

DoDequeue() checks an internal counter to track how many
packets to send from the queue receiving service. Each time
a packet is sent the counter is decremented. If the counter is
equal to zero or the queue is empty DoDequeue() marks the
next queue in the rotation for service and updates the counter
to the value previously determined by CalculatePacketsToBe-
Served().

V. VALIDATION

To validate our WFQ and WRR implementations we ran a
series of experiments against each module. For each exper-
iment, we chose a scenario with predictable outcomes for a
given set of parameters based on analysis of the scheduling
algorithm. Then we ran simulations of the scenario using the
module and compared the recorded results with our analytic
model.

All our experiments used the six node topology shown in
Figure 5. Each sender and receiver pair sends a traffic flow
across a single shared link between the two middle boxes. We
installed our modules on the outgoing NetDevice across the
shared link. In order to observe the characteristics of WFQ
and WRR, both senders send 1 GB of data in all simulations
and the experiments ends after the last packet in either of the
flows is received.

The following parameters are constant across our simula-
tions. The senders use the ns-3 bulk sending application to

Figure 5. Simulated network used in validation experiments

send 1000 byte packets with no idling, all links have 5ms
delay, queue sizes were chosen to be practically unbounded to
avoid packet loss.

Because both the weighted fair queuing and weighted
round robin are approximations of GPS, and GPS allocates
bandwidth based on exact weights, we expect ratio of both
traffic flow’s throughput to be close to the ratio of weights.

The two traffic flows are assigned weights w1 and w2 where
w2 = 1 − w2 for all simulations. Both traffic flows transmit
packets at T Mbps from the senders and the shared link has a
throughput capacity of 0.5T , creating a bottleneck. For each
module we ran sets of four simulations where w2 = 1, 12 ,

1
7 ,

1
10

and T is fixed, we repeated this four times with different
data rates T = 0.5, 1, 10, 50. In each simulation, the receivers
measure the average throughput of both flows, R1 and R2

over 1ms intervals and the we record the ratio. All simulations

Figure 6. WFQ validation: T = 0.5 Mbps

Figure 7. WFQ validation: T = 1 Mbps

stopped after the first traffic flow has finished transmitting.
The results in Figures 6, 7, 8, and 9 show the ratio of

throughput at the receivers remains close to the ratio of
weights. As we increase data rate across the network, the
measured ratio converges to the theoretical one.

For each flow in a correctly implemented WFQ system, the
number of bytes served should not lag behind an ideal GPS
system by more than the maximum packet length. In low data
rates such as 0.5Mbps even one packet can make a noticeable
difference. For instance, in a GPS system when the ratio of
weights is 10, the first flow sends 10 packets and the second
flow sends 100 packets over the same time interval. However,
in the corresponding WFQ system if the first flow sends 9
packets, then the perceived ratio will be 11.11 instead of 10.

Because WRR is optimal when using uniform packet sizes,
a small number of flows, and long connections we observe
that WRR performs as well as WFQ in approximating GPS.
As expected, we can see in Figures 10, 11, 12, and 13 that the
measured ratio of throughput converges to the ratio of weights
as data rate increases.

VI. USAGE

CLASSs and their ACLs must be introduced to the simula-
tion before it can begin. Besides working with objects directly
in their application, users can provide this information through
an XML or text file. In the XML file, using <class list>and
<acl list>, a hierarchical structure is specifically designed
in which users can enter a list of their CLASSs and ACLs
separately. The CLASSs and their corresponding ACLs are

Figure 8. WFQ validation: T = 10 Mbps

Figure 9. WFQ validation: T = 50 Mbps

Figure 10. WRR validation: T = 0.5 Mbps

Figure 11. WRR validation: T = 1 Mbps

then linked together using <acl id>attribute of the class. We
have provided an example similar to what we used in our
validation scenario:

Alternatively, users can provide the data through a text file.
This file consists of a set of lines where each line is a command
designated to introduce an ACL or CLASS to the system. The
class and access-list commands are used to define a CLASS
and an ACL respectively and the class-map command is used
to link the two. These commands are simplified versions of
Cisco IOS commands and should be familiar to users who
have worked with Cisco products.

VII. CONCLUSION AND FUTURE WORK

In order to add new functionality to ns-3, we have de-
signed and implemented modules for strict priority queuing,
weighted fair queuing, and weighted round robin. We have
described how these modules correctly implement their re-
spective algorithms within the ns-3 framework and left the
reader with means to utilize them for further experimentation.
The ease of configuration and use of our modules should make
them attractive tools for further research and we look forward
to seeing how others take advantage of our work.

There is a large amount of overlapping functionality be-
tween the three queues, particularly WFQ and WRR. All three
modules perform basic classification and scheduling at the
same points and some of this functionality could be combined
into a shared base class for different types differentiated
service queues. A stateful classifier and scheduler could be

Figure 12. WRR validation: T = 10 Mbps

Figure 13. WRR validation: T = 50 Mbps

<a c l l i s t><a c l i d = a c l F i r s t C l a s s><e n t r y>
<s o u r c e a d d r e s s >10.1.1.0</ s o u r c e a d d r e s s>
<s o u r c e a d d r e s s m a s k >0.0.0.255</ s o u r c e a d d r e s s m a s k>
<s o u r c e p o r t n u m b e r >23</s o u r c e p o r t n u m b e r>
<d e s t i n a t i o n a d d r e s s >172.16.1.0</ d e s t i n a t i o n a d d r e s s>
<d e s t i n a t i o n a d d r e s s m a s k >0.0.0.255</ d e s t i n a t i o n a d d r e s s m a s k>
<d e s t i n a t i o n p o r t n u m b e r >23</d e s t i n a t i o n p o r t n u m b e r>
<p r o t o c o l>TCP</p r o t o c o l>

</e n t r y></a c l></a c l l i s t>

<c l a s s l i s t>
<c l a s s i d =” c l a s s 1 ” a c l i d =” a c l F i r s t C l a s s”>

<q u e u e s i z e >256</q u e u e s i z e>
<weight >0.875</weight>

</ c l a s s>
</ c l a s s l i s t>

a c c e s s−l i s t a c c e s s−l i s t−i d [p r o t o c o l] [s o u r c e a d d r e s s] [s o u r c e a d d r e s s m a s k]
[o p e r a t o r [s o u r c e p o r t]] [d e s t i n a t i o n a d d r e s s] [d e s t i n a t i o n a d d r e s s m a s k]
[o p e r a t o r [d e s t i n a t i o n p o r t]]

a c c e s s−l i s t a c l F i r s t C l a s s TCP 1 0 . 1 . 1 . 0 0 . 0 . 0 . 2 5 5 eq 23 1 7 2 . 1 6 . 1 . 0 0 . 0 . 0 . 2 5 5 eq 23

c l a s s [c l a s s i d] bandwid th p e r c e n t [w e i gh t] queue−l i m i t [q u e u e s i z e]
c l a s s c l a s s 1 bandwid th p e r c e n t 0 .875 queue−l i m i t 256

c l a s s−map [c l a s s i d] match a c c e s s−group [a c l i d]
c l a s s−map c l a s s 1 match a c c e s s−group a c l F i r s t C l a s s

Figure 14. class_list, acl_list, access-list, class, and
class-map

implemented in a child class or associated with the base class
as part of a framework for creating these queues.

REFERENCES

[1] “The ns-3 Network Simulator,” Project Homepage. [Online]. Available:
http://www.nsnam.org [Retrieved: September, 2015]

[2] P. Baltzis, C. Bouras, K. Stamos, and G. Zaoudis, “Implementation of a
leaky bucket module for simulations in ns-3.” tech. rep., Workshop on

ICT - Contemporary Communication and Information Technology, Split
- Dubrovnik, 2011.

[3] S. Ramroop, “Performance evaluation of diffserv networks using the ns-
3 simulator,” tech. rep., University of the West Indies Department of
Electrical and Computer Engineering, 2011.

[4] Y. Qian, Z. Lu, and Q. Dou, “Qos scheduling for nocs: Strict priority
queueing versus weighted round robin,” tech. rep., 28th International
Conference on Computer Design, 2010.

[5] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single node
case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, 1993, pp.
344-357.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” ACM SIGCOMM, vol. 19, no. 4, 1989, pp. 3-14.

[7] S. Keshav, An Engineering Approach to Computer Networking. Addison
Wesley, 1998.

[8] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-
robin cell multiplexing in a general-purpose atm switch chip,” IEEE
Journal on Selected Areas in Communications, vol. 9, no. 8, 1991.

[9] “The ns-2 Network Simulator,” Project Homepage. [Online]. Available:
http://www.isi.edu/nsnam/ns/ [Retrieved: September, 2015]

[10] S. Keshav, “On the efficient implementation of fair queueing,” Journal
of Internetworking: Research and Experience, vol. 2, no. 3, 1991.

