
A New Watermarking Approach for Relational Data
 Vahab Pournaghshband

University of California, Berkeley
Computer Science Division
Berkeley, CA 94720-1776

+1 (510) 847-6182

vahab@berkeley.edu

ABSTRACT
The importance of digital watermarking for digital assets such as
relational databases to preserve their copyrights is becoming more
and more important as time goes by. In the past few years, a large
number of techniques have been proposed for hiding copyright
marks specifically on relational databases. In this paper, we
present an effective watermarking technique for relational data
that is robust against various attacks. While previous techniques
have been mainly concerned with introducing errors into the
actual data, our approach inserts new tuples that are not real and
we call them "fake" tuples, to the relation as watermarks. We will
show that our approach leads to an effective technique that is
robust against different forms of malicious attacks as well as
benign updates to the data.

Categories and Subject Descriptors
H.2.0 [Database Management]: General – Security, integrity,
and protection

General Terms
Security

Keywords
Watermarking, Relational Database

1. INTRODUCTION

1.1 What is Digital Watermarking?
Watermarking is a form of information hiding with a goal of
preserving the copyright of the digital asset such as multimedia,
software, and database. There are many discussions on what the
characteristics of a robust digital watermarking are. For instance,
Petitcolas et al have proposed the following characteristics for a
robust watermarking [5.] (1) Marks should not degrade the
perceived quality of the work, (2) if multiple marks are inserted in
a single relational database, then they should not interfere with
each other, (3) if different copies of an object are distributed with

different marks, then different users should not be able to process
their copies in order to generate a new copy that identifies none of
them, and (4) the mark should survive all attacks that do not
degrade the work's perceived quality.

Despite the differences on characterizing robust watermarking,
they all share a common idea. The key idea behind any sort of
digital watermarking is to introduce imperceptible (so that the
attacker can not detect them) and tolerable (to ensure that the
value of data is not greatly depreciated) errors to the object.

1.2 Digital Watermarking for Relational Data
The main objective of watermarking relational databases is to
deter data piracy and protect copyright of relational data.
Considering the properties of the relational databases, here we
concentrate on three characteristics of the robust watermarking
process designed specifically for relational data. These
characteristics state that a robust watermarking for relational data
should ensure that the attacker is not able to

1. Destroy the watermark without destroying the data
2. Retrieve the original database unless he has access to a similar
database
3. The watermark is preserved after benign updates too

In this paper, in subsequent sections, we use the Flight Scheduling
Database shown in Figure 1.

Flight

Number
Departure Arrival Day

Departure

Time
Duration

Carrier

Type

F102 San Jose Paris TU 13:20 11:30 Boeing

B36 Boston London MO 16:00 7:10 Airbus

K733 Miami Brasilia MO 11:55 8:20 Boeing

L181 Moscow Cairo SA 5:30 5:15 Boeing

Figure 1. Flight Scheduling Database

1.3 Previous Related Work
Here we briefly discuss two of the previous approaches related to
our work for watermarking relational databases. First, the method
given in Agrawal et al[1] utilizes the pseudorandom number
generator algorithm to identify the marked tuples and attributes,
and also the degree of error to the marked attributes. The private

127

Dean
Text Box

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ACM-SE ‘08, March 28–29, 2008, Auburn, AL, USA.
Copyright 2008 ACM ISBN 978-1-60558-105-7/08/03…$5.00.

key, used for copyright verifiability, is the seed for the
pseudorandom number generator algorithm. Figure 2 shows a
watermarked version of our Flight Scheduling Database using this
approach (marked values are indicated in bold).

Flight

Number
Departure Arrival

Da
y

Departure

Time
Duration

Carrier

Type

F102 San Jose Paris TU 13:20 11:00 Boeing

B36 Boston London MO 16:10 7:10 Airbus

K733 Miami Brasilia MO 11:55 8:20 Boeing

L181 Moscow Cairo SA 5:30 5:25 Boeing

Figure 2. Watermarked Flight Scheduling Database Using
Agrawal et al

Second, is the approach proposed by Zhang et al using embedded
images [4.] In other words, in their approach, they embed images
into relational database as the watermarks. While these techniques
are mainly concerned with introducing errors into the actual data,
our approach which will be discussed in Section 2 inserts new
“fake” tuples to the relation as watermarks.

2. OUR APPROACH
In our approach, unlike previous approaches we concentrate on
tuples with their entirety rather than a subset of their attributes.
Our approach aims to generate fake tuples and insert them
erroneously into the database.

It is a big challenge to figure out what and how many fake tuples
should be inserted into the relation. This is because marks should
not by any means degrade the quality of the data. For the number
of fake tuples, we expect that this number is decided by the
database owner. He should use his own judgment to ensure the
value of data is not significantly compromised. Regarding
creation of fake tuples, although this can be done manually by the
database owner which is a viable approach, our effort is to make
this process as automatic as possible. Therefore, our goal has been
to develop an insertion algorithm that, with little supervision, can
effectively generate the fake tuples. In the following subsections,
we first discuss our watermark insertion algorithm and then
present the watermark detection algorithm and show how it
works.

2.1 Watermark Insertion
Our watermark insertion unlike Agrawal et al [1] and Zhang et
al[4] is rather probabilistic and uses probability distributions to
determine the properties of the mark. Hence, there is no private
key used to generate the arks into the relation. Note that the
watermarking insertion presented in this section requires some
information that is expected to be provided by the database
owner.

The following is the pseudocode for the watermark insertion:

}

)(..9

}

),(..8

.7

)(..6

)1)((.5

{

.4

),(..3

.2

{

.1

})),({,,,(.0

τ

τ

τ

τ

insert

alerBiasedSampa
else

FplerUniformSama
pBernoulliif

Aaeachfor
cndidateKeyGenerateCac

Ccfor

tuplesNfor

FpANrmarkInsertWate

ii

ii

i

i

ii

i

ii
Aai

ℜ

ℜ=

=
==

∈
ℜ=

∈

′

′ℜ
∈
U

An explanation of the above pseudocode is as follows:

0. The parameters required by the DB owner are:
 R: the relation
 N′: the number of fake tuples
 A: the set of attributes that are not candidate keys
 {(pi,Fi)}: set of ordered pairs corresponding to each element ai
 in A;
 for each ordered pair corresponding to ai in A:
 pi: sensitivity of the attribute ai; the sensitivity is a
 value between 0 and 1 inclusive where 0 means
 insensitive and 1 means highly sensitive.
 (default: 0)
 Fi: set of fake values for attribute ai (default: {})
1. It assures generating N′ tuples as requested by the DB owner
2&3. C is the set of candidate keys and the
 GenerateCandidateKey procedure is expected to return a
 unique value for a candidate key using some pattern
 recognition algorithm to ensure consistency and ultimately
 leading to imperceptability.
4. for each attribute that is not a candidate key:
5. Bernoulli(pi) runs a Bernoulli sampling with a probability pi of
 returning 1 (i.e. success) to decide whether to pick a fake
 value for τi or share a value with some other tuple(s).
6. UniformSampler takes a set of fake values and picks a value
 from that set uniformly. For instance, the distribution for
 Fdeparture = {Razan, Keroona, Bilbao} would be 1/3 for each
 value.
7. BiasedSampler takes the relation R and an attribute ai; it first
 determines the distinct values for ai in R and construct the
 BiasedSampler by the relative frequency of each value for ai.
 For instance, for the attribute “carrier type” in the flight
 scheduling database, the distribution for the BiasedSampler is
 constructed as P(Boeing) = 3/4 and P(Airbus)=1/4.

128

2.1.1 Primary Key Collision
If the user has set the database such that once there is a collision,
the tuple is replaced by the new one, then it is fine since it will
simply delete the fake tuple and includes the new real tuple. The
subtlety arises when the user has set the database to not permit
overwriting. In this case, our approach would fail since it would
occasionally not let the real tuple to be inserted to the relation.
The fact that the primary key ranges are very wide for most
applications makes the chances of occurring such collisions very
rare.

Figure 3 shows the watermarked flight scheduling database by
adding fake tuples. The added fake tuple which is indicated as
bold shows a flight departing from a small city in Western Iran
and arriving in a small town in central Ghana.

Flight

Number
Departure Arrival Day

Departure

Time
Duration

Carrier

Type

F102 San Jose Paris TU 13:20 11:30 Boeing

B36 Boston London MO 16:00 7:10 Airbus

K733 Miami Brasilia MO 11:55 8:20 Boeing

L181 Moscow Cairo SA 5:30 5:15 Boeing

F127 Razan Apam MO 16:00 8:20 Boeing

Figure 3. Watermarked Flight Scheduling Database

2.2 Watermark Detection
The following is the pseudocode for the watermark detection
(where its parameters are: the relation (R), the set of fake tuples
initially inserted into R ({τ}), and the similarity score (σ).

}

}

))),((

{

}{

{

{

)},{,(

falsereturn

truereturn
rsimilarityif

eachfor

reachfor

rmarkDetectWate

στ

ττ

στ

≥

∈

ℜ∈

ℜ

The above watermark detection algorithm looks for a fake tuple in
the suspicious relation. However, the exact match might not be
found either by the attacker changing the value of some attributes

as an attempt to destroy the watermark or by the benign user who
changes these attributes repeatedly over time. To identify these
and suspect piracy correctly, we run a similarity measurement on
these tuples seeming to be the same. For the attacker it is
important not to destroy the data, so the ones with higher
sensitivity are less likely to be destroyed. Therefore, incorporating
sensitivity of attributes while calculating the similarity score,
seems reasonable. The similarity score between two tuples could
be calculated as follows:

∑
=

⋅=
n

i
ii xwS

1

Where n is the number of attributes,

⎩
⎨
⎧

=
otherwise

matchsa
x i

i 0

'1 ,

and

∑
=

= n

j
j

i
i

p

p
w

1

(where pi is the sensitivity of the attribute ai; pi =1 for the
candidate keys).

If the score is higher than a static threshold, σ, then it suspects
piracy.

Unlike other algorithms, our detection algorithm is not an inverse
algorithm to the watermark generating algorithm. In fact, our
algorithm checks to see whether our tuples exist or has been
changed. It checks it via primary key. As soon as it finds one
match (i.e. identical or similar tuples), detection is done. Note that
the detection will fail for the watermarked database when all of
the fake tuples are deleted by benign deletions. However, we
believe that this is a very unlikely scenario.

Comparing the previous approaches to ours, our insertion
algorithm is probabilistic (thus, every time the insertion algorithm
is run, it produces a different output) as opposed to those
approaches that produce deterministic errors. On the other hand,
our detection algorithm is relatively deterministic compared to
approaches like Agrawal et al's which is probabilistic and is
normally not confident about the existence of a piracy.

3. ANALYSIS OF ROBUSTNESS

3.1 Basic Attacks

Basic attacks simply attempt to destroy the watermark by
changing the values of the attributes. The similarity measurement
discussed in section 2.2 ensures robustness against these attacks.

3.2 False Claim of Ownership
This could happen when the attacker falsely claims that he owns
the watermarked relation by adding his own watermarks, either by
introducing errors in some attributes or by adding his own fake
tuples. In both cases, we win. We know the original data and we
can confidently claim that all the attacker’s marks are included in

129

the set which contains whatever has been altered from the original
database (inserted tuples or changes in attributes). On the other
hand, the attacker is not able to confidently come up with such a
set.

3.3 Updatability
As discussed in Section 1.2, we know how important it is for a
watermark to persist after benign updates. Agrawal et al[1]
introduced the notation of incremental updatability where any
changes to the marked attributes would be instantly remarked to
preserve the watermark. However, there are risks and drawbacks
involved in this approach that could be potentially problematic.
There is a risk of update attack where the attacker makes an
exhaustive updates over all tuples and their attributes and point
out the marks by observing the result of remark process. Our
approach, on the other hand, watermarks the relation only once,
and therefore it is robust against this attack.

In addition to the update attacks, applying the idea of incremental
updatability requires reimplementation of DBMS operators
including update, insert, and delete operators. While this is not a
risk, it could be a drawback since all database systems must
incorporate the idea into their operators for this to ensure
persistency of watermark over updates. Our approach, however,
does not require the reimplementation of DBMS operators.

3.4 Sensitivity
In previous approaches, sensitivity of each attribute is assumed to
be either Boolean (sensitive or insensitive which indicates that the
attribute can be watermarked or not) [1] or is ignored completely
(that is, the entire relation is assumed to be tolerable to some
universal degree of error) [4]. Our approach, however, assumes a
degree of sensitivity for each attribute.

3.5 Multiple Public Verifiability
As Li et al [3] claims, all existing watermarking schemes for
relational databases are secret key based, requiring a secret key to
be presented in proof of ownership (for instance, in Agrawal et al
[1] the secret key is the seed of the pseudorandom number
generator). This means that the ownership can only be proven
once to the public (e.g., to the court). After that, the secret key is
known to the public and the embedded watermark can be easily
destroyed by malicious users. In our approach, only one or a very
few fake tuples are need to convince the court, so the ownership
can be publicly verified more than once until all the fake tuples
are revealed.

3.6 Proof of Ownership
Assume that a database is watermarked by introducing errors to
numerous attributes of a subset of tuples in the relation. Now the
question is how to prove to the court that what they have
intentionally marked is erroneous and the corresponding values in
the original database are correct. While this seems to be a feasible
task, it is in fact very burdensome. Back to our flight scheduling
example, it is probably harder to convince the court that the
maximum altitude of flight L181 is 20,800 feet and not 16,250

than proving there is no flight going from Razan to Apam.
Proving ownership in the previous methods is even more
burdensome since we have to go through this process for every
single mark made in the relation.

3.7 Subset of Attributes Attack
In the previous approaches, only a subset of attributes could be
candidates for watermarking due to various reasons. Candidate
keys as well as non-numerical and highly sensitive attributes are
possible reasons for an attribute not to be marked. However, the
risk here is that the attacker can take these attributes and be
confident that there is no mark and hence lead to false claim of
ownership.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new approach using fake tuples and
discussed the insertion and detection watermarking algorithms in
details. Our goal has been to ensure that our watermarking
approach satisfies the three key elements of any watermarking
relational data (as discussed in section 1). While we discussed our
approach’s robustness analytically, we did not evaluate the
approach quantitively. In fact, evaluating watermarks for
relational database is a challenge and requires further
consideration. However, the persistency of the watermark after
both malicious and benign updates, as a subproblem, might be
evaluated by acquiring access to a log of user queries on a
particular database over a reasonably long period of time, and
then run the log on the watermarked database and observe
whether the watermark detection algorithm will confirm the
watermark. While this evaluation process sounds plausible, it is
application-specific and may not be generalized very well.

2. REFERENCES
[1] Agrawal, R., Haas, P., and Kiernan, J. 2003. Watermarking

relational data: framework, algorithms and analysis. The
VLDB Journal 12, 2 (Aug. 2003), 157-169. DOI=
http://dx.doi.org/10.1007/s00778-003-0097-x

[2] Li, Y. and Deng, R. H. 2006. Publicly verifiable ownership
protection for relational databases. In Proceedings of the
2006 ACM Symposium on information, Computer and
Communications Security (Taipei, Taiwan, March 21 - 24,
2006). ASIACCS '06. ACM, New York, NY, 78-89. DOI=
http://doi.acm.org/10.1145/1128817.1128832

[3] Zhou, X., Huang, M., and Peng, Z. 2007. An additive-attack-
proof watermarking mechanism for databases' copyrights
protection using image. In Proceedings of the 2007 ACM
Symposium on Applied Computing (Seoul, Korea, March 11 -
15, 2007). SAC '07. ACM, New York,

 NY, 254-258. DOI=
 http://doi.acm.org/10.1145/1244002.1244066

[4] Zhang, Z., Jin, X., Wang, J., Li, D. 2004. Watermarking
Relational Database Using Image. In Proceedings of the
Third International Conference on Machine Leaning and
Cybernetics, (Shanghai, August 26 – 29, 2004).

130

http://dx.doi.org/10.1007/s00778-003-0097-x
http://doi.acm.org/10.1145/1128817.1128832
http://doi.acm.org/10.1145/1244002.1244066

[5] Petitcolas, F. A., Anderson, R. J., and Kuhn, M. G. 1998.
Attacks on Copyright Marking Systems. In Proceedings of
the Second international Workshop on information Hiding
(April 14 - 17, 1998). D. Aucsmith, Ed. Lecture Notes In
Computer Science, vol. 1525. Springer-Verlag, London, 218-
238.

[8] Anderson, R. J. 2001 Security Engineering: a Guide to
 Building Dependable Distributed Systems. 1st. John Wiley &
 Sons, Inc.

[9] Fu, Y., Jin C., and Ma, C. 2007. A Novel Relational
 Database Watermarking Algorithm. Intelligence and Security
 Informatics. Lecture Notes in Computer Science, vol. 4430.
 Springer, 208-219.

[6] Sion, R., Atallah, M., and Prabhakar, S. 2003. Rights
protection for relational data. In Proceedings of the 2003
ACM SIGMOD international Conference on Management of
Data (San Diego, California, June 09 - 12, 2003). SIGMOD
'03. ACM, New York, NY, 98-109. DOI=
http://doi.acm.org/10.1145/872757.872772

[7] Yong, Z., Xia-mu, N., Khan, A., Qiong, L., and Qi, H. 2006.
A novel method of watermarking relational databases using
character string. In Proceedings of the 24th IASTED
international Conference on Artificial intelligence and
Applications (Innsbruck, Austria, February 13 - 16, 2006). V.
Deved, Ed. International Association Of Science And
Technology For Development. ACTA Press, Anaheim, CA,
120-124.

131

http://doi.acm.org/10.1145/872757.872772

