

Statistical Analysis of Online News

by Vahab Pournaghshband

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for the

degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Laurent El Ghaoui

Research Advisor

20
th

 December, 2007

* * * * * * *

Professor Babak Ayazifar

Second Reader

20
th

 December, 2007

 2

Abstract

Statistical Analysis on Online News

by

Vahab Pournaghshband

Master of Science in Engineering Electrical Engineering and Computer Sciences

University of California, Berkeley

 Social scientists examining questions such as media bias, or the tracking the

image of people, groups, or concepts in the news, often must manually sort through the

enormous amount of news data available online. StatNews aims to create a tool for

processing large collections of text articles and headlines, statistically analyzing the

retrieved data sets, and visualizing the results of the analysis. In particular, the idea is to

come up with a new tool for extracting information from data sets with many variables.

Such a tool, developed based on computational techniques, could be of interest not only

to social scientists, but also to online news readers everywhere who are inundated with

news items from many sources. We also believe that this will help spark a renewed

interaction between applied mathematics and social sciences.

“An abstract version“ of the StatNews has been developed (analysis, design, an

implementation) here to smooth the road for the construction of the final, detailed version

of the project. The main goal has been to figure out obstacles in advance, and well before

the actual scaled project run into. Among specific questions in mind was to figure out

 3

whether a penalized logistic regression is superior over simple frequency count in results

or not.

 4

Acknowledgments

I am truly grateful to everyone who has directly and indirectly helped me during

the past year. First and foremost, I would like to thank my advisor, Professor Laurent El

Ghaoui, for giving me a chance to work with him, guiding me through the last year and

teaching me how to be a good researcher. I, also, would like to thank the members of the

StatNews group and the UC Berkeley EECS Department. Finally, I am deeply grateful to

my parents, for their continuous supports and encouragements.

 5

Table of Contents

I. Preliminaries…………………………………………………………………………….7

1. Introduction…………………………………………………………………….7

1.1 Motivation…………………………………………………………….7

1.2 Problem Statement and Challenges…………………………………...8

1.3 Outline of Report…………………………………...............................8

2. Background…………………………………...…………………….…………..9

2.1 Document Representation…………………………………..................9

2.1.1 Inverted Files………………………………………....................9

2.1.2 Suffix Arrays…………………………………..…….................11

2.2 Regression Models…………………………….…….…….................13

2.2.1 Linear Regression…………………………….….….................13

2.2.2 Non-linear Regression…………………………………............14

 2.2.2.1 Linearization…………………………………..................14

2.2.2.2 Logistic Regression……………………………..……......15

II. Architecture/Design…………………………………..16

1. Overview……………………………………………………….…...................16

2. Fetching……………………………………………………….…….................17

3. Data Storage…………………………………...18

3.1 Term Selection…………………………………………….................18

 3.1.1 What is a Term? ……………….…………………..............18

 3.1.2 Stemming………………………………….…….................19

 6

 3.1.3 Stop Words…………………………………........................21

 3.1.4 Infrequent words…………………………………...............22

3.2 Vector space………………………………….....................................23

 3.2.2 Frequency Vector………………………….……….............23

 3.2.3 Boolean Vector………………………………….................24

3.3 Storage Format………………………………….................................25

 3.3.1 Frequency/Co-occurrence Matrix………………….………25

 3.3.2 Market Matrix Exchange……………….………………….25

4. Statistical Analysis…………………………………...27

 4.1 Frequency Count……………………………………….….................27

 4.2 Penalized Logistic Regression………………………………….........28

 5. Visualization…………………………………..30

III. Implementation Details……………………………………………...…….................32

IV. Conclusions…………………………………..33

Bibliography…………………………………..34

 7

I. Preliminaries

1. Introduction

1.1 Motivation

Today, a vast array of data is publicly available on the Internet, leading to the

impression that ”information is at our fingertips.” However, today’s Internet tools, such

as search engines, usually only provide a very local view of the data, in response to a

specific query. Equipped with microscopes, we find needles in the haystack, but we still

know very little about the shape of the haystack. A case in point is news media. While we

are inundated with news items from many sources refreshed constantly, it is hard to get a

global view of information, especially across different sources and over entire spans of

time. Certainly, RSS (Real Simple Syndication) feeds allow the user to assemble a

”sample” as desired. However this sample is a very limited instance of an aggregate

view: it provides only a custom, microscopic focus, at a specific point in time.

Assume for example that one wishes to illustrate the image of a concept such as

”oil” in the Reuter’s data over a specific period of time. Our goal is to allow that person

to understand the few words that are most statistically correlated with the concept at

hand, and more generally, build a graphical model of the underlying news process.

We believe that many citizens should greatly benefit from an easy access such

aggregate views. For the scientists, the analysis of publicly available Internet data, or web

data analysis for short, is a ”new frontier” in the sense that it could lead to a renewed,

very fruitful interaction between mathematics and social sciences.

 8

In turn, many of the tools developed for online news analysis will be helpful to

many other scientific areas. For example, many medical databases are now online, and

they share many features with news databases: they are heterogeneous, with different

structures and different types of content, from text to numerics to images; most are very

large, and distributed; and they are dynamically changed[4].

1.2 Problem Statement and Challenges

While the StateNews seeks for more generalized answers to related questions (e.g.

network of concepts, the network of news sources, analysis of voting patterns etc), we

have concentrated on designing and developing a tool that would let us to see the image

in the form of a graph for a given word or concept in the news. The approach is based on

obtaining a local graphical model, where the key word at hand is shown, together with

highly statistically related words. A key requirement here is that the graph should be

sparse and be both statistically reliable and interpretable for the user. The result is

expected to show the strength of the correlations between concepts inferred from the data

set.

1.3 Outline of the report

After this section that we stated the problem and challenges, this report will

continue with establishing necessary background that is required for later discussions.

Following the background, the report then provides the details of the architecture and

design behind this project. Finally, a brief discussion on implementation details and

conclusion will end the report.

 9

2. Background

2.1 Document Representation

In most massive data manipulation applications such as search engines, after

retrieving the information from the web pages, an important question is how to store this

information to be able to quickly search through it to find a particular term. Inverted File

Index has been extensively used for such applications.

2.1.1 Inverted File Index

An index is a scheme for locating a given term in a text. An inverted file contains,

for each term in the lexicon, an inverted list that stores a list of pointers to all occurrences

of that term in the main text, where each pointer is, in effect, the number of a document

in which that term appears. Also these words in the inverted file are lexicographically

sorted to allow for a fast binary search for words in question. Note that frequency of the

term occurrence in each document is not explicitly given here, but may easily be

computed given the fixed size of the document. We now illustrate this idea in the

following example:

Assume the following documents with corresponding contents reside in our corpus.

Document Text

1 UC Berkeley Computer Science Department

2 Computer science is a science of information process

3 I have a computer

 10

Then we build the corresponding index.

Number Term Times; Documents

1 a <1; 2>

2 Berkeley <1; 1>

3 computer <3; 1,2,3>

4 department <1; 1>

5 have <1; 3>

6 i <1; 3>

7 information <1; 2>

8 is <1; 2>

9 of <1; 2>

10 process <1; 2>

11 science <2; 1,2>

12 UC <1; 1>

Then if we want to find “computer science”, we can easily find document 1 and 2 contain

these two words.

A word-level inverted file index can record where the word occurs in the document.

Number Term Times; Documents Words

1 a <1; (2;3)>

2 Berkeley <1; (1;2)>

3 computer <3; (1;3),(2;1),(3;4)>

4 department <1; (1;4)>

5 have <1; (3;2)>

6 I <1; (3;1)>

7 information <1; (2;7)>

8 is <1; (2;3)>

9 of <1; (2;6)>

10 process <1; (2;8)>

11 science <2; (1;3),(2;5)>

12 UC <1; (1;1)>

 11

2.1.2 Suffix Arrays

Suffix array is a data structure designed for efficient searching of a large text that

preserves consecutive appearances of terms. The data structure is simply an array

containing all the pointers to the text suffixes sorted in lexicographical order. Each suffix

is a string starting at a certain position in the text and ending at the end of the text.

Searching a text can be performed by binary search using the suffix array. Now, we

illustrate the idea with constructing a suffix array for “UCBerkeley”.

First, we should assign index points to the sample text. Index points specify

positions where search can be performed. In our example, index points are assigned

character by character. Thus, we can search the sample text with the suffix array at any

positions later.

Text U C B e r k e l e y

Index 0 1 2 3 4 5 6 7 8 9

Second, we should sort the index points according to their corresponding suffixes. The

correspondence between the index points and the suffixes looks like:

Suffix Index

U C B e r k e l e y 0

 C B e r k e l e y 1

 B e r k e l e y 2

 e r k e l e y 3

 r k e l e y 4

 k e l e y 5

 e l e y 6

 l e y 7

 e y 8

 y 9

 12

After sorting it becomes:

Suffix Index

 B e r k e l e y 2

 C B e r k e l e y 1

 e l e y 6

 e r k e l e y 3

 e y 8

 k e l e y 5

 l e y 7

 r k e l e y 4

U C B e r k e l e y 0

 y 9

Finally, the resulting index points become the suffix array for the sample text.

2 1 6 3 8 5 7 4 0 9

 13

2.2 Regression Models

Regression models are used to predict one variable from one or more other

variables. Regression models provide the scientists with a powerful tool, allowing

predictions about past, present, or future events to be made with information about past or

present events.

2.2.1 Linear Regression

linear regression is a regression method that models the relationship between a

dependent variable Y, independent variables Xi, i = 1, ..., p, and a random term ε which is

also known as noise of the model. The linear regression model can be written as

  


p

i

ii XY
1

0

where θ0 is the intercept, the θis are the respective parameters of independent variables,

and p is the number of parameters to be estimated in the linear regression.

This method is called linear due to the fact that the relation of the response (the

dependent variable Y) to the independent variables is assumed to be a linear function of

the parameters.

The linear regression model can be written in vector-matrix notation as

 


XY

 14

where, again, the term ε is the model's error term (a misnomer but a standard usage) and

represents the unpredicted or unexplained variation in the response variable; it is

conventionally called the error whether it is really a measurement error or not, and is

assumed to be independent of X.

2.2.2 Non-linear Regression

Nonlinear regression is the problem of inference for a model

 ),(xfy

based on multidimensional x,y data, where f is some nonlinear function with respect to

unknown parameters θ. At a minimum, we may like to obtain the parameter values

associated with the best fitting curve (usually, least squares).

2.2.2.1 Linearization

Some nonlinear regression problems can be linearized by a suitable

transformation of the model formulation. For example, consider the nonlinear regression

problem (ignoring the error):

bxaey 

If we take a natural logarithm of both sides, it becomes

bxay )ln()ln(

 15

suggesting estimation of the unknown parameters by a linear regression of ln(y) on x, a

computation that does not require iterative optimization. However, use of linearization

requires caution. The influences of the data values will change, as will the error structure

of the model and the interpretation of any inferential results. These may not be desired

effects.

2.2.2.2 Logistic Regression

In statistics, logistic regression is a model used for prediction of the probability of

occurrence of an event. It makes use of several predictor variables that may be either

numerical or categories. For example, the probability that the word oil appear in a

document given that Iran and OPEC appeared in the same document. Logistic regression

analyzes binomially distributed data of the form:

miforpnBY iii ,...,1),,(~ 

where the numbers of Bernoulli trials ni are known and the probabilities of success pi are

unknown. The logits of the unknown binomial probabilities (i.e., the logarithms of the

odds) are modeled as a linear function of the Xi.


















p

j

jij

i

i

i x
p

p
pit

1

,0
1

ln)(log 

The interpretation of the θj parameter estimates is as the additive effect on the log

odds ratio for a unit change in the j-th explanatory variable.

 16

II. Architecture/Design

In this section we give a detailed design of the project. Please note that the Term

Selection and Vector Space discussed here are similar to SONIA project at Stanford

described by Mehran Sahami [2].

1. Overview

The StatNews project consists of four components: Fetching, Data Storage, Statistical

Analysis, and Visualization as illustrated in figure 1.

Figure 1. Components of the StatNews Project

Fetching attempts to gather useful information from online sources (a form of

information retrieval), data storage stores the information in a structure that preserves

important information needed later to find correlation between terms. Statistical analysis

performs statistical analysis to find such correlations, and finally visualization aims to

visualize the results (e.g. correlation between terms) in a comprehensible manner.

Fetching

Data Storage

Statistical Analysis

Visualization

 17

2. Data Fetching

The role of the data fetching is to retrieve useful information from online corpora

needed for further correlation calculation. While the desired fetching tool is intended to

do this automatically (web crawler[1]), this was done manually here by writing an

HTML/XML parser to collect useful information such as headlines from the offline

access to all Reuter’s articles published in 1997 and 1998. The headlines are then stored

in a CSV (Comma Separated Value) file in the format described in figure 2.

Figure 2. Output Format of the Fetching Process

Note that the document ID (DOC_ID) contains information specific to the article

as well as the timestamp. Also, the headlines are chronologically ordered. This is mainly

useful when we decide to examine how an image of a concept has evolved over time.

DOC_ID_1, [headline of document 1]

DOC_ID_2, [headline of document 2]

DOC_ID_3, [headline of document 3]

...

 18

3. Data Storage

The data storage component refines the crude data gathered by the fetching

component and converts it to a structured format for further analysis. As mentioned

earlier, it is crucial for the designed structure to preserve information that is later used to

derive statistical conclusions.

3.1 Term Selection

3.1.1 What is a Term?

Terms are the atomic units of our project that attempts to find interesting

correlations between terms. However, before any further manipulations we need to

clearly define the concept of term.

The most common definition of a term in English is that a term is a sequence of

alpha-numeric characters which it delimited by white space (spaces, tables, new-line

characters etc) or punctuation marks (such as a comma or exclamation mark). In addition,

all uppercase letters in a document are converted to lowercase, so effectively

capitalization is ignored. That is why as the first step in the implementation I

implemented filters that remove numbers, punctuations, and convert the text to lowercase

with the goal of extracting terms from the text.

Input to the Term Extraction:

After Terms Extraction:

I want to know God's thoughts... the rest are details. Albert Einstein 1879-1955

I want to know God s thoughts the rest are details Albert Einstein

 19

3.1.2 Word Stemming

In most cases, morphological variants of words have similar semantic

interpretations and can be considered as equivalent for the purpose of information

retrieval applications. The word stemmers attempt to reduce a word to its stem or root

form. Thus, the key terms of a document are represented by stems rather than by the

original words. This not only means that different variants of a term can be conflated to a

single representative form (for instance, “writing, write, writer, and wrote” all are treated

as only one word “writ”), it also reduces our dictionary size, that is, the number of

distinct terms needed for representing a set of documents.

Numerous stemmers have been developed over the past years, but the one we

used specifically was Porter stemmer[11] which is a conflation stemmer developed by

Martin Porter in 1980. The main reason Porter stemmer was selected is for its linear time

complexity. However, the Porter stemmer is known to overstem the words.

Overstemming is an error where two separate inflected words are stemmed to the same

root, but should not have been. For this, lemmatization seems a more promising

approach.

Lemmatization:

A more complex approach to the problem of determining a stem of a word is

lemmatization. This process involves first determining the part of speech of a word, and

applying different normalization rules for each part of speech. The basic idea is that, if

we are able to grasp more information about the word to be stemmed, then, we are able to

more accurately apply normalization rules (which are, more or less, suffix stripping rules)

 20

and prevent errors such as overstemming. However, this is too complicated for our short-

run purposes and worse, very computationally expensive, and since this abstract-level

project is desired to be simple, lemmatization was not used here.

Input to the Porter Stemmer:

After Porter Stemmer:

Great works are performed, not by strength, but by perseverance.

Great work ar perform not by strength but by persever

 21

3.1.3 Stop Words

These are words such as prepositions, conjunctions, and pronouns that are used to

provide structure in language rather than content. Such words are commonly used in

documents regardless of topic, and thus have no topical specificity. As a result, we can

eliminate such words from the documents, as they will hold almost no correlation with

the desired term. Examples of such words are listed in figure [3]. We used the stop words

list from an online source [14] in addition to our stop words. Our list contains a total of

614 stop words.

Figure 3. A Sample List of Stop Words

all
allow
allows
almost
alone
along
alongside
already
also
although
always
an
and
another
any
anybody
anyhow
anyone

 22

Input to the Stop Words Remover:

After Eliminating the Stop Words:

3.1.4 Infrequent Words

There are many words that appear in the corpus very infrequently. Since our goal

is to identify correlation between terms that appeared often in the documents, then words

which only appear, say, one or twice (or generally infrequently) in the collection do not

describe significant relationship with frequent terms and can be ignored. Also, since the

term frequency plot of the entire corpus is smooth (as an example of such plot, refer to

figure 4) setting a dynamic threshold is not easy. For this reason, a static threshold of 10

was set, and as a result, the size of our dictionary was reduced from 4355 to 903 terms.

Whatever the mind can conceive and believe, the mind can achieve.

mind conceive believe mind achieve

 23

0

500

1000

1500

2000

2500

1 79 157 235 313 391 469 547 625 703 781 859

Figure 4: Plot of All Terms Co-occurred with the Term “oil” in Reuters’s 97-98 (terms

vs. frequency)

3.2 Vector space

At this stage anything survived the preprocessing filters (discussed in section 3.1)

is considered an important term and will be added to the dictionary and will become a

dimension of the document vectors. We use the vector space representation for document

commonly employed many information access problems[7].

In our vector space representation, each document is characterized by the Boolean

or numerical vectors. These vectors are embedded in a space in which each dimension

corresponds to a distinct term in the corpus of documents being characterized. As we will

show later, these vectors will then be used to build interesting matrices.

3.2.1 Frequency Vector

A frequency vector defines each document. The first element (0-th) contains

information about the document (e.g. document ID, timestamp etc) and for the remaining

 24

elements, the i-th element represents the function f(ζ(ti,d)), where ζ(ti,d) is the number of

times term ti appeared in the document d. The function f could have many definitions.

The simplest form is the identity function that records the frequency of each term in the

dictionary appeared in the document d. However, more interesting functions are as

follows[3,8,9]:

)
n

Ν
IDF(aTFIDF(a)f(a)

βa

a
f(a)

af(a)

)(af(a)

t








 1log

where in the last formula, N is the total number of documents and nt is the number of

documents in which term t appears at least once.

3.2.2 Boolean Vectors

In this case, we are only interested to see whether the term ti appeared in the

document d, regardless of how many times it actually appeared. Therefore, we use the

following function f(ζ(ti,d))



 


otherwise

a
af

0

11
)(

Where, as for the frequency vector, a = f(ζ(ti,d)).

 25

3.3 Storage Format

3.3.1 Frequency/Co-occurrence Matrix

When storing the data, a common way to ensure preserving the important

information is to store them into a matrix.

These matrices are basically a collection of the vectors discussed in the section

3.2, where each row is a vector where represents a document. For frequency matrix, the

value stored in aij (assume i,j >1) is number of times the j-th term appeared in the i-th

document.

This is similar for the co-occurrence matrix, with one difference that the value

stored in aij is Boolean. That is, aij is 1 if the j-th term appeared at least once in the i-th

article and 0 otherwise. Figure 5 illustrates how such matrix is stored in a file.

Figure 5. How Co-occurrence Matrices Stored in a File

3.3.2 Matrix Market Exchange

The frequency and the co-occurrence matrices can potentially become gigantic as

the number of documents and the size of the dictionary increases. This overly large size

can create subtlety by consuming a large chunk of memory as well as slowing the process

of computation due to high I/O cost.

file_name , [term_1] , … , [term_n]

[document_1], [term_1 exists?], … , [term_n exists?]

[document_2], [term_1 exists?], … , [term_n exists?]

…

 26

On the other hand, we expect that these matrices to be considerably sparse and contain

many zeros. This is intuitive since not all the terms in the dictionary would appear in the

same document. This motivates us to use Matrix Market Exchange Format which has

been primarily designed to store sparse matrices. The Matrix Market (MM) exchange

formats provide a simple mechanism to facilitate the exchange of matrix data. MM is a

file format suitable for representing general sparse matrices since only nonzero entries are

provided, and the coordinates of each nonzero entry is given explicitly. This is illustrated

in the following example of a real 3×3 general sparse matrix.

(a)

Figure 6. (a) Sparse Frequency Matrix (b) The Corresponding MM Stored in a File

0 0.25 0

1 0 0

0 0 2

0,1,0.25

1,0,1

0,2,2

 27

4. Statistical Analysis

Our goal at this stage is to draw statistical conclusions. We have used two tools to

achieve this: (1) by counting the number of times a term in the dictionary appeared, and

(2) by solving for the parameters of a penalized logistic regression. In both cases, we will

think of words in articles or headlines as binary random variables with a value of 1 if the

word is present and 0 if the word is absent.

4.1 Frequency Count

Frequency count is done by just counting of the number of times a term A

appeared along with a specific term B in mind in the entire corpus. By taking frequency

counts, we would hope to find answer to questions like: are words A and B correlated?

Are they anti-correlated? Figure 7 show the top 10 most frequent terms appeared with the

term “oil” in the Reuters’s data set. One could draw conclusions based on this

observation.

 28

Term Frequency

Price 2229

Gas 1781

Product 1373

NWE (North West Europe) 1274

Fuel 1098

Palm 756

Crude 646

Steady 541

Iraq 521

Export 498

Figure 7. The Top 10 Most Frequent Terms Appeared with the Term “oil” in the

Reuters’s Data Set.

4.2 Penalized Logistic Regression

Our goal is to find estimation for parameters of a penalized logistic regression that

best fits our data. The problem formulation for this optimization problem is as follows

(this is presented in Wainwright et al [13] which was initially developed by Boyd et al:

Let G(V,E) denote a graph with vertex set V of size |V|=p and edge set E. p is

considered to be the number of terms in the dictionary. Also, denote the set of neighbors

of a vertex υ V as N(s): N(s) = {(s,v) E}. Given n samples x
(i)

 {0,1}
p
 drawn from an

unknown distribution, we consider the problem of estimating neighborhoods Nn(s) Vn so

that Pr[Ň(s) = N(s) , for all s Vn }]  1. Our goal is to use l1-reguralized logistic

regression to estimate these neighborhoods as well as the actual values of the parameters

θi,j as a secondary concern which can be achieved by the following collection of

optimization problems:

 29









 


n

i

sn

siTi

s

siTs zxz
np 1

1\

),()(),(, ||||]))exp(1[log(
1

minargˆ 




Where s V, θ\s is the vector of all coefficients of θ except the one in position s. and the

quantity θt
s,λ

 can be thought of as a penalized conditional likelihood estimate of θt,s. The

estimate of the neighborhood N(s) is the given by

}0ˆ:,{)(ˆ ,   s

tn stVtsN

This optimization problem has desirable statistical properties. That is, when we use some

data (say 14000 headlines) to estimate the undirected graphical model, what we get is

only an estimate. It means our estimation of the parameters might not be correct because

of randomness in the data. This corresponds to random events happening in the world and

random word choices by reporters at newspapers. But suppose we could collect an

infinite number of articles or headlines. Then, by solving these logistic regression

problems, we would recover the correct undirected graphical model exactly. This is

called asymptotic consistency. Statisticians consider this to be a desirable property in an

estimator. Wainwright et al. [13] showed that using logistic regression to estimate the

undirected graphical model is asymptotically consistent. Moreover, Wainwright et al.

showed that this is true even if we have an infinite number of words in our dictionary.

Basically we are primarily interested in the neighbors of s, the query term, which

are correlated terms with s (i.e. their estimated θ’s are non-zero). θ's also be thought as

the correlation strength between of the terms t and s. As shown in the optimization

problem statement, the penalty term forces to minimize the number of non-zero θ’s,

leaving only the important terms as the neighbor of s.

 30

5. Visualization

 The last step is to visualize our result in a form of undirected graphs once the

correlations are calculated. This is achieved by considering all p terms in the dictionary

as nodes of such graph. An edge, or even more preferably weighted edges, represents

correlations between the terms in the dictionary. The big picture, the undirected graphical

model (also known as independence graph[6]), allows the user to answer questions about

all interrelationships among the p words in the dictionary.

To visualize the result of the penalized logistic regression, we draw an edge

between terms i and j if j is in the set of neighbors found for terms i AND i is in the set of

neighbors found for word j; in this case, we would conclude terms i and j are correlated

(the concept of neighbors is defined in section 4.2). Alternatively, instead of “and” in the

step above, “or” could be used.

For simple frequency count, however, the edge mean whether the terms i and j

have appeared frequently together. The weight (length) of each edge illustrated the

relative correlation between the terms (the closer they are, the stronger their relationship

is). Figure 8 depicts the graph for the term “oil” in the Reuter’s data set.

 31

Figure 8. The Visual Result “oil” in the Reuter’s Data Set

Oil

Price
Gas

Product

Fuel

NWE

Crude

Steady

Export

Iraq

 32

III. Implementation Details

Programming Language

Python has been used as an implementation tool for this project. It was primarily

due to the fact that Python is a script language and can be used to implement both

standalone, for offline users, and web-based applications for online users. Furthermore,

Python’s core syntax and semantics are minimalist the standard library and

comprehensive. Also, Python is a multi-paradigm programming language (primarily

functional, object-oriented, and imperative) which has a fully dynamic type system and

uses automatic memory management.

Compatibility

The Python modules have been implemented in a way that they are compatible

with both Windows and Macintosh Operating Systems.

 33

IV. Conclusions

 StatNews has aimed to create a tool for processing large collections of data sets

and visualizing the results of the analysis. The idea, in particular, has to come up with a

new tool for extracting information from data sets with many variables.

The details and results of the abstract version of the StatNews which has been

developed (analysis, design, an implementation) in the past few months was provided in

this report. To reemphasize, the main goal of this abstract version has been to figure out

obstacles in advance, and well before the actual scaled project run into. Among specific

questions in mind was to figure out whether a penalized logistic regression is superior

over simple frequency count in results or not. Finding answers for many questions of this

type throughout the design and implementation of this project have made our effort

successful.

 34

Bibliography

[1] Manning, C., Raghavan, P., and Schütze, H., Introduction to Information Retrieval,

Cambridge University Press. 2008.

[2] Mehran Sahami, PhD Dissertation, Using Machine Learning To Improve Information.

Access, Stanford University, 1998.

[3] Van Rijsbersgen, C. J. Information Retrieval, Butterworths, 1979

[4] El Ghaoui, L., Statistical Analysis of Online News (Miller Professional Proposal)

[5] Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San

Francisco, CA, 1988

[6] Minka T., Notes on Independence Diagrams

 [7] Salton, G., Wong, A., and Yang, C. S. A vector space model for automatic indexing,

Communications of the ACM 18 (1975), 613-620.

[8] Roberstson, S. E., and Sparch-Jones, K. Relevance weighting of search terms. Journal

of the American Society of Information Science 27 (1976), 129-146

[9] Salton, G., and Buckley, C. Term weighting approaches in automatic text retrieval.

Information Processing and Management 24,5 (1988), 513-523.

[10] Cutting, D. R., Karger, D. R., Pederson, J. O., and Tukey, J. W. Scatter/Gather: a

cluster-based approach to browsing large document collections. In Proceedings of

ACM/SIGIR (1992), pp. 318-329.

[11] Frakes, W. B. Stemming algorithms in Information Retreival: Data Structures and

Algorithms, W. B. Frakes and R. Baeza-Yates, Eds. Prentice Hall, 1992, pp. 131-160.

[12] Peter J. Bickel and Elizaveta Levina. Regularized estimation of large covariance

matrices. To appear in Annals of Statistics, 2006.

[13] Wainwright, M., Ravikumar, P., and Lafferty, J., High-dimensional graphical model

selection using L1-regularized logistic regression. Proceedings of Advances in Neural

Information Processing Systems, 2006.

[14] http://www.webconfs.com/stop-words.php

