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Abstract 

 

Statistical Analysis on Online News 

by 

Vahab Pournaghshband 

Master of Science in Engineering Electrical Engineering and Computer Sciences 

University of California, Berkeley 

 

 

 Social scientists examining questions such as media bias, or the tracking the 

image of people, groups, or concepts in the news, often must manually sort through the 

enormous amount of news data available online.  StatNews aims to create a tool for 

processing large collections of text articles and headlines, statistically analyzing the 

retrieved data sets, and visualizing the results of the analysis.  In particular, the idea is to 

come up with a new tool for extracting information from data sets with many variables.  

Such a tool, developed based on computational techniques, could be of interest not only 

to social scientists, but also to online news readers everywhere who are inundated with 

news items from many sources.  We also believe that this will help spark a renewed 

interaction between applied mathematics and social sciences. 

“An abstract version“ of the StatNews has been developed (analysis, design, an 

implementation) here to smooth the road for the construction of the final, detailed version 

of the project. The main goal has been to figure out obstacles in advance, and well before 

the actual scaled project run into. Among specific questions in mind was to figure out 
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whether a penalized logistic regression is superior over simple frequency count in results 

or not. 
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I. Preliminaries 

1. Introduction 

1.1 Motivation 

Today, a vast array of data is publicly available on the Internet, leading to the 

impression that ”information is at our fingertips.” However, today’s Internet tools, such 

as search engines, usually only provide a very local view of the data, in response to a 

specific query. Equipped with microscopes, we find needles in the haystack, but we still 

know very little about the shape of the haystack. A case in point is news media. While we 

are inundated with news items from many sources refreshed constantly, it is hard to get a 

global view of information, especially across different sources and over entire spans of 

time. Certainly, RSS (Real Simple Syndication) feeds allow the user to assemble a 

”sample” as desired. However this sample is a very limited instance of an aggregate 

view: it provides only a custom, microscopic focus, at a specific point in time.  

Assume for example that one wishes to illustrate the image of a concept such as 

”oil” in the Reuter’s data over a specific period of time. Our goal is to allow that person 

to understand the few words that are most statistically correlated with the concept at 

hand, and more generally, build a graphical model of the underlying news process.  

We believe that many citizens should greatly benefit from an easy access such 

aggregate views. For the scientists, the analysis of publicly available Internet data, or web 

data analysis for short, is a ”new frontier” in the sense that it could lead to a renewed, 

very fruitful interaction between mathematics and social sciences. 

 



 8 

In turn, many of the tools developed for online news analysis will be helpful to 

many other scientific areas. For example, many medical databases are now online, and 

they share many features with news databases: they are heterogeneous, with different 

structures and different types of content, from text to numerics to images; most are very 

large, and distributed; and they are dynamically changed[4].  

 

1.2 Problem Statement and Challenges 

While the StateNews seeks for more generalized answers to related questions (e.g. 

network of concepts, the network of news sources, analysis of voting patterns etc), we 

have concentrated on designing and developing a tool that would let us to see the image 

in the form of a graph for a given word or concept in the news. The approach is based on 

obtaining a local graphical model, where the key word at hand is shown, together with 

highly statistically related words. A key requirement here is that the graph should be 

sparse and be both statistically reliable and interpretable for the user. The result is 

expected to show the strength of the correlations between concepts inferred from the data 

set. 

 

1.3 Outline of the report 

After this section that we stated the problem and challenges, this report will 

continue with establishing necessary background that is required for later discussions. 

Following the background, the report then provides the details of the architecture and 

design behind this project. Finally, a brief discussion on implementation details and 

conclusion will end the report. 
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2. Background 

2.1 Document Representation 

In most massive data manipulation applications such as search engines, after 

retrieving the information from the web pages, an important question is how to store this 

information to be able to quickly search through it to find a particular term. Inverted File 

Index has been extensively used for such applications. 

 

2.1.1 Inverted File Index  

An index is a scheme for locating a given term in a text. An inverted file contains, 

for each term in the lexicon, an inverted list that stores a list of pointers to all occurrences 

of that term in the main text, where each pointer is, in effect, the number of a document 

in which that term appears. Also these words in the inverted file are lexicographically 

sorted to allow for a fast binary search for words in question. Note that frequency of the 

term occurrence in each document is not explicitly given here, but may easily be 

computed given the fixed size of the document. We now illustrate this idea in the 

following example: 

Assume the following documents with corresponding contents reside in our corpus. 

 

Document Text 

1 UC Berkeley Computer Science Department 

2 Computer science is a science of information process 

3 I have a computer 
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Then we build the corresponding index. 

 

Number Term Times; Documents 

1 a <1; 2> 

2 Berkeley <1; 1> 

3 computer <3; 1,2,3> 

4 department <1; 1> 

5 have <1; 3> 

6 i <1; 3> 

7 information <1; 2> 

8 is <1; 2> 

9 of <1; 2> 

10 process <1; 2> 

11 science <2; 1,2> 

12 UC <1; 1> 
 

 

Then if we want to find “computer science”, we can easily find document 1 and 2 contain 

these two words. 

A word-level inverted file index can record where the word occurs in the document. 

 

Number Term Times; Documents Words 

1 a <1; (2;3)> 

2 Berkeley <1; (1;2)> 

3 computer <3; (1;3),(2;1),(3;4)> 

4 department <1; (1;4)> 

5 have <1; (3;2)> 

6 I <1; (3;1)> 

7 information <1; (2;7)> 

8 is <1; (2;3)> 

9 of <1; (2;6)> 

10 process <1; (2;8)> 

11 science <2; (1;3),(2;5)> 

12 UC <1; (1;1)> 
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2.1.2 Suffix Arrays 

Suffix array is a data structure designed for efficient searching of a large text that 

preserves consecutive appearances of terms. The data structure is simply an array 

containing all the pointers to the text suffixes sorted in lexicographical order. Each suffix 

is a string starting at a certain position in the text and ending at the end of the text. 

Searching a text can be performed by binary search using the suffix array. Now, we 

illustrate the idea with constructing a suffix array for “UCBerkeley”.  

First, we should assign index points to the sample text. Index points specify 

positions where search can be performed. In our example, index points are assigned 

character by character. Thus, we can search the sample text with the suffix array at any 

positions later. 

  

Text U C B e r k e l e y 

Index 0 1 2 3 4 5 6 7 8 9 

Second, we should sort the index points according to their corresponding suffixes. The 

correspondence between the index points and the suffixes looks like:  

Suffix Index 

U C B e r k e l e y 0 

 C B e r k e l e y 1 

  B e r k e l e y 2 

   e r k e l e y 3 

    r k e l e y 4 

     k e l e y 5 

      e l e y 6 

       l e y 7 

        e y 8 

         y 9 
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After sorting it becomes:  

Suffix Index 

  B e r k e l e y 2 

 C B e r k e l e y 1 

      e l e y 6 

   e r k e l e y 3 

        e y 8 

     k e l e y 5 

       l e y 7 

    r k e l e y 4 

U C B e r k e l e y 0 

         y 9 

 

Finally, the resulting index points become the suffix array for the sample text.  

2 1 6 3 8 5 7 4 0 9 
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2.2 Regression Models 

Regression models are used to predict one variable from one or more other 

variables. Regression models provide the scientists with a powerful tool, allowing 

predictions about past, present, or future events to be made with information about past or 

present events.  

 

2.2.1 Linear Regression 

linear regression is a regression method that models the relationship between a 

dependent variable Y, independent variables Xi, i = 1, ..., p, and a random term ε which is 

also known as noise of the model. The linear regression model can be written as 

  


p

i

ii XY
1

0  

where θ0 is the intercept, the θis are the respective parameters of independent variables, 

and p is the number of parameters to be estimated in the linear regression. 

This method is called linear due to the fact that the relation of the response (the 

dependent variable Y) to the independent variables is assumed to be a linear function of 

the parameters.  

The linear regression model can be written in vector-matrix notation as 

 


XY  
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where, again, the term ε is the model's error term (a misnomer but a standard usage) and 

represents the unpredicted or unexplained variation in the response variable; it is 

conventionally called the error whether it is really a measurement error or not, and is 

assumed to be independent of X.  

 

2.2.2 Non-linear Regression 

Nonlinear regression is the problem of inference for a model 

  ),(xfy  

based on multidimensional x,y data, where f is some nonlinear function with respect to 

unknown parameters θ. At a minimum, we may like to obtain the parameter values 

associated with the best fitting curve (usually, least squares).  

 

2.2.2.1 Linearization 

Some nonlinear regression problems can be linearized by a suitable 

transformation of the model formulation. For example, consider the nonlinear regression 

problem (ignoring the error): 

bxaey   

If we take a natural logarithm of both sides, it becomes 

bxay  )ln()ln(  
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suggesting estimation of the unknown parameters by a linear regression of ln(y) on x, a 

computation that does not require iterative optimization. However, use of linearization 

requires caution. The influences of the data values will change, as will the error structure 

of the model and the interpretation of any inferential results. These may not be desired 

effects.  

 

2.2.2.2 Logistic Regression 

In statistics, logistic regression is a model used for prediction of the probability of 

occurrence of an event. It makes use of several predictor variables that may be either 

numerical or categories. For example, the probability that the word oil appear in a 

document given that Iran and OPEC appeared in the same document. Logistic regression 

analyzes binomially distributed data of the form: 

miforpnBY iii ,...,1),,(~   

where the numbers of  Bernoulli trials ni are known and the probabilities of success pi are 

unknown. The logits of the unknown binomial probabilities (i.e., the logarithms of the 

odds) are modeled as a linear function of the Xi. 


















p

j

jij

i

i

i x
p

p
pit

1

,0
1

ln)(log   

The interpretation of the θj parameter estimates is as the additive effect on the log 

odds ratio for a unit change in the j-th explanatory variable.  
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II. Architecture/Design 

In this section we give a detailed design of the project. Please note that the Term 

Selection and Vector Space discussed here are similar to SONIA project at Stanford 

described by Mehran Sahami [2]. 

 

1. Overview 

The StatNews project consists of four components: Fetching, Data Storage, Statistical 

Analysis, and Visualization as illustrated in figure 1. 

 

 

Figure 1. Components of the StatNews Project 

 

Fetching attempts to gather useful information from online sources (a form of 

information retrieval), data storage stores the information in a structure that preserves 

important information needed later to find correlation between terms. Statistical analysis 

performs statistical analysis to find such correlations, and finally visualization aims to 

visualize the results (e.g. correlation between terms) in a comprehensible manner. 

Fetching 

Data Storage 

Statistical Analysis 

Visualization 
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2. Data Fetching 

The role of the data fetching is to retrieve useful information from online corpora 

needed for further correlation calculation. While the desired fetching tool is intended to 

do this automatically (web crawler[1]), this was done manually here by writing an 

HTML/XML parser to collect useful information such as headlines from the offline 

access to all Reuter’s articles published in 1997 and 1998. The headlines are then stored 

in a CSV (Comma Separated Value) file in the format described in figure 2. 

 

 

Figure 2. Output Format of the Fetching Process 

 

Note that the document ID (DOC_ID) contains information specific to the article 

as well as the timestamp. Also, the headlines are chronologically ordered. This is mainly 

useful when we decide to examine how an image of a concept has evolved over time. 

 

 

 

 

 

 

 

DOC_ID_1, [headline of document 1] 

DOC_ID_2, [headline of document 2] 

DOC_ID_3, [headline of document 3] 

... 
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3. Data Storage 

The data storage component refines the crude data gathered by the fetching 

component and converts it to a structured format for further analysis. As mentioned 

earlier, it is crucial for the designed structure to preserve information that is later used to 

derive statistical conclusions. 

 

3.1 Term Selection 

3.1.1 What is a Term? 

Terms are the atomic units of our project that attempts to find interesting 

correlations between terms. However, before any further manipulations we need to 

clearly define the concept of term.  

The most common definition of a term in English is that a term is a sequence of 

alpha-numeric characters which it delimited by white space (spaces, tables, new-line 

characters etc) or punctuation marks (such as a comma or exclamation mark). In addition, 

all uppercase letters in a document are converted to lowercase, so effectively 

capitalization is ignored. That is why as the first step in the implementation I 

implemented filters that remove numbers, punctuations, and convert the text to lowercase 

with the goal of extracting terms from the text. 

Input to the Term Extraction: 

 

 

After Terms Extraction: 

 

I want to know God's thoughts... the rest are details. Albert Einstein 1879-1955 

 

I want to know God s thoughts the rest are details Albert Einstein 
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3.1.2 Word Stemming 

In most cases, morphological variants of words have similar semantic 

interpretations and can be considered as equivalent for the purpose of information 

retrieval applications. The word stemmers attempt to reduce a word to its stem or root 

form. Thus, the key terms of a document are represented by stems rather than by the 

original words. This not only means that different variants of a term can be conflated to a 

single representative form (for instance, “writing, write, writer, and wrote” all are treated 

as only one word “writ”), it also reduces our dictionary size, that is, the number of 

distinct terms needed for representing a set of documents.  

Numerous stemmers have been developed over the past years, but the one we 

used specifically was Porter stemmer[11] which is a conflation stemmer developed by 

Martin Porter in 1980. The main reason Porter stemmer was selected is for its linear time 

complexity. However, the Porter stemmer is known to overstem the words. 

Overstemming is an error where two separate inflected words are stemmed to the same 

root, but should not have been. For this, lemmatization seems a more promising 

approach. 

 

Lemmatization: 

A more complex approach to the problem of determining a stem of a word is 

lemmatization. This process involves first determining the part of speech of a word, and 

applying different normalization rules for each part of speech. The basic idea is that, if 

we are able to grasp more information about the word to be stemmed, then, we are able to 

more accurately apply normalization rules (which are, more or less, suffix stripping rules) 
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and prevent errors such as overstemming. However, this is too complicated for our short-

run purposes and worse, very computationally expensive, and since this abstract-level 

project is desired to be simple, lemmatization was not used here. 

 

Input to the Porter Stemmer: 

 

 

After Porter Stemmer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Great works are performed, not by strength, but by perseverance. 

Great work ar perform not by strength but by persever 
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3.1.3 Stop Words 

These are words such as prepositions, conjunctions, and pronouns that are used to 

provide structure in language rather than content. Such words are commonly used in 

documents regardless of topic, and thus have no topical specificity. As a result, we can 

eliminate such words from the documents, as they will hold almost no correlation with 

the desired term. Examples of such words are listed in figure [3]. We used the stop words 

list from an online source [14] in addition to our stop words. Our list contains a total of 

614 stop words. 

 

 

Figure 3. A Sample List of Stop Words 

 

 

all 
allow 
allows 
almost 
alone 
along 
alongside 
already 
also 
although 
always 
an 
and 
another 
any 
anybody 
anyhow 
anyone 
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Input to the Stop Words Remover: 

 

 

After Eliminating the Stop Words: 

 

 

 

3.1.4 Infrequent Words 

There are many words that appear in the corpus very infrequently. Since our goal 

is to identify correlation between terms that appeared often in the documents, then words 

which only appear, say, one or twice (or generally infrequently) in the collection do not 

describe significant relationship with frequent terms and can be ignored. Also, since the 

term frequency plot of the entire corpus is smooth (as an example of such plot, refer to 

figure 4) setting a dynamic threshold is not easy. For this reason, a static threshold of 10 

was set, and as a result, the size of our dictionary was reduced from 4355 to 903 terms. 

 

 

 

Whatever the mind can conceive and believe, the mind can achieve. 

mind conceive believe mind achieve 
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Figure 4: Plot of All Terms Co-occurred with the Term “oil” in Reuters’s 97-98 (terms 

vs. frequency) 

 

3.2 Vector space 

At this stage anything survived the preprocessing filters (discussed in section 3.1) 

is considered an important term and will be added to the dictionary and will become a 

dimension of the document vectors. We use the vector space representation for document 

commonly employed many information access problems[7].  

In our vector space representation, each document is characterized by the Boolean 

or numerical vectors. These vectors are embedded in a space in which each dimension 

corresponds to a distinct term in the corpus of documents being characterized. As we will 

show later, these vectors will then be used to build interesting matrices.  

 

3.2.1 Frequency Vector 

A frequency vector defines each document. The first element (0-th) contains 

information about the document (e.g. document ID, timestamp etc) and for the remaining 
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elements, the i-th element represents the function f(ζ(ti,d)), where ζ(ti,d) is the number of 

times term ti appeared in the document d. The function f could have many definitions. 

The simplest form is the identity function that records the frequency of each term in the 

dictionary appeared in the document d. However, more interesting functions are as 

follows[3,8,9]: 

 

)
n

Ν
IDF(aTFIDF(a)f(a)

βa

a
f(a)

af(a)

)(af(a)

t








 1log

 

 

where in the last formula, N is the total number of documents and nt is the number of 

documents in which term t appears at least once. 

 

3.2.2 Boolean Vectors 

In this case, we are only interested to see whether the term ti appeared in the 

document d, regardless of how many times it actually appeared. Therefore, we use the 

following function f(ζ(ti,d)) 

 



 


otherwise

a
af

0

11
)(  

 

Where, as for the frequency vector, a = f(ζ(ti,d)). 
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3.3 Storage Format 

3.3.1 Frequency/Co-occurrence Matrix 

When storing the data, a common way to ensure preserving the important 

information is to store them into a matrix. 

These matrices are basically a collection of the vectors discussed in the section 

3.2, where each row is a vector where represents a document. For frequency matrix, the 

value stored in aij (assume i,j >1) is number of times the j-th term appeared in the i-th 

document. 

This is similar for the co-occurrence matrix, with one difference that the value 

stored in aij is Boolean. That is, aij is 1 if the j-th term appeared at least once in the i-th 

article and 0 otherwise. Figure 5 illustrates how such matrix is stored in a file. 

 

 

 

 

Figure 5. How Co-occurrence Matrices Stored in a File 

 

3.3.2 Matrix Market Exchange 

The frequency and the co-occurrence matrices can potentially become gigantic as 

the number of documents and the size of the dictionary increases. This overly large size 

can create subtlety by consuming a large chunk of memory as well as slowing the process 

of computation due to high I/O cost.  

file_name   , [term_1]        , … , [term_n]          

[document_1], [term_1 exists?], … , [term_n exists?]  

[document_2], [term_1 exists?], … , [term_n exists?] 

… 
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On the other hand, we expect that these matrices to be considerably sparse and contain 

many zeros. This is intuitive since not all the terms in the dictionary would appear in the 

same document. This motivates us to use Matrix Market Exchange Format which has 

been primarily designed to store sparse matrices. The Matrix Market (MM) exchange 

formats provide a simple mechanism to facilitate the exchange of matrix data. MM is a 

file format suitable for representing general sparse matrices since only nonzero entries are 

provided, and the coordinates of each nonzero entry is given explicitly. This is illustrated 

in the following example of a real 3×3 general sparse matrix.  

 

 

 

(a) 

 

 

 

Figure 6. (a) Sparse Frequency Matrix (b) The Corresponding MM Stored in a File 

 

 

 

 

 

 

 

0 0.25 0 

1 0 0 

0 0 2 

0,1,0.25 

1,0,1 

0,2,2 
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4. Statistical Analysis 

Our goal at this stage is to draw statistical conclusions. We have used two tools to 

achieve this: (1) by counting the number of times a term in the dictionary appeared, and 

(2) by solving for the parameters of a penalized logistic regression. In both cases, we will 

think of words in articles or headlines as binary random variables with a value of 1 if the 

word is present and 0 if the word is absent. 

 

4.1 Frequency Count 

Frequency count is done by just counting of the number of times a term A 

appeared along with a specific term B in mind in the entire corpus. By taking frequency 

counts, we would hope to find answer to questions like: are words A and B correlated?  

Are they anti-correlated? Figure 7 show the top 10 most frequent terms appeared with the 

term “oil” in the Reuters’s data set. One could draw conclusions based on this 

observation.  
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Term Frequency 

Price 2229 

Gas 1781 

Product 1373 

NWE (North West Europe) 1274 

Fuel 1098 

Palm 756 

Crude 646 

Steady 541 

Iraq 521 

Export 498 
 

Figure 7. The Top 10 Most Frequent Terms Appeared with the Term “oil” in the 

Reuters’s Data Set. 

 

4.2 Penalized Logistic Regression 

Our goal is to find estimation for parameters of a penalized logistic regression that 

best fits our data. The problem formulation for this optimization problem is as follows 

(this is presented in Wainwright et al [13] which was initially developed by Boyd et al: 

Let G(V,E) denote a graph with vertex set V of size |V|=p and edge set E. p is 

considered to be the number of terms in the dictionary. Also, denote the set of neighbors 

of a vertex υ V as N(s): N(s) = {(s,v)  E}. Given n samples x
(i) 

 {0,1}
p
 drawn from an 

unknown distribution, we consider the problem of estimating neighborhoods Nn(s) Vn so 

that Pr[ Ň(s) = N(s) , for all s  Vn }]  1. Our goal is to use l1-reguralized logistic 

regression to estimate these neighborhoods as well as the actual values of the parameters 

θi,j as a secondary concern which can be achieved by the following collection of 

optimization problems: 
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

  

 

Where s V, θ\s is the vector of all coefficients of θ except the one in position s. and the 

quantity θt
s,λ

 can be thought of as a penalized conditional likelihood estimate of θt,s. The 

estimate of the neighborhood N(s) is the given by  

}0ˆ:,{)(ˆ ,   s

tn stVtsN  

This optimization problem has desirable statistical properties. That is, when we use some 

data (say 14000 headlines) to estimate the undirected graphical model, what we get is 

only an estimate.  It means our estimation of the parameters might not be correct because 

of randomness in the data. This corresponds to random events happening in the world and 

random word choices by reporters at newspapers. But suppose we could collect an 

infinite number of articles or headlines.  Then, by solving these logistic regression 

problems, we would recover the correct undirected graphical model exactly. This is 

called asymptotic consistency.  Statisticians consider this to be a desirable property in an 

estimator. Wainwright et al. [13] showed that using logistic regression to estimate the 

undirected graphical model is asymptotically consistent.  Moreover, Wainwright et al. 

showed that this is true even if we have an infinite number of words in our dictionary. 

Basically we are primarily interested in the neighbors of s, the query term, which 

are correlated terms with s (i.e. their estimated θ’s are non-zero). θ's also be thought as 

the correlation strength between of the terms t and s. As shown in the optimization 

problem statement, the penalty term forces to minimize the number of non-zero θ’s, 

leaving only the important terms as the neighbor of s.  
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5. Visualization 

 The last step is to visualize our result in a form of undirected graphs once the 

correlations are calculated. This is achieved by considering all p terms in the dictionary 

as nodes of such graph. An edge, or even more preferably weighted edges, represents 

correlations between the terms in the dictionary. The big picture, the undirected graphical 

model (also known as independence graph[6]), allows the user to answer questions about 

all interrelationships among the p words in the dictionary. 

To visualize the result of the penalized logistic regression, we draw an edge 

between terms i and j if j is in the set of neighbors found for terms i AND i is in the set of 

neighbors found for word j; in this case, we would conclude terms i and j are correlated 

(the concept of neighbors is defined in section 4.2). Alternatively, instead of “and” in the 

step above, “or” could be used.  

For simple frequency count, however, the edge mean whether the terms i and j 

have appeared frequently together. The weight (length) of each edge illustrated the 

relative correlation between the terms (the closer they are, the stronger their relationship 

is). Figure 8 depicts the graph for the term “oil” in the Reuter’s data set. 
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Figure 8. The Visual Result “oil” in the Reuter’s Data Set 
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III. Implementation Details 

Programming Language 

Python has been used as an implementation tool for this project. It was primarily 

due to the fact that Python is a script language and can be used to implement both 

standalone, for offline users, and web-based applications for online users. Furthermore, 

Python’s core syntax and semantics are minimalist the standard library and 

comprehensive. Also, Python is a multi-paradigm programming language (primarily 

functional, object-oriented, and imperative) which has a fully dynamic type system and 

uses automatic memory management. 

 

Compatibility 

The Python modules have been implemented in a way that they are compatible 

with both Windows and Macintosh Operating Systems. 
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IV. Conclusions 

 StatNews has aimed to create a tool for processing large collections of data sets 

and visualizing the results of the analysis.  The idea, in particular, has to come up with a 

new tool for extracting information from data sets with many variables.   

The details and results of the abstract version of the StatNews which has been 

developed (analysis, design, an implementation) in the past few months was provided in 

this report. To reemphasize, the main goal of this abstract version has been to figure out 

obstacles in advance, and well before the actual scaled project run into. Among specific 

questions in mind was to figure out whether a penalized logistic regression is superior 

over simple frequency count in results or not. Finding answers for many questions of this 

type throughout the design and implementation of this project have made our effort 

successful. 
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