
A Robust Trust Model for Named-Data Networks

Vahab Pournaghshband and Karthikeyan Natarajan
Computer Science Department

University of California, Los Angeles

Abstract— Any future Internet architecture must offer im-
proved protection and resilience over today’s network, which
is subject to pervasive and persistent attacks. A recently
emerging architecture, Named-Data Network (NDN), treats
content as the primitive entity. This leads to decoupling
location from identity, security and access, and retrieving
content by name. NDN security is based on the estab-
lishment of a trustworthy routing mesh, relying on singed
routing messages and an appropriate trust model. Signature
verification of NDN content merely indicates that it was
signed with a particular key. Making this information useful
to applications requires managing trust, allowing content
consumers to determine acceptable signature keys in a given
context.

In this paper, we propose a robust trust model for NDN
to securely learn public keys of content publishers so that
applications can determine what keys are trustworthy. In
doing so, the user asks for publisher key recommendations
from all entities in its community of trust, which consist
of people the user personally knows, as in real world
interactions. A local policy is then used to decide consistency
of responses, and hence trustworthiness of the publisher’s
key. Also, we present a suitable key revocation approach for
this model. We then provide a discussion on robustness of
this model against various attacks.

Keywords: decentralized trust model, named-data network, web
of trust

1. Introduction
In the current Internet, packets are routed based on IP

addresses irrespective of the content the user is looking for.
NDN advocates for a routing infrastructure where forward-
ing decisions are made on the content requested. NDN also
caches data at the routers along the path through which the
response (data) travels. An interest packet travels until it
encounters a valid source of data, which could either be a
router’s cache, or the publisher of the data.

From a security standpoint, there are two concerns that
are to be addressed in such architecture:

1. Did the user receive the message as sent by the pub-
lisher?

2. Is the publisher really the person whom he claims to
be?

Here we are trying to establish the integrity of the data
and the authenticity of the data source. A user depends on

the trust model provided by the Internet infrastructure to
determine these two. We will present a trust model that is
decentralized, providing the user with necessary information
to make a decision to establish trust on an entity.

1.1 NDN Basics
In NDN, when an interest is sent out for a particular name,

we receive the data back from the publisher or from a node
that had cached the data. The response has the following
components, which are of specific interest to the discussion
here: Signed info and Signature (Figure 1).

Content Name

Selector
(order preference, publisher filter, scope, …)

Nonce

Interest Packet
Content Name

Signature
(digest algorithm, witness, …)

Signed Info
(publisher ID, key locator, stale time, …)

Data

Data Packet

Figure 1: NDN Packet Types

The content publisher signs the hash of the content and
the name of the content. Hence, given the publisher’s key,
the integrity of content received is verified by comparing the
given signature.

A more challenging problem, however, is to verify the
authenticity of the publisher’s public key. Every trust model
would provide means of retrieving a published public key.
Here, the "Signed info" component of the data consists of the
keylocator and the publisher’s public-key name, to facilitate
key verification problem.

By querying the publisher using the information provided
in the signed info part of the message one can fetch
the publisher’s public key. However, this is susceptible to
man-in-the-middle attacks sitting between the user and the
publisher, supplying fake keys to the user. Hence, there is
a need for secure retrieval of public keys. The conventional
PKI scheme trusts a third party to provide the user with the
correct public key of the publisher. In most of the cases,
the end user has no idea of who this trusted entity is. We
address this problem by distributing trust among a set of
people whom the user would trust.

1.2 Review of Current Approaches
This section provides a brief overview of the current ap-

proaches of establishing trust in the Internet. We will briefly



cover leap-of-faith, PGP, Certificate Authorities, DNSSEC,
and SPKI/SDSI. We will also discuss the shortcomings of
each of these approaches.

1.2.1 Leap-of-faith
This is the approach widely adopted by the secure shell

application. When a client connect to an SSH server, the
server sends its certificate to the client. The client, in order
to communicate securely afterward, accepts this certificate
to be the trusted key of the server. This certificate is cached
for future access to the server. The application trust the
certificate obtained, assuming that no Man-in-the-Middle
attack was performed during the initial key request. Such
a trust model, while simple, is clearly vulnerable to attacks
especially in the case of key changes and hence is not being
used for sensitive applications like online banking or e-
commerce.

1.2.2 PGP
Pretty Good Privacy (PGP) is a computer program that

provides cryptographic privacy and authentication. PGP is
often used for signing, encrypting and decrypting e-mails
to increase the security of e-mail communications. It uses
the concept of a web of trust. To trust a certificate (i.e.,
the public key of an entity), the user requires someone he
trusts to endorse the untrusted entity. The trusted person who
endorses the certificate is likely to have used out-of-band
means to get the certificate in question.

1.2.3 Certifying Authority
Certifying Authority (CA) is a trusted third party that is-

sues certificates for publishers’ keys. The certificate contains
the public key and the identity of the publisher. The public
key of the CA is publicly known and is normally hard-
coded within all the nodes connected to the Internet. The
CA computes the hash of the key as well as the publisher
identity and encrypts it with its private key, which serves
as the certificate of the publisher. When a client wants
to communicate to a server, it can verify the authenticity
of the server by comparing the hash of (key,name) pair
obtained from the publisher to the hash signed by the CA.
This is essentially trusting whatever the CA has signed. A
typical certificate issued by a CA for some publisher would
contain the publisher’s public key, publisher’s name, the
key’s expiration date, and the signature of this information
signed by the CA’s private key. The expiration date is used
to identify the certificate’s lifespan.

1.2.4 DNSSEC
This model is used to secure the DNS service running on

top of the IP Network. It provides authenticated response
to the lookup queries. All DNS answers are signed by the
authority server that is responsible for a particular domain.

Consider A.B.com : A’s key is signed by B. B’s key is
signed by com and com’s key is signed by the root. The
root’s key is hard-coded in all browsers. They follow this
chain of keys to establish trust in a DNS response. All
domains are signed by their respective parent domains. The
key of the root is installed in your system. Key revocation
and rollover has been also a problem for this model.

1.2.5 SPKI/SDSI
Simple Public Key Infrastructure (SPKI) is designed to be

an alternative to the X.509 standard for digital certificates.
SPKI views authority as being associated with principals,
which are identified by public keys. It allows binding autho-
rizations to those public keys and delegation of authorization
from one key to another.

2. Design
2.1 Principles and Assumptions

There are numerous characteristics of a robust trust model
that any design at the Internet level should have such as
scalability, easy enrollment, decentralized authority, and re-
siliency against attacks such as Denial-of-Service (DoS) and
Man-in-the-Middle (MitM) attacks. In designing our trust
model for NDN, besides taking these characteristics into
consideration, we primarily concentrated on preserving the
liberty of choosing who to trust by avoiding complete trust
on third parties which are trusted not at the user’s will. In
addition, flexibility in local policies is also desirable, in the
sense that each person defines security individually which
would give them locality of control. This is important since
not all users care at the same level and not all contents need
the same level of attention. And lastly, which is provided by
the nature of NDN, the notion of trust should be contextual,
i.e. narrowly determined in the context of particular content
and the purpose for which it will be used. In our design,
we assume that attacks are either localized to a particular
network scope or of limited duration, since a larger attack
is more easily detected and further remedied. This is true
mainly since most network level attacks on integrity and
secrecy of information need to remain undetected to be
successful.

2.2 Overview
We define the notion of community of trust to be a

combination of our friends (whom we know) and a selective
subset of publicly available network notaries. Notaries (or
pseudo-friends), as defined in Wendlandt et al. [4], are
servers which are solely designed to monitor and record
history of public keys used by a network service. A notary
frequently asks for the keys from particular servers and
updates its database upon a key change. As its service, each
notary responds to queries from clients who ask notaries
about content publishers’ public keys.



Upon request for a particular data, the user receive the data
signed by its claimed publisher. If the user has the publisher
key associated to the data cached, then the authenticity of
data can be verified immediately using the cached key. If the
cached publisher’s key is suspected as invalid or not cached,
the client issues a public key request for the publisher to
all its friends and notaries in its community of trust. Upon
receiving responses from them, as well as an offered key
from the publisher itself, the user applies its local policy
to judge the consistency of, possibly weighted, responses to
make its trust decision on whether to accept the key or not.
In the following sections we discuss this approach in details.

Client

Friend #1

Friend #2Friend #3

Notary #1

Notary #2

Figure 2: Notion of Community of Trust

2.3 Trust Bootstrapping
A provably secure, and yet its practicality being still in

question, approach to bootstrap trust is the use of out-of-band
mechanisms to learn the public keys of the user’s friends in
his community of trust. This could be less of the problem
since the user is expected to have personal relationship with
his friends and hence utilizing a large variety of such out-
of-band means. To obtain, the notaries’ public key, however,
the user can request it from his friends, the same way to
get any other publisher’s key. Some other mechanisms such
as security through publicity [5] can be applied for some
well-known notaries.

2.4 Notion of Master Key
Every publisher maintains a master key which is used to

sign only other keys under the publisher’s domain. In fact
master key is the only offered publisher key that invoke key
recommendations from friends. Once that key is validated
and cached, the publisher would play as the Certifying Au-
thority (CA) for all its sub-domains by generating certificates
and revocation notifications.

The master key needs to be highly secure and requires a
longer life span. That is why it is only used to sign top level
keys in the publisher’s domain and not content, mainly to
protect it against known-plaintext attacks by having very few
samples publicly available. Besides, due to higher measures

of security considered in choosing master keys, the signature
verification process is expected to be relatively expensive,
hence not suitable for signing contents.

Note that even though the notion of master key shares
similarities with the current CA mechanism, they are funda-
mentally different. One reason is that there is no third party
involvement in the process, since the publisher manages
certificates for its own domain. Also, it incurs no cost to
generate or revoke certificates, unlike current approaches that
involves third party companies that charge for such services.

cnn.com

sports.cnn.com

sports.cnn.com/article1

cnn.com/index.html

Figure 3: Master Key Signing its Sub-domains

2.5 Key Revocation
An important part of every public-key trust model is key

revocation. The public-key will be well known to a large
but unknown set of users. The revocation system must have
the ability to replace the private-public key pair, distribute
the new key, and notification to the users of the revocation
should happen in a timely manner. Key revocations have two
fundamental approaches, implicit and explicit. An implicit
revocation is asserted by the ability to retrieve the certificate.
Any certificate retrievable is guaranteed to be valid near
the time of retrieval. Also common is expiration or Time-
To-Live (TTL), which is the maximum time the certificate
is valid before requiring a new certificate from the issuer.
This is more commonly known as certification expiration.
However, from the time the certificate is retrieved to the
expiration date is a window of vulnerability if a key has
been explicitly revoked. Explicit revocation is when the
issuer states that certificates are no longer valid, or have
been compromised (also indirectly which certificates have
not been revoked). Current explicit revocation approaches
come in two forms, online and offline. Some popular offline
models include Certificate Revocation Lists (CRL) [13], ∆-
CRL [13], and Certificate Revocation Trees [14]. These
models explicitly state that particular certificates have been
revoked, and they can be obtained through the issuer or a
third-party. On the other hand, some online models include
Online Certificate Status Protocol (OCSP) [11], and Semi-
Trusted Mediator (SEM) [15], which provide an online
service used to obtain the revocation status. Similar to offline
models, which provides the URI to request the location of
the issuers CRL, online models also include the location of



this service within the issuers certificate. The main drawback
of offline models is that they require frequent downloads to
keep the revocation list current. Online models overcome
this limitation by checking the certificate status in real time.

Our revocation approach is inspired by OCSP [11]. Once
a node requests a key through our trust model, and it has
been accepted by our policy, it will cache the key/certificate
until it implicitly expires or is explicitly revoked. When the
node sends a key request interest message, the key response
message contains an ordered list of Revocation Authorities
(RA), providing an online service that states the status of the
issuers certificate (similar to the OCSP URI in the certificate
[11]). The next time a node request data from the same issuer
with a cached key, it would only need to request the status of
the certificate from the RAs. RAs would reply back with a
signed Valid, Invalid, or Unknown response. A nonce would
also be included in this reply to prevent replay attacks when
a malicious user was to capture a valid response and replay
it during another status request. Note that the RA themselves
would also have a trusted certificate which will be obtained
using our trust model. Any âĂIJinvalidâĂİ responses to a
certificate status results in the node clearing its certificate
cache and falling back to the trust model to obtain a trusted
key.

However, this model is still vulnerable to attack. If a DoS
attack on the RA would prevent a response with the current
status of the certificate, this model considers this timeout
to be an invalid response. Further, if a malicious user does
compromise an RA there are a few possible outcomes. Either
the key is still valid but the compromised RA would respond
with invalid, which would result in the node clearing its
cache and returning to the start of the trust model. The other
possibility and more threatening to the user is the key has
been revoked, but the compromised RA response back with
a valid response. The node maybe be fooled into accepting
non-valid content from the issuer of the certificate. However,
this alone would not be a meaningful attack. For a more
successful attack, a node would have to first trust a key
through our trust model, say for example cnn.com. If the
publisher then revokes its compromised key, the RA’s would
be notified, and would respond with invalid. The malicious
user must then compromise both the RA’s for cnn.com
and cnn.com itself. Then wait to intercept a request for
both cnn.com data and replace it with its malicious content
signed with the compromised key, then also intercept the
certificate status request to any of the RA’s and respond with
a valid message. This makes an attack against our revocation
model costly, specially if the RA list contains more than one
RA in which all RA’s responses must be forged.

2.6 Key-trust Policies
Once the user has key response messages from its

trust community, it uses a key-trust policy to accept or
reject an offered key based on the collected information.

Basically the user must make a decision which leads
to a security vs. availability trade-off. The user can
take the risk of accepting the offered key based on the
responses from its friends or reject the key and discard
the content received. Every user has a liberty of choosing
a local policy most suitable for them. Here, we discuss
Perspectives’s policy model [4] as an example of a simple
and yet effective local policy implementation. The notion
of quorum [4] as a key-trust primitive is defined as followed:

Definition: For a set of n entities in a community of
trust, a service S, and a threshold q (0 ≤ q ≤ n) we say
that a key K has a quorum at time t iff at least q of the n
entities report that K is the key for S at time t.

As an example, consider our trust community depicted
in Figure 2. Let’s assume that the user has received the
following responses from the community as illustrated in
Table 1.

Table 1: An example of key recommendations from the
community of trust

Notary#1 Friend#1 Notary#2 Friend#2 Friend#3
KA KA KC KB KA

If the user’s quorum is 0.6n, then it accepts the offered
key from cnn.com. Any higher quorum, however, would
reject it. Notice that the security vs. availability trade-off
is apparent in this case when a user can simply set the
quorum to total number of friends, n, where this provides
the strongest protection against accepting a false key, but
it means that a single unavailable or misinformed friend
could cause the user to reject a valid key.

Now that we have learned the details of the design, to
better understand the model, let us turn to the example
depicted in Figure 3. The scenario is that the user downloads
an article from cnn.com. We assume that the user’s cache
does not contain cnn.com’s master key. Hence, upon
receipt of the article, the user issues a series of key interest
requests to his trust community and asks for cnn.com’s
master key. The user asks cnn.com directly for its master
key as well (offered key). If the friend (or notary) has the
key in interest cached, which in that case he would prepare
the signed key response message that includes the key. But
if the friend does not have the key, he issues his own key
interest request messages to his community of trust, accepts
or rejects the key, and forwards his decision to the user. Once
the key recommendation responses are received, the user’s
local key-trust policy decides whether to accept the key or
not. If he accepts, the user caches the cnn.com’s master
key, and will be able to validate any certificate generated by
cnn.com or any of its sub-domains. Using this information,



the user can verify the authenticity of any article published
by cnn.com.

To summarize, the content name in the key request interest
message from user A to a friend B in A’s community of trust
would be:

B : A, σkA
(P, ñ)

where kA is A’s private key, P is the publisher whose
key is in question, and ñ is the nonce used for this interest
message. And the data in the key response message from B
would be:

B, σkB
((kP , t, RA), ñ)

where kB is B’s private key, and (kP , t, RA) is the
publisher’s key information (key, expiration date, and the
RA ordered list).

3. Security Analysis
To better understand the robustness of our approach

against attacks, we examine the following attack scenarios
and analyze their effectiveness in details.

3.1 Man-in-the-Middle Attack
In this scenario, the attacker compromises the link be-

tween the user and one of his trust community entities, in an
attempt to make the user to believe a false key. However, to
successfully launch this attack, the attacker needs to forge
the signatures of a sufficient number of the user’s friends
in the key response messages. Note that the number of
messages need to be forged depends on the user’s local
policy. Forging signatures from multiple friends is a costly
attack on just a single user, specially given that the friends’
keys are assumed to be obtained by the user through out-of-
band means.

In a different scenario the attacker who has compromised
the link from the user to his friends could drop the legitimate
key response messages, in an attempt to make the user to
accept the false key by majority rule. The way to prevent
this is by checking the quorum by the percentage of queries
sent and not but by the percentage of responses received.
Considerable amount of lost responses is suspicious and
relevant actions must be taken.

3.2 Denial-Of-Service Attack
Attackers can perform a Distributed Denial-of-Service

(DDoS) attack on a particular Revocation Authority, over-
whelming it by generating many queries to it. This will
lead to the RA not being responsive to legitimate validation
queries by users. In this case, the user will not know whether
the key of interest is still valid or not. This form of attack is
not potentially helpful if not coupled with key compromise
of a well-known publisher associated to the RA. But still,
this could be mitigated by having ordered list of RA’s to
ask for instead of only one for particular content-sensitive
publishers.

3.3 Replay Attack
In this case, the attacker stores a user’s friend’s response

for a particular key for later replay. This is particularly
effective when an emergency rollover happens, making the
key no longer valid. By replaying the same invalidated key,
the user will receive false key information. To remedy this, a
nonce is used in key request interest messages which needs
to be included in response messages. Same technique can
be used to protect the user against replay attacks against RA
responses.

3.4 Compromised Notary
There could be a scenario that notary gets compromised

and turns malicious. In that case it could potentially send
incorrect information to the user. However, not following
the complete trust principle immunes the user from harms
of a single compromised notary.

3.5 Compromised Friend
A compromised friend, similar to a compromised notary,

could send false key information. As discussed in the previ-
ous section this is generally not an effective attack.

A compromised friend can also perform a DoS attack on
the user by abusing the user’s resources. To achieve this,
the compromised friend sends overwhelming number of key
request interest messages to the user. However, this can be
mitigated by liming the rate of queries sent by a particular
friend.

3.6 Compromised Revocation Authority
A compromised revocation authority lies about the validity

of a particular key. We examine both of possible scenarios.
In the first scenario, the key is still valid and RA advertises
that it’s invalid. In this case, the user removes the key from
the cache and generate key interest requests to his friends
for the key. The user is expected to still believe in the
correct key after consensus from his friends. In the other
scenario, RA can be potentially harmful by advertising a
prematurely revoked key as valid. The attacker, in this case,
will only benefit from such false information, if the key for
the publisher is also compromised by the same attacker. This
is believed to be a hard task since the attacker must learn
the keys for both the publisher and the associated RA at the
same time and remain undetected throughout the attack.

4. Evaluation
While there are no standard means for evaluating various

trust model implementations [10], there is a set of desirable
characteristics that any Internet-scale system should have
to succeed. These characteristics are distributed authority,
independent policy, scalability, and easy enrollment. Our
proposed trust model has these characteristics since there
is no single or multiple globally central authorities in this
trust model which also leads to scalability. Also in our



model, every user has the liberty of who to trust and what
local policy to implement. This model also promotes easy
enrollment since any user at any time can join and gradually
expands its community of trust.

5. Conclusion and Future Work
In this paper, we introduced and presented the details of

a trust model for NDN that gives more freedom to the user
to make his own trust decisions. We then analyzed various
attack scenarios and discussed how this design would thwart
each attack.

This system could be further improved by a well defined
reputation system that assists the user in deciding the degree
of trust on a friend or a notary. It would then required
well-defined metrics, such as correct responses ratio and
responsiveness. This reputation system should be able to
detect friend’s misbehavior over time, and remove him from
the user’s friend list. Also, privacy issues involved in this
design should be further investigated. As an example, one
concern involved in this trust model, potential privacy issues
by sharing what content the user is interested in with his
friends.

References
[1] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs,

N. H., and Braynard, R. L. 2009. "Networking named content".
In Proceedings of the 5th international Conference on Emerging
Networking Experiments and Technologies Rome, Italy, December 01
- 04, 2009.

[2] D. K. Smetters and V. Jacobson. "Securing network content", October
2009. PARC Technical Report.

[3] Osterweil, E., Massey, D., and Zhang, L. 2009. "Managing Trusted
Keys in Internet-Scale Systems". In Proceedings of the 2009 Ninth
Annual international Symposium on Applications and the internet
(July 20 - 24, 2009). SAINT. IEEE Computer Society, Washington,
DC, 153-156.

[4] Wendlandt, D., Andersen, D. G., and Perrig, A. 2008. "Perspectives:
improving SSH-style host authentication with multi-path probing".
In USENIX 2008 Annual Technical Conference on Annual Technical
Conference (Boston, Massachusetts, June 22 - 27, 2008). USENIX
Association, Berkeley, CA, 321-334.

[5] Osterweil, E., Massey, D., Tsendjav, B., Zhang, B., and Zhang, L.
2006. "Security through publicity". In Proceedings of the 1st USENIX
Workshop on Hot Topics in Security (Vancouver, B.C., Canada).
USENIX Association, Berkeley, CA, 3-3.

[6] Blaze, M., Feigenbaum, J., and Lacy, J. 1996. "Decentralized Trust
Management". In Proceedings of the 1996 IEEE Symposium on
Security and Privacy (May 06 - 08, 1996). SP. IEEE Computer
Society, Washington, DC, 164.

[7] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and
T. Ylonen. "SPKI Certificate Theory", September 1999. RFC2693.

[8] R. L. Rivest and B. Lampson. "SDSI - A Simple Distributed Security
Infrastructure". Technical report, MIT, 1996.

[9] A. Lenstra and E. Verheul. "Selecting cryptographic key sizes".
Journal of Cryptology, 14(4):255-293, 2001.

[10] Wojcik M, Venter HS, Eloff JHP: 2006. "Trust Model Evaluation
Criteria: A Detailed Analysis of Trust Evaluation", In Proceedings
of the ISSA 2006 from Insight to Foresight Conference, Information
Security South Africa, pp 1-9.

[11] Myers, M., R. Ankney, A. Malpani, S. Galperin and C. Adams,
"Online Certificate Status Protocol - OCSP", RFC 2560, June 1999.

[12] http://www.ccnx.org/

[13] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509 Public
Key Infrastructure: Certificate and Certificate Revocation List (CRL)
Profile", RFC 3280, April 2002.

[14] Paul C. Kocher. "On certificate revocation and validation". In Finan-
cial Cryptography, pages 172-177, 1998.

[15] Dan Boneh, Xuhua Ding, and Gene Tsudik. 2004. "Fine-grained
control of security capabilities". ACM Trans. Internet Technol. 4, 1
(February 2004), 60-82.


