
648 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

An Optimal Query Execution Plan for
Database Systems

Hassan Pournaghshband, Southern Polytechnic State University, USA; E-mail: hpournag@spsu.edu

Shahriar Movafaghi, Southern New Hampshire University, USA; E-mail: s.movafaghi@snhu.edu

ABSTRACT
A major decision for the query processor of the database management system in
centralized as well as distributed environments is how a query can produce the

a minimum amount of time using mostly semi-accurate statistical information. In
this paper, we discuss major issues regarding query optimization for relational

database systems (DDBSs) to show how the query optimizer can choose an optimal

the same procedures (including operations used), and second, a group of queries
requiring data from the same site (or set of sites) for producing the result

1. INTRODUCTION
Query processing in a database environment refers to a series of activities involved
in updating and retrieving data from database and it can be divided into four

-

though in this paper, we are mainly concerned about optimization and related
issues regarding this phase of query processing, we believe a brief examination

Decomposition (Scanning, Parsing, and Validation) scanner is
to identify the language tokens found in the query, whereas the parser checks
the query syntax. Validation is done to make sure that all relations and their
attributes are valid and meaningful.

Optimization –There are generally many different methods that can be used to
process a query and compute the result. Query optimization is the process of

Query Code Generation
code generator to generate the code for

executing the plan.
 – The runtime database processor is responsible for executing

the code (generated by the query code generator), whether in compiled mode
or interpreted mode, to produce the response to the query.

We now return our attention on query optimization which is the focal point of
this paper. Query optimization sub-module of the query processing module in

research and development. The term optimization is in a sense a misnomer (as

with query optimization, it would necessary to examine plans for different execu-
tion strategies. The process of selecting the execution plan for a given query can

for executing an operation, the order of executing relational algebra operations,

that are of particular interest for a distributed environment that are discussed in
the next section.

2. DISTRIBUTED QUERY PROCESSING

relational algebra expression that is equivalent to the given expression, but it is
 needs to be

discussed in great details and it is beyond the scope of this paper. Interested readers

of the query processor that have to be considered alongside those for centralized

reside where they are most needed, but it also makes them accessible from other
sites. Therefore, to process a query initiated at one site, we might need to make
some data movements among several sites. And since transmission of data and
messages across communications lines has a tendency to slow down the whole
process, the order of data movement (that is, what data from which site should

be considered as an essential aspect of query processing for distributed database
systems. One other essential aspect, worthy to consider, regarding query optimi-
zation for distributed database systems is the existence of multiple processor in
the network. This allows for parallel processing of queries (and sub-queries) and

we will see in Section 3, these issues play a vital role in producing the optimal
execution plan.

3. “OPTIMAL” EXECUTION PLAN
In both, centralized and distributed database systems, it is the responsibility of the
query optimizer to transform the query as submitted by the user into an equiva-

estimates the evaluation cost of each strategy and decides if the chosen strategy
has the least cost. One process in estimating the execution cost of a query is to
estimate the result size of each operation in each possible execution sequence.
This is of prime interest because the size of the intermediate relations plays a

is no general consensus on the method of estimating the size of intermediate
results. Among different techniques that have been proposed in the literature the

algorithms present tradeoffs between accuracy of the approximation and memory
requirements. The estimation of size of the intermediate relations is based on sta-
tistical information about the relations, their attributes, and indexes. One problem
regarding this approach is that most systems do not update the statistics on every
change. This could lead to inaccurate estimates, and thus selection of strategies

others. Discussion of their approach, which in fact is dynamic query execution,
is beyond the scope of this study.

The selection of a good strategy statically can be made effectively by the prediction
of execution costs of the alternative plans prior to actually the executing the query.

the communication costs (for distributed systems). In centralized systems, many

different evaluation plans in terms of the number of block transfers between sec-

the cost for a given plan, the query optimizer estimates the cost of individual
procedures making up the plan, and adds them together to get the total cost of

Managing Worldwide Operations & Communications with Information Technology 649

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

executing the query. The process of cost estimation for individual procedures is
repeated for those procedures used in different execution plans, and thus, it could

suggest the design of a query optimizer that examines current queries and gener-
ates a master plan for each group of queries requiring the same set (or subset) of
individual procedures. The task of identifying similar queries that can be grouped

distributed database system the data reside in different locations can be a cause of

the network. In fact, the query may be broken into a set of sub queries that must
be executed in order to produce the result of the query. In our approach, for an

queries requiring the same procedures (including operations used), and 2) groups of
queries requiring data from the same site (or set of sites) for producing the result.
Each of these two categories of queries is explained below and an algorithm that
generates these groups from a set of queries is given in Section 4.

- For these groups, the query optimizer generates a super-query execution
plan for each group before breaking it into a set of sub queries for execution.
Of course, as mentioned earlier, the task of grouping queries can become

consuming and costly operations in query processing, we take into account

That is, the query optimizer must begin this process by grouping queries
that have Join operation in common (i.e., Joining the same relations as their

-

Finally, it reviews the remaining queries to identify and group those queries
that share the same predicates (or part of them for compound predicates)
for Selection operation. For each of the above groups, the query optimizer
combines participating queries into a super-query before breaking it into a

2. Groups of queries requiring data from the same site (or set of sites) for pro-
ducing the result - For these groups, the query optimizer generates a super
query execution plan according to data being used, and then breaks it into
a set of sub-queries (one sub-query for each site participating in the plan)

movement among sites. In addition, the nature of DDBSs and the existence
of multiple processors in the network allows for parallel processing of these
sub-queries and simultaneous data transmission between sites. This could

That is, each sub-query of a group in second category, can be treated as a
base

queries.

4. THE ALGORITHM
This algorithm generates two groups of queries. A group of queries requiring the
same procedures (including operations used) and a group of queries requiring
data from the same site (or set of sites) for producing the result. It also generates
a group of queries belonging to both of the above groups

The algorithm reads as its input a set of queries and generates as its output the

Algorithm:

Output: Three sets of groups of queries G , G2 and G3.

a. those queries requiring the same relations that must be JOINed for producing
the results. Call this set P (P is a subset of Q) and

b. those queries requiring data from the same site(s) for producing the results.
Call this set T (T is also a subset of Q).

Step 2: Scan queries in (Q – P) to identify queries requiring the same relations
that are operands for binary operations (other than JOIN) for producing results.
Call this set R (R is a subset of (Q – P))

Step 3: Scan queries in (Q – P – R) to identify queries requiring the same relations
that must use the SELECT operation with common set (or subset, if compound
predicate) of predicates. Call this set S (S is a subset of (Q – P – R))

G

G2

G3 = {G G2)

End Algorithm

5. CONCLUSIONS
There are different techniques used by the DBMSs in processing and optimizing

issues regarding query plan evaluation for query processing and showed how the

groups of queries requiring the same procedures (including operations used), and
one groups of queries requiring data from the same site (or set of sites) for pro-
ducing the result. Finally, we presented an algorithm which examines frequently

REFERENCES
nd Edition,

and Optimization Architecture,” Proceedings of the Software Engineering-
Research and Practice Conference, June 2004.

Warehouse Environment”, Proceedings of the 7th International Workshop on

th Edition, Addison-
Wesley, 2003.

5th Edition, McGraw-Hill, 2006.

-

-

-
ing for Large Query Execution,” Proceedings of ACM-CIKM Conference,

-

Optimization Issues for DBMSs,” Proceedings of Association of Management

