
International Journal of Advanced Computer Science, Vol. 1, No. 1, Pp. 1-8, Jan. 2011.

Manuscript
Received:
2013

Revised:

2013

Accepted:

Published:

Keywords

CS 1,

Computer

Security,

C++,

Security

Mindset,

Security

Awareness

Abstract The inherent problems of

computer security are becoming increasingly

important, and it is critical that our students

gain the necessary skills and knowledge,

early in their academic programs, to handle

these problems. Specifically, the lack of

security mindset is responsible for many

overlooked and exploitable security bugs in

the computer programs that these students

design. While learning the security concepts

generally requires a more advanced

knowledge of computer science, learning the

security mindset can be, and should be,

addressed as early as CS 1. Although the

primary focus of any traditional CS 1 course

is that of basic programming concepts, we

believe that teaching the security mindset in

this course is valuable and effective. In this

paper we discuss the course that we have

taught for four termsan introductory

course that teaches the security mindset to

beginner programmers. We start out by using

the term-long incremental development of a

security-sensitive programthe login

program. Students develop the security

mindset by thinking as both hackers and

defenders, in order to catch and fix the

logical and run-time errors that may lead to

security breaches in the program.



1. Introduction

Over the past several decades, software has become a

crucial element in our lives, allowing us to manage and

control systems that provide critical infrastructures in areas

such as communications, energy, and transportation.

Unfortunately, hackers are capable of interrupting these

connections by exploiting software vulnerabilities and

breaching software security. For instance, in 2011

programming flaws allowed hackers to steal millions of

dollars through stolen credit cards in a single cyber attack

incident [3]. Very recently, a flaw in Java put millions of

Windows and Mac users worldwide at risk, and the damage

This work was partially supported by Intel.

Vahab Pournaghshband, University of California, Los Angeles,

vahab@cs.ucla.edu.

This paper is an extension of the original paper [16].

Digital Object Identifier ??.????/j.issn.????-????.????.??.???

cost is still rising [6]. New threats are further emerging as

computers become more embedded and more intimately

into our environment and daily lives, e.g., recent security

vulnerabilities found in mobile medical devices [14]. Flaws

in programs have also been exploited (e.g., by Stuxnet

worm [11]) to sabotage critical infrastructures as an act of

cyberwarfare.

Software security vulnerabilities are the most common

cause of software security breaches. Most security problems

can be traced back to underlying errors in a program's

source code. For example, 64% of the nearly 2,500

vulnerabilities in the National Vulnerability Database in

2004 were caused by programming errors [7]. Fixing these

bugs through constant security patches has its own

problems, since security patch management and distribution

are known to be fairly ineffective [2]. This suggests that

catching security bugs in the pre-release version of

programs is what is most effective.

These errors exist in programs mostly because

programmers often fail to notice how the programs might

fail and how those failures might be exploited. Among the

numerous factors that explain this problem, the lack of a

security mindset plays an important role in being unable to

spot the exploitable bugs in programs in the early stages of

development.

The following is an excerpt from Bruce Schneier's blog

on the security mindset [15]:

“Security requires a particular mindset. Security

professionals - at least the good ones - see the world

differently...This kind of thinking is not natural for most

people. It's not natural for engineers. Good engineering

involves thinking about how things can be made to work;

the security mindset involves thinking about how things can

be made to fail. It involves thinking like an attacker, an

adversary or a criminal. You don't have to exploit the

vulnerabilities you find, but if you don't see the world that

way, you'll never notice most security problems.”

Therefore, if we teach programmers the security

mindset, it will go a long way toward making a world with

fewer cyber attacks and will substantially improve the

security of future technological systems.

We believe that this security mindset should be taught

to beginning programmers in classes as basic as CS 1, and

that it should be emphasized throughout a student's

Incorporating the Security Mindset into Introductory

Programming Courses

Vahab Pournaghshband

 International Journal of Advanced Computer Science, Vol. 1, No. 1, Pp. 1-8, Jan. 2011.

 International Journal Publishers Group (IJPG) ©

2

computer science undergraduate program. In this paper we

illustrate how to develop and teach this mindset in a CS

introductory course. Through an example, we will show

how to effectively teach the basic programming concepts,

which is the primary goal of any CS introductory course,

while developing the necessary security mindset for the

students. The rationale for teaching the security mindset in

an introductory course is elaborated on in Section 2.

This paper is organized as follows: Section 2 presents

the advantages offered by this course. Section 3 presents

related work. Methodology is presented in Section 4.

Section 5 presents an informal evaluation of our work.

Section 6 is future work and Section 7 concludes this paper.

2. Advantages

In this section we discuss why it is important to teach the

security mindset in the first CS introductory course, while

still keeping the primary focus on teaching basic

programming concepts.

1) An early exposure to security issues is essential to a

student's foundational appreciation and

understanding of computer security. If the security

mindset is developed at an early stage, students are

more prone to naturally have security in mind while

programming. From a practical point of view, this is

a more effective approach than the one that only

emphasizes program correctness and then, later in a

student's programming career, attempts to change

the undesirable habit of overlooking security bugs.

2) Students will also learn the significance of security

bugs by understanding how these minor

inaccuracies in detail, if overlooked, can lead to

security breaches even though their code might be

free of syntax, logical, and run-time errors.

Moreover, it forces students to realize the

importance of programming mistakes that can result

in minor logical or run-time errors. Students will

realize that these errors not only cause simple

mistakes in program correctness, but they create an

opportunity for hackers to attack the systems that

run their programs.

3) Our proposed curriculum changes in the

introductory course still emphasize learning the

basic concepts of programming. By incorporating

simple attack/defense scenarios to teach and verify

program correctness interactively, we make learning

those concepts more attractive to our students. As

Fanelli et al. [5] state, “Security can make the other

stuff more interesting. Studying security can lead

students to a deeper understanding of computer

science and information technology concepts. In

many cases a thorough understanding of how a

program works is needed to effectively attack or

defend it.”

4) Many students outside of the CS major are required

to take only CS 1 (and/or CS 2), and quite possibly

will never take any other CS course beyond the

introductory courses. Therefore, it might be their

last chance (within the curriculum) to learn about

computer security. Even if a student never pursues a

programming career, or programs only infrequently,

this is still an opportunity for him to learn about the

technical aspects of computer security. Students

will understand the root cause of known security

problems, why they behave maliciously, and how to

protect themselves from them effectively. For

instance, once students learn about how powerful

brute force attacks are, they will understand the

importance of choosing a strong password. In any

and all cases, “The security mindset is a valuable

skill that everyone can benefit from, regardless of

career path.” [15]

5) Secure programming takes extensive practice in

order for it to evolve into a skill. While gaining this

knowledge is valuable, a single course in computer

security in the undergraduate curriculum often fails

to actually build this skill for students. This

suggests that exposing students to security issues, as

early as an introductory course, establishes the

security mindset and provides more practice in

secure programming; hence, skill will be built faster

and better.

3. Related Work

An extensive body of literature has been created that

focuses on computer security education. Some methods use

active learning and visualization tools to teach security

effectively. As an example, IPsecLite [8] was developed as

a tool to demonstrate the inner-networking of IP security

standards. Other methods emphasize the importance of

teaching the physical and social aspects of computer

security, along with technical aspects [4, 9]. A different

class of work in this area, such as Peterson et al. [13], has

developed hands-on laboratory exercises for a term-long

security course.

There have also been proposals that emphasize

introducing security concepts in the CS 1 course [10].

Validating user input, array range checking, numeric

overflow and underflow, operator precedence, and rounding

errors are a number of concepts that are suggested for

course material in CS 1. The list is, however, not very long

due to the limited knowledge of students in a CS

introductory class.

Finally, there have been several papers on how security

education fits into the CS undergraduate curriculum. Some

Vahab Pournaghshband: Teaching the Security Mindset to CS 1 Students.

International Journal Publishers Group (IJPG) ©

3

introduced various ways to teach a single course [12]. Some

presented effective track approaches, where a sequence of

specialized courses on security is offered [1]. And some

support the thread approach that is used as a unifying theme

across the standard core CS curriculum [12].

4. Methodology

In this section we present the methods used to teach

this introductory course at UCLA. C++ is used in the

introductory CS course sequence. The material we

present here, however, can be applied to other

programming languages with some modifications, except

for some topics such as pointers and C strings that are

unique to a specific set of languages.

In our approach we used a widely known practical

program as our example the login program. Our login

program asks for username and password from the user

and will reveal a secret word if the credentials are

provided correctly. It generates an error message if the

username or the password entered is invalid. This

program evolved throughout the school term, as the

students learned new concepts. Note that traditional

examples were still used to teach the materials, in

addition to examples relevant to our login program case

study.

We used the login program for teaching purposes

for various reasons: (1) the basic concept of the program

is familiar to students since it is a program that students

use multiple times in an average day, ranging from

logging into the department laboratory systems, to

Facebook, and e-mail accounts. This would also make

interacting with the program interesting, whether one

was hacking into it or preventing hackers from breaching

it. (2) This program has the unique feature of being able

to vary from being a very simple program to a complex

one. (3) As more programming concepts are introduced

in the course, the program can be incrementally built up

from a simple program to a coherent complex program.

(4) The program is security-sensitive by its nature,

making defensive programming even more essential.

In many cases, a thorough understanding of how a

program works is needed to effectively attack or defend

it. Moreover, to be a good defender you must be a good

attacker; hence, we constantly guide the students to wear

a hacker's hat to spot the vulnerability, and then switch to

a defender's hat to fix the problem. Note that we use the

term “hacking” in the most non-pejorative sense possible.

Hacking, for our purposes, is a process for pointing out

programming bugs rather than any negative use of such

skills. For instance, we present a faulty program

containing a particular logical error. We then ask the

students to spot the error and exploit that vulnerability as

if they were hacking into the system. We then further ask

them to fix the error in the program to protect it against

that particular attack.

Below, we outline, in order, some of the concepts

and approaches that we use to simultaneously introduce

core programming ideas and to develop the security

mindset.

A. Introduction and Variables

Early in the course, variables are introduced. For the

login program, we discuss how to define and use

variables to hold the username and the password. Integer

overflow is also introduced, and is illustrated through an

example involving simple arithmetic operations.

However, an example of how integer overflow is exactly

exploited will be presented later in the course when

introducing dynamic memory allocation.

B. Conditional (if-else) Statements

A very simple login program is implemented. This

program will only support a single user and only accepts an

all-numeric (int) password. If the password matches a

hardcoded password, the secret word will be revealed (Fig.

1).

if (password==12345)

 cout << "The secret word is Kosar.";

else

 cout << "Invalid password!";

Fig. 1 Our first login program.

Even in such a simple implementation, common beginner

mistakes, like using the assignment operator “=” in the

condition instead of the equality operator “==,” can be

illustrated to students as an error that can lead to revealing

the secret, even in the case of an incorrect entered password.

C. String Class

A major problem that variables of type int used to

store passwords have is that they are vulnerable to brute

force attacks due to relatively short range of values they can

hold. Most platforms hold 4 Bytes for integers which leaves

approximately 4 billion different possibilities. In modern

typical machines it takes only a few seconds to crack the

password when trying every single possible value. To

alleviate this security problem, we change our program to

use the C++ string class to store the password instead. Even

so, our program is still vulnerable to dictionary attacks. This

is because most users, if not all, do not choose a random set

of characters as their password, and rather something they

can remember. Thus, this enables the hackers to use

dictionary attacks, which is to systematically try entering

every word in a dictionary (or a sequence of them) as a

password to guess the correct password.

D. Nested if-else and switch Statements

The program evolves into a two-user login program.

We start our presentation with a faulty version of a two-user

program (Fig. 2). We then lead the students into a

 International Journal of Advanced Computer Science, Vol. 1, No. 1, Pp. 1-8, Jan. 2011.

 International Journal Publishers Group (IJPG) ©

4

discussion of how this code is problematic, and examine the

set of information that hackers would need in order to get

into the system without entering the correct credentials.

Finally, through a class discussion, we explain how to fix

this problem by replacing the inner ||'s by &&'s.

if ((username=="vahab" || password=="Ta#3rEh") ||

 (username=="peter" || password=="h0o$H@Ng"))

 cout << "The secret word is Kosar.";

else

 cout << "Invalid username and/or password!"

Fig. 2 An erroneous two-user login program.

Afterwards, this program is converted to a nested

if-else statement, where outer if statements now check

the usernames and inner if statements check the validity of

the corresponding password. In this case, a more specific

error message will be produced that indicates whether the

username or the password entered is invalid. As this is

being implemented, the emphasis will be on not only the

possibility of errors in the code, but also the magnitude of

problems caused by those errors. Ultimately, this program

will be converted to use a switch statement in the same

way.

E. Loops

The program shall be enhanced to allow multiple login

attempts in such a way that it will quit after a predefined

number of successive failed attempts. This illustrates a

simple way to prevent brute force attacks, introduced earlier

in the course. We also emphasize the magnitude of logical

errors in the loop condition (Fig. 3). For instance, an infinite

loop will give the hacker virtually an unbounded number of

attempts.

int login_attempt = 0;

do{

 cin >> username;

 cin >> password;

 if (username == “vahab” && password == “cs31”)

 cout << “The secret word is Kosar.”

} while(++login_attempts < 3);

Fig. 3 Limiting login attempts to prevent brute force attacks.

F. Nested Loops

When choosing a new password, the program should

determine if it is a legitimately strong password. In our

example, with the help of nested loops, we will write code

to validate the password strength. The restrictions that

define the level of strength of passwords are arbitrary. In

this example, we make a strength requirement that the

password must be at least eight characters long, and must

include at least one uppercase and one lowercase letter, and

one digit. In addition, it must contain at least one string of at

least four letters long. Again, failing to write this piece of

code in the program correctly may result in accepting weak

and vulnerable passwords. One variation of such

implementation is presented in Fig. 4.

bool isStrongPassword(const char* password)

{

 if (strlen(password) < 8)

 return false;

 bool one_upper = false;

 bool one_lower = false;

 bool one_digit = false;

 bool four_letters = false;

 int letter_count = 0;

 for(int i=0; password[i]!='\0'; i++)

 {

 if (letter_count > 3)

 four_letters = true;

 if (isdigit(password[i]))

 one_digit = true;

 else if (isupper(password[i]))

 {

 one_upper = true;

 letter_count++;

 continue;

 }

 else if (islower(password[i]))

 {

 one_lower = true;

 letter_count++;

 continue;

 }

 letter_count = 0;

 }

 if (one_upper && one_lower && one_digit &&

 four_letters)

 return true;

 return false;

}

Fig. 4 Implementation of isStrongPassword to prevent

users to choose weak passwords.

G. Functions

After familiarizing students with the concept of

functions, we implement the following two functions as

examples of how to modularize our login program using

functions:

bool isStrongPassword(std::string);

int authenticate();

The first function reuses the code implemented in the

nested loops section to validate the strength of passwords.

The latter function abstracts away the entire authentication

process by moving all the details of how it is done into the

function authenticate(). This way, only a simple if

statement is needed to decide on revealing the secret word:

if (authenticate()==0)

 cout << "The secret word is Kosar.";

The function has no argument. It returns a non-zero

value only when authentication fails (1=excessive failed

Vahab Pournaghshband: Teaching the Security Mindset to CS 1 Students.

International Journal Publishers Group (IJPG) ©

5

attempts, and 2=user gave up trying prematurely).

And last, as we introduce some popular functions from

the standard library, we mention the importance of knowing

the difference between safe and unsafe functions.

H. Arrays and C Strings

In addition to learning and interacting with arrays, the

students learn about C strings and some popular library

functions associated to it. C strings can now replace the

string class that was used as the type for the username and

the password earlier in the course (char username[SIZE];

char password[SIZE];). At this point we present the

students with the code presented in Fig. 5 and ask them to

examine it for potential problems.

char password[SIZE];

bool logged_in = false;

cin >> password;

if (strcmp(password,correct_password)==0)

 logged_in = true;

if (logged_in==true)

 cout << "The secret word is Kosar.";

else

 cout << "Invalid password!";

Fig. 5 A login program that is prone to buffer overflow.

There is no logical error here but at run-time, entering a

password larger than the length of the array is problematic.

Technically, among numerous undesirable consequences

that could happen in this case, crashing at run-time is most

desirable, from the security point of view. We explain why

by showing how this could be an opportunity for the

attacker to successfully overwrite logged_in to true,

bypassing the entire authentication process. Even worse, the

attacker can exploit the buffer overflow vulnerability in this

piece of code and gain full control of the system. The latter,

however, would be only explained in a very high level

discussion since the students are not expected to have any

knowledge of the operating systems concepts required to

fully understand the details of this effect.

I. Multidimensional Arrays

The program should now support multiple users. One

way to store the required information could be as follows:

char credentials[2][MAX_NUM_USERS][SIZE];

In this case, the corresponding password for username

credentials[0][i] is credentials[1][i] (As

illustrated in Fig. 6).

J. Parallel Arrays
Our multiple-users login program will contain meta

information about users in addition to their corresponding

passwords: first name, last name, age, date of birth

(“MMDDYY”), the security question and its corresponding

answer, and whether the user has administrative privileges

or not (Fig. 7). This is also a good way to teach array

traversal and basic sorting to the students.

Fig. 6 Credentials 2D array structure.

char username[MAX_NUM_USERS][SIZE];

char password[MAX_NUM_USERS][SIZE];

char first_name[MAX_NUM_USERS][SIZE];

char last_name[MAX_NUM_USERS][SIZE];

int age[MAX_NUM_USERS];

bool admin[MAX_NUM_USERS];

long dob[MAX_NUM_USERS];

char security_question[MAX_NUM_USERS][SIZE];

char answer_security_question[MAX_NUM_USERS][SIZE];

Fig. 7 List of parallel arrays used in the login program.

K. File I/O

Hardcoding passwords into an executable file is

considered a bad security practice for numerous reasons.

Reverse-code engineering the executable file may leak the

passwords. Also, if the passwords are exposed by other

means, changing them would require changing the source

codemaking it a virtually impractical task.

Instead, the credentials should be stored in a separate

file. At this point, students learn how to read the already

stored usernames and passwords from a file designated for

this purposethe credentials file. Furthermore, they learn

how to modify this file to add new users, remove users, and

update users’ passwords. We also use this opportunity to

touch upon using cryptographically secure one-way hash

functions (e.g., crypt) for storing credentials in files, and

to point out the disadvantages of storing passwords in

plaintext.

L. Pointers and Dynamic Memory Allocation
Previously, we have used the constant

MAX_NUM_USERS as the size of the parallel arrays. By

taking this approach, we are bound to either wasting

memory resources by allocating more than necessary, or

that our array runs out of space if there are more users than

the predefined size of the arrays. To alleviate this problem

we need to allocate arrays dynamically.

We first need to know how many users are there before

being able to allocate enough memory to hold that

 International Journal of Advanced Computer Science, Vol. 1, No. 1, Pp. 1-8, Jan. 2011.

 International Journal Publishers Group (IJPG) ©

6

information. Hence, we first call a function that is assumed

to read a file and returns the number of rows in it,

representing the total number of users.

int n = getNumberOfRows("credentials_file");

We then dynamically allocate the parallel arrays. Here we

create a two dimensional array to hold the usernames:

char** username = new char*[n];

for(int i=0; i<n; i++)

 username[i] = new char[SIZE];

Finally, we call a function that would iterate through

the file and copy the information for each user in the

corresponding arrays including username, one user at a

time.

The students are then asked to examine the code for

problems. Basically, the problem with this code is that if the

number of lines are too large (beyond the range of int), it

would result in integer overflow. This means that

username is not large enough to hold the information about

all users stored in the file. Technically, this would lead to

accessing and writing into elements out of range, and hence,

leading this cascading effects to heap overflow. A subtle

attacker could corrupt the credentials file maliciously to

cause integer overflows.

Note that in teaching the basics of how to dynamically

allocate memory, we ensure that the students understand

both the security and performance implications of not

checking for NULL immediately after the new statement as

well as deallocating that chunk of memory improperly. We

further mention the importance of clearing (by setting the

value to zero) the allocated memory right before

deallocating, for security purposes. We explain that if the

allocated memory holds sensitive information, as it does in

our case, deallocation without clearing could potentially

expose the sensitive information.

M. Classes and Structs

By now we are ready to wrap our implementation of

the login program into an API, for other programs to use.

We have defined two classes, as illustrated in Fig. 8:

Credentials and UserInfo. Credentials is designed

to perform user management tasks such as adding and

removing users, and UserInfo is designed to hold and

update the information about a particular user.

Here, we omit the details of implementation of the

functions and limit ourselves to the discussion of the

constructor for Credentials that takes the credentials

filename as an argument. The constructor parses through the

file, sets the total number of users, dynamically allocates

memory for users_list, and at last, copies all the

information from the file into the array.

While teaching the basics of C++ classes, it is

important to address clearly that the access specifiers

(private and public keywords) are not designed to be used

for security, and rather they are designed for abstraction in

object oriented programming. In fact, declaring methods or

data as private, enables the compiler to find programming

mistakes before they become bugs. In other words, this C++

access control mechanism provides protection against

accidents and not against fraud. Therefore, an effective

design would protect careless programmers, who will be

using our API, from unwillingly committing to such bugs.

For instance, in UserInfo class, by design, you can

never change the username, after it is set by the constructor.

This design would protect against accidental attempts to

change the username after its creation which should never

happen. Another design choice we are making here is

forcing indirect access to password. One advantage of this

approach is to ensure calling isStrongPassword() to

check for its validity before changing it (as it is called inside

resetPassword()). Finally, by not allowing direct access

to users_list, we leave all memory management tasks

associated to it to the Credential class and out of the

burden of the API user. This is desirable to avoid the

possibility of potential programming mistakes in doing so

that could lead to memory leaks by the API users.

class Credentials {

public:

 Credentials(char* filename);

 bool addNewUser(char*,char*,char*,char*,int,

 long,char*,char*,char);

 int deleteUser(UserInfo*);

 UserInfo* getUserInfo(char* username);

private:

 int num_of_users;

 UserInfo* users_list;

};

class UserInfo {

public:

 UserInfo(char*,char*,char*,char*,int,

 long,char*,char*,char);

 char* getUsername();

 char* getPassword();

 bool resetPassword(char* password);

 bool isStrongPassword(char* password);

 char first_name[SIZE];

 char last_name[SIZE];

 int age;

 long dob;

 char security_question[SIZE];

 char answer_security_question[SIZE];

 char privileges;

private:

 char username[SIZE];

 char password[SIZE];

};

Fig. 8 The login program API.

5. An Informal Evaluation

While we have not conducted a formal evaluation of

the course materials, we do have several indicators that

suggest that our approach was successful. Remember that

we used two sets of examples to teach each concept: a set of

traditional examples and the examples related to our login

program case study.

At the end of the Spring 2010 term, we asked the CS 1

students to rank these two sets of examples that we used to

Vahab Pournaghshband: Teaching the Security Mindset to CS 1 Students.

International Journal Publishers Group (IJPG) ©

7

cover the materials in various categories. These categories

were (1) helpfulness in learning the programming concepts,

(2) level of difficulty understanding the materials, and (3)

was it or was it not a “fun” experience? We used a scale of

1 (low) to 5 (high) in this survey, and provided 32 students

with questionnaires to be completed. The results from this

survey are shown in Table 1.

Interestingly, the ratings for “fun” averaged around 4

for the login program example through all the topics, which

was higher than ratings for traditional examples. Average

ratings on whether the examples were helpful for learning

programming concepts were almost the same for both sets

of examples. We also observed that as the concepts got

harder, the average rating for difficulty rose almost equally.

In the questionnaire that we gave to students, we also

asked if they thought that the login program example we

used in the course helped them to be more aware of security

bugs, and in general, if it had any educational value. 93% of

respondents answered “Yes” to this question.

TABLE 1

STUDENT EVALUATION OF MATERIALS WE USED IN CS 1 (H: HELPFULLNESS,
D: DIFFICULTY, F: FUN)

6. Future Work

A. Methodology Effectiveness Assessment

In our informal evaluation presented in Section 5, we

did not test the students’ security mindset and awareness.

Hence, in our future work we plan to develop an

effectiveness assessment approach to quantitatively evaluate

the success of our pedagogy.

While measuring student learning is useful for

evaluating the success of a particular educational technique,

developing such measurements, in practice, can be

challenging and can raise even more questions than answers,

such as: What characteristics demonstrate student learning?

Do the assessment questions really target the concept

intended? Would these assessment techniques yield similar

results in a different set of learner or educational contexts?

In addition, we also must clearly define what a

measurement means as well as the limitation of each

interpretation.

We plan to select two introductory programming

classes (CS 1) within the same school term, and run them

using two different teaching styles. One class (the

comparison group) will be taught in a traditional style, and

the other (the control group) taught in the same teaching

style presented in this paper. We will then perform the

following experiments and compare the data collected from

the two groups for further analysis.

1) Measuring Attitude Shifts:

We will measure students’ attitudes toward computer

security by developing a set of questionnaires that deals

with identifying perceptions and attitudes toward computer

security and examine how those might change over the

course of a student’s progression through the introductory

programming course.

We will make our collected data from the

questionnaires publicly available to other researchers and

educators. As with other conceptual instruments in other

disciplines, maintaining the privacy and integrity of the

students' responses and identities are important and will be

achieved through existing anonymization techniques. We

are particularly interested in making our data available for

secondary analysis.

2) Code Review Exam Questions:

We will carefully design exam questions for both

groups with one or more inherent security bugs, while

keeping in mind that the nature of the exam questions

should not be answerable by context clues or random

guessing. We will then compare the percentage of students

who caught the security bugs in the control group to the

comparison group. Identifying or failing to identify the

security bugs, however, will have no effect on their final

grades in the course.

3) External Measures:

I) Final Exam Score: We will also compare students’

final exam scores (or their average final grades) in the two

classes to see if our proposed method had any effect

(positive or negative) on learning the basic concepts of

programming. These scores, while not a perfect measure for

student learning, should indicate whether students were able

to learn the basic concepts, along with the security concepts,

without experiencing problems.

II) Student Retention: Furthermore, we plan to

determine whether there is a significant ratio gap in student

retention between the two groups. We achieve this by

asking the students, at both the first and last lectures, if they

are planning to take CS 2.

B. Teaching the Security Mindset in Other CS Courses
As part of our future work, we will explore the

possibility of extending the idea of teaching the security

mindset, using inherently different approaches, in other

non-security lower- and upper-division computer science

courses. We also aim to focus on institutions that lack a

 International Journal of Advanced Computer Science, Vol. 1, No. 1, Pp. 1-8, Jan. 2011.

 International Journal Publishers Group (IJPG) ©

8

security faculty to teach the security mindset/concepts or the

instructor of the course is not a security faculty. As part of

moving this to a broader scope, we will apply the

multi-national multi-institutional approach to our evaluation

methodologies to observe the effectiveness of our approach

in different universities within different countries.

C. More Psychometric Assessments
The education and psychology fields have a rich history

of developing and validating a variety of measurement

instruments. Some tests have psychometric goals and do not

specifically focus on learning assessment. We are

particularly interested in measuring students’ self-efficacy

(confidence in developing secure codes) and anxiety to

enable a comparison between the control and comparison

groups. Such measurements should not be misinterpreted as

measures of content knowledge.

7. Conclusions

In this paper we described the process of teaching the

security mindset for beginning programming students in the

CS 1 course that this author taught for four terms. Students,

by and large, reacted very positively to this course. They

enjoyed the material and found it educationally valuable and

helpful for understanding the basic programming concepts.

What we have described in this paper is only the first step

toward achieving our goals, but we believe it to be an

important step that can be built on later in more advanced

undergraduate courses.

Acknowledgment

The author is very much obliged to Peter Reiher for his

valuable input on technical aspects of the paper.

References

[1] S. Azadegan, M. Lavine, M. O’Leary, A. Wijesinha, and M.

Zimand. “An undergraduate track in computer security.” In

Proc of the 8th ITiCSE, 2003.

[2] H. Cavusoglu, H. Cavusoglu, and J. Zhang. “Security patch

management: Share the burden or share the damage?”

Management Science, 54(4):657–670, 2008.

[3] CNNMoney. “Citi: millions stolen in May hack attack.”

http://money.cnn.com/2011/06/27/technology/citi_credit_car

d/index.htm, 2011.

[4] T. Dimkov, W. Pieters, and P. Hartel. “Training students to

steal: a practical assignment in computer security education.”

In Proc. of the 42nd SIGCSE, ’11.

[5] R. Fanelli and T. O’connor. “Experiences with

practice-focused undergraduate security education.” In Proc.

of the 3rd USENEX CSET, 2010.

[6] Forbes.com. “Java flaw puts millions of Windows and Mac

users at risk”, 2011. http://www.forbes.com/sites

/adriankingsleyhughes/2012/08/29/java-flaw-puts-

millions-of-windows-and-mac-users-at-risk/.

[7] J. Heffley and P. Meunier. “Can source code auditing

software identify common vulnerabilities and be used to

evaluate software security?” In Proc. of the 37th HICSS,

2004.

[8] N. Kazemi and S. Azadegan. “IPsecLite: a tool for teaching

security concepts.” In Proc. of the 41st ACM SIGCSE, pages

138–142. ACM, 2010.

[9] T. Kohno and B. D. Johnson. “Science fiction prototyping

and security education: cultivating contextual and societal

thinking in computer security education and beyond.” In

Proc. of SIGCSE, 2011.

[10] K. Nance. “Teach them when they aren’t looking:

Introducing security in CS1.” IEEE Security and Privacy,

7(5):53–55, Sept. 2009.

[11] NYtimes.com. Cyberattacks on Iran - Stuxnet and Flame,

2012.

http://topics.nytimes.com/top/reference/timestopics/sub

jects/c/computer_malware/stuxnet/index.html.

[12] L. Perrone, M. Aburdene, and X. Meng. Approaches to

undergraduate instruction in computer security. In Proc. of

ASEE, 2005.

[13] P. Peterson and P. Reiher. “Security exercises for the online

classroom with DETER.” In Proc. of the 3rd USENIX CSET,

2010.

[14] V. Pournaghshband, M. Sarrafzadeh, and P. Reiher.

“Securing legacy mobile medical devices.” In Proc. of the

3rd International Conference on Wireless Mobile

Communication and Healthcare (MobiHealth), 2012.

[15] B. Schneier. “Schneier on Security: The Security Mindset,”

2008. http://www.schneier.com/blog/

archives/2008/03/the_security_mi_1.html.

[16] Pournaghshband, V., “Teaching the Security Mindset to CS 1

Students,” In Proceedings of the 44th ACM Technical

Symposium on Computer Science Education (SIGCSE),

March 2013

Vahab Pournaghshband, is a PhD

candidate in the computer science

department at UCLA. He received his

masters in computer science from UC

Berkeley in 2008. Also from UC Berkeley,

he received his bachelors in Electrical

Engineering and Computer science. His

research interests are computer networks,

computer security, and computing education.

