
An Improvement Mechanism for Low Priority
Traffic TCP Performance in Strict Priority Queueing

Mahdi Rahimi and Vahab Pournaghshband
Advanced Network and Security Research Laboratory

Computer Science Department
California State University, Northridge

Northridge, California, USA
mahdi.r.rahimi@ieee.org

vahab@csun.edu

Abstract—Strict Priority Queuing (SPQ) is a widely used
queuing method for applying preferential service on edge
networks. SPQ, in presence of persistent high priority traffic, is
known to behave in a very hostile manner toward low priority
flows, causing them to experience poor TCP performance. This
often leads to substantial packet losses, which consequently
results in aggressive reduction in the congestion window size
at the sender. This severe performance degradation then leads
to channel underutilization when the high priority queue is
emptied. In this paper, we introduce Amicable Strict Priority
Queuing, an approach to improve the TCP performance of low
priority traffic, in the presence of interruptions caused by a
surge of high priority traffic flows. Our proposed approach has
two major advantages. First, it does not require any changes
to the TCP stack of the end hosts. Second, through the simple
augmentation introduced in this paper, no modification to the
existing SPQ-enabled switches and routers is required, making
it readily deployable in current systems. Experiments in a
simulated environment confirm the validity of our proposed
approach.

Keywords-Strict Priority Queueing; Freeze TCP; Differentiated
Services; Quality of Service

I. INTRODUCTION

In the digital economy, a significant amount of all business-
critical processes involve data transfers. Large corporations,
retailers, publishing companies and other enterprises that have
large repositories of data, produce high volumes of data,
have multiple locations, or have high volume of international
transfers both require and benefit from reliable and stable file
transfers. Reliable file transfers can have a significant effect on
the productivity and the reduction of the costs of companies,
as file transfer inefficiencies cause major costs. In reality,
however, when demands are high, large data transfers happen
frequently, and resources such as network bandwidth are
limited, all of the users may not receive satisfactory service,
and some file transfers may experience poor performance and
disruption.

Additionally, network service providers provide their ser-
vices to a vast majority of users. However, they may not treat
all of their users the same. For example, ISPs may have some

special customers and provide better service to them, or cate-
gorize customers into different groups and prioritize the traffic
of some groups over others. Video-on-Demand providers may
favor customers who pay more or have purchased a premium
service. Therefore, other users may experience lower quality
of service when the favored customers are being served.
The same scenario happens for cloud and big data storage
providers, as they provide preferential service toward some
customers. However, this comes at the expense of other
customers’, which motivates the companies into deploying a
solution that alleviates this problem.

When resources are limited or preferential service is be-
ing provided, prioritization of traffic seems inevitable. Strict
Priority Queuing (SPQ) is used as a primary method of provid-
ing such services on edge networks. SPQ classifies network
packets as either priority or regular traffic, and ensures that
higher priority traffic will always be served before low priority.
Priority packets and regular packets are filtered into separate
FIFO queues. The priority queue must be completely empty
before the regular queue will be served. The advantage of this
method is that high priority packets are guaranteed delivery
so long as their inflow does not exceed the transmission
rate on the network. The potential disadvantage is that a
high proportion of priority traffic will cause regular traffic to
suffer extreme performance degradation [1]. Fig. 1 illustrates
an example of strict priority queuing; packets from flow 2
cannot be sent until the priority queue is completely emptied
of packets from flow 1.

SPQ has a hostile nature toward lower priority flows.
When the high priority traffic is present, the regular or low

Fig. 1. A strict priority queue



priority traffic is not served. Therefore, in a regular TCP data
transmission, the sender of the low priority traffic will not
receive acknowledgement regarding the packets sent because
the packets are accumulating in the low priority queue. In
fact, they may never reach the receiver, or they may arrive so
late that the sender may have already marked them as lost,
retransmitted them, and adjusted its congestion window size
to a lower value. Hence, when the retransmission timeout is
expired, the sender feels congestion somewhere in the path
and sets its congestion window size to the minimum possible
amount (one maximum segment size according to Allman et
al. [3]). Also, it stops transmitting new packets and retransmits
the last sent packet in increasing intervals. Now, when the high
priority traffic finishes, the low priority sender starts sending
data but with a very low congestion window size. As the
time passes, during the TCP slow-start, the sender gradually
increases its window size until it reaches its previous amount.
However, the sender loses a significant amount of channel
utilization during this period. Fig. 2 shows this period. The vast
amount of channel utilization that is lost is clear in the figure.
When these periods of high priority traffic are abundant, the
low priority traffic’s predicament becomes even more dismal.

In addition, if the high priority traffic is large enough to
saturate the link and long enough to continue rigorously for
a period of time, no low priority packet will have a chance
to pass SPQ. As a result, the low priority sender will not
receive any acknowledgments and goes into a retransmission
state. The sender, however, will not try forever. Instead, it will
try to resend packets for a period of time and then finally it
will give up, terminating the connection. This is the highest
level adversity SPQ introduces to low priority flows. Braden
[2] explains the procedure to handle excessive retransmissions
of data segments. It introduces two thresholds R1 and R2
measuring the amount of retransmission that has occurred for
the same segment. R1 and R2 might be measured in time units,
or as a count of retransmissions. When the number of transmis-
sions of the same segment reaches or exceeds threshold R1,
TCP should pass negative advice to the IP layer, to trigger
dead-gateway diagnosis. When the number of transmissions
of the same segment reaches a threshold of R2 greater than
R1, TCP should close the connection. The value of R1 should
correspond to at least 3 retransmissions, at the current RTO.
The value of R2 should correspond to at least 100 seconds. For
example, current implementations of Microsoft Windows uses
a parameter called TcpMaxDataRetransmissions [4] which has
a default value equal to 5. This parameter controls the number
of times TCP retransmits an individual data segment before
aborting the connection. Therefore, SPQ can cause termination
of low priority connections.

In this paper, we propose a new approach to alleviate this
problem that we call Amicable Strict Priority Queuing (ASPQ)
to address these shortcomings. Our approach uses the built-in
capabilities of TCP protocol and does not require any changes
to either end hosts, or current existing SPQ middleboxes, such
as commercial SPQ-enabled switches and routers.

We introduce a module named ASPQ controller which

Fig. 2. Low priority traffic’s slow-start state immediately after high priority
queue is empty.

sits behind regular SPQ, and by harnessing the abilities of
TCP protocol we provide a more reliable way to achieve the
maximum possible amount of link utilization without dropping
the low priority connections. We finally evaluate our approach
through simulations.

The remainder of the paper is organized as follows: Section
II presents related work, followed by Section III, which
discusses our methodology. Section IV offers our experimental
results, and Section V concludes the paper.

II. RELATED WORK

Numerous works have addressed the shortcomings of SPQ
[1,5,6]. Kang et al. [5] proposed an opportunistic priority
queuing scheme for mobile broadband wireless systems, sup-
porting both latency-sensitive real-time and best-effort non-
real-time service. Qian et al. [1] built analytical models for
traffic flows under strict priority queuing and weighted round
robin and compare their service behavior. The authors report
that SPQ is unfair since flows with low priority may be
starved. On the other hand, WRR is capable of providing
isolation to individual flows, and is insensitive to other flows’
traffic patterns. Ferrari et al. [6] analyzed the priority queuing
mechanism to verify its effectiveness when applied for the
support of Expedited Forwarding-based services in the differ-
entiated services environment. They adopted an experimental
measurement-based methodology to outline its properties and
end-to-end performance when supported in real transmission
devices.

Freeze-TCP [7] is an end-to-end TCP enhancement mecha-
nism for mobile environments. By exploiting the built-in capa-
bilities of TCP protocol, such as zero window advertisement,
it introduces an approach to address the problems that TCP
protocol has raised in unstable mobile environments, allowing
mobile clients to achieve full network capacity utilization. In
this scheme, the receiver sends zero window advertisements
to the sender when it senses an impending handoff. This
freezes the sender, preventing retransmission timeout or packet
loss. Since Freeze-TCP has been introduced, there have been
numerous approaches that adapt the core idea into solving
various problems in the field of networks [8,9]. Zaghal et
al. [8] offer a scheme that performs loss-free rapid handoff



in mobile networks and switches IP address in the TCP/IP
stack on both end-points. The authors adapted Freeze-TCP
solution in their scheme as a way to avoid packet loss during
handoff and to improve TCP performance. Pournaghshband
et al. [9] introduce an approach to edge network control,
called network dissuation, which makes particular uses of a
network application intolerable, while providing acceptable
services for approved network uses. In order to achieve this
goal, they adopted a modified version of Freeze-TCP into their
proposed “dissuade router”. In their TCP model, if a particular
stream uses up its assigned quota, the dissuade router attempts
to persuade the sender to freeze its TCP congestion control
parameters by sending zero window advertisements. As a
result, the stream enters a silence period, where all further
packets are dropped.

III. METHODOLOGY

As explained in Section I, a regular SPQ middlebox imposes
significant performance degradation on low priority senders,
as TCP senses congestion somewhere in the path, minimizing
its congestion window size. As a result, the sender resumes
the transmission with a very small congestion window size.
This is a standard practice of TCP protocol because it wants
to make sure that the sender only sends the amount of data
that the link can tolerate. Hence, it forces the sender to start
cautiously. Here, however, this TCP’s slow-start mechanism
unnecessarily holds the sender back since the high priority
traffic has already left and the link is fully available for the low
priority, but it naively starts slowly, losing substantial amount
of the available bandwidth.

Our approach to address the shortcomings of SPQ is in-
spired by Freeze-TCP [7], an end-to-end TCP enhancement
mechanism for mobile environments. In such environments,
temporary disconnections (due to signal fading or other link
errors or due to the movements of mobile nodes) can cause
packet loss, which in turn triggers TCP’s slow start mecha-
nism. Freeze-TCP uses the zero window advertisement and
the persist mode capacity of TCP protocol to mitigate this
problem. In Freeze-TCP, if a mobile receiver can sense an
impending disconnection, it will advertise a zero window
advertisement on behalf of the receiver to force the sender into
the persist mode and prevent it from reducing its congestion
window. As a result, Freeze-TCP is able to improve the
network channel utilization.

A. TCP Persist Mode

In regular TCP communication where a sender transmits
data to a receiver, the consuming process on the receiver
side may be slower than the sender. Therefore, the receiver’s
buffer starts filling up, and the receiver advertises progressively
smaller and smaller window sizes. Eventually the receiver’s
buffer becomes full. Therefore, it sends a Zero Window
Advertisement (ZWA) packet to the sender, stating that it
cannot accept more packets. Upon receiving a ZWA packet,
the sender stops sending data and becomes silent, entering a
state called persist mode. Although the sender has stopped

sending packets, similar to what the low priority sender does
as explained before, there is a fundamental difference between
them. Here, the sender keeps all of its current status including
its congestion window size, ready to resume at full speed upon
a signal from the receiver.

During the period of persist mode, the sender sends small
packets called Zero Window Probes (ZWPs) to the receiver
periodically, probing whether or not the receiver is ready
to accept packets again. This probing is necessary since it
precludes the creation of a deadlock. When the receiver has
digested all of the received data and is ready to accept new data
again, it sends the acknowledgement of the last packet it has
already received, but this time, with a window size greater than
zero. This shows the sender that the receiver is ready again.
However, this acknowledgement may be lost somewhere in the
path, as TCP only guarantees the receipt of original data, but
not acknowledgements. Therefore, if the acknowledgement is
lost, the receiver will be waiting for the sender, and the sender
will be waiting for the receiver. As a result, the sender probes
the receiver periodically to prevent a deadlock.

When the sender enters out of the persist mode and resumes
transmitting data, it starts at full speed since it has kept all its
previous status including its congestion window size. Another
important characteristic of the persist mode is that, unlike a
low priority sender facing SPQ, here, the sender does not
terminate the connection. Instead, it continues to send ZWPs
periodically for an indefinite amount of time, as long as the
receiver acknowledges those ZWPs with new ZWAs.

B. Amicable Strict Priority Queuing

With these features in mind, we present an approach to
a reliable and efficient version of Strict Priority Queuing:
Amicable Strict Priority Queuing (ASPQ). By harnessing the
special characteristics of the persist mode, we introduce a
middlebox named ASPQ controller which sits behind a regular
SPQ-enabled device (Fig. 4). An ASPQ controller observes the
traffic from both directions, and is aware of the existence of
any high priority or low priority traffic at any time. It has
an internal table that keeps a list of all of the existing high
and low priority traffic. In the absence of high priority traffic,
low priority can have all of the bandwidth. However, upon the
emergence of the first high priority flow, the ASPQ controller
enters into a special state in which it takes the low priority
senders into persist mode. By taking the low priority senders
into persist mode, we are able to keep their congestion window
intact, enabling them to resume at full speed. Furthermore,
since the senders start probing ZWPs, they will not terminate
the connection. Since it is necessary to respond to this probing,
the ASPQ controller acknowledges those ZWPs on behalf of
the receivers.

In order to put the low priority senders into persist mode,
we must advertise zero window to them. In other words, they
must receive at least one ZWA packet to go into persist mode.
However, this ZWA packet must have special characteristics
and cannot be any acknowledgment packet already sent by
the receiver. Braden [2] states that TCP clients go into persist



mode when the window is shrunk to zero. However, in order
to shrink the window to zero, the receiver must send a new
ACK. In order to achieve this goal, we use in-flight ACKs
to create ZWAs. The ASPQ controller captures the in-flight
ACKs, converts them into ZWAs by setting their window size
to zero, recalculates checksum, and then lets them pass.

The ASPQ controller always keeps a copy of the last ACK
of each flow. When the last flow of existing high priority traffic
finishes, the ASPQ controller immediately signals the low pri-
ority senders by sending the last ACK of their corresponding
flow. Since the window size of the ACK is not zero, the senders
see the ACK as a window update packet (unlike freezing the
senders, unfreezing them does not require the ACK to be new).
Hence, they stop probing, leave the persist mode, and start
transmitting data at full speed.

As a result, Amicable SPQ brings the best possible per-
formance out of low priority senders and maximizes channel
utilization. Nevertheless, it does not impose any changes to
the TCP stack of senders and receivers, or internal workings
of a regular SPQ-enabled device, making it readily deployable
in current systems.

IV. EXPERIMENTS

We evaluated the performance of our approach against
regular SPQ using Network Simulator 3 (ns-3) [10]. In our
previous work [11] we implemented a strict priority queuing
module for ns-3, which was not available before. We used
this module alongside a new module for ASPQ controller in
our experiments. We ran several experiments for two different
scenarios to compare the TCP performance of low priority
traffic in presence of Amicable SPQ to when only a regular
SPQ is in place.

A. Experimental Setup

Our experiments included two senders and two receivers.
One of the senders was chosen as the high priority sender and
the other one was chosen as the low priority sender. Likewise,
one of the receivers was reserved for high priority traffic and
the other one was reserved for low priority traffic. Regular SPQ
was installed on the rightmost egress port of its corresponding
router, and the link connected to that was the bottleneck. The
bandwidths of all of the links were equal to 50 Mbps except
for the bottleneck which was 10 Mbps. The links’ delays were
different in different scenarios. For the first set of experiments
they were set to 5ms. The size of the high priority and low
priority queues were set to 240 packets which is a typical
default queue size found in Cisco switches. Both of the high
priority and low priority senders sent 100 MB of data, with
the packets of 1000 bytes. With the start of the experiment,
the low priority sender starts transmitting data and saturates
the link. In order to interrupt the low priority traffic, after 2
seconds the high priority sender begins transmitting data and
it continues the transmission until it is finished. Then the low
priority sender resumes its transmission and goes on until the
end of the experiment. Each experiment was run twice, once
for ASPQ and once for regular SPQ. The topology of the

Fig. 3. The SPQ experiments topology

Fig. 4. The ASPQ experiments topology

regular SPQ experiments was the same as ASPQ’s, except that
ASPQ controller was replaced by a regular router. Fig. 3 and
Fig. 4 illustrate the topologies of SPQ and ASPQ experiments
respectively.

B. Results

First, we ran two experiments, one for ASPQ and one for
SPQ. We were particularly interested in the period where
high priority connection finishes transmitting data causing the
resumption of the low priority traffic. Fig. 5 shows the results
of both of the experiments for that period.

As it is clear in the figure, the low priority sender in
Amicable SPQ leaves the persist mode promptly and reaches
approximately the maximum available bandwidth utilization.
SPQ, however, saturates the link for a short period of time,
and after that starts slowly and struggles to reach the maximum
link utilization again. The short successful period of SPQ is
due to a flow of accumulated packets in the SPQ’s low priority
queue, which reaches the receiver first. After that, the actual
packets from the sender arrive.

In the second scenario, we ran a set of experiments with
different RTTs. The link delays of all of the links were set
to 2ms, except for the link between the low priority sender
and the ASPQ controller. Different sets of values ranging from



Fig. 5. Comparison of the performance of ASPQ against SPQ

TABLE I
DETAILS OF MEASUREMENT OF ∆GOODPUT AGAINST DIFFERENT RTTS

RTT ASPQ Avg. Goodput SPQ Avg. Goodput ∆Goodput
(ms) (kbps) (kbps) (kbps)
30 4720.96 4716.42 4.54
50 4714.18 4686.63 27.55
70 4706.94 4628.15 78.79
90 4699.23 4542.95 156.28

110 4596.41 4364.91 231.5
130 4214.85 3987.26 227.59
150 3982.6 3759.93 222.67
170 3613.62 3358.5 255.12
190 3373.72 3092.56 281.16
210 3163.19 2869.17 294.02

10ms to 100ms were used for the link. The average goodput for
the ASPQ low priority sender traffic and the SPQ low priority
sender traffic was measured separately for each experiment and
their difference was recorded as ∆Goodput. By measuring this
value we investigate the effectiveness of ASPQ compared to
SPQ. In addition, we attempt to analyze the effects of RTT on
the performance of ASPQ and SPQ. Fig. 6 and Table I shows
the results of our experiments.

We observed that the amount of ∆Goodput always remained
positive as ASPQ performed better comparing to regular SPQ.
Therefore, the results confirm the effectiveness of ASPQ. In
addition, we observed that in larger RTTs, ASPQ performance
was not highly affected, but the performance of regular SPQ
deteriorated significantly. The reason is that in TCP’s slow-
start mechanism, the sender begins transmission of data with
minimum congestion window size, and each time an ACK is
received from the receiver, TCP increases the window size. As
in larger RTTs the amount of time required for the ACKs to
reach the sender is higher, it takes more time for the senders
to pass the slow start state. Therefore, with the increase of
RTT the quality of their performance deteriorates.

V. CONCLUDING REMARKS

In this paper we discussed the shortcomings of Strict
Priority Queuing and presented a new approach to improve
the TCP performance of low priority traffic. Furthermore,
we investigated the effectiveness of our approach through a
series of experiments via Network Simulator 3. The results

Fig. 6. Measurement of ∆Goodput against different RTTs

confirmed that Amicable Strict Priority Queuing provided a
better performance for low priority traffic.

As a future work, we intend to investigate how ASPQ acts in
real networks by conducting a series of live experiments. The
ASPQ controller will be implemented using Click Modular
Software Router, a Cisco Catalyst 3750 switch will be used
as a SPQ enabled middlebox, and PlanetLab nodes [12] will
be used as the senders and receivers. In addition, we intend
to implement our approach via Software Defined Networking
(SDN). As SDN is offering a more central view of networks
and is making networks smarter, we find it suitable for further
research and experimentation.

REFERENCES

[1] Y. Qian, Z. Lu, and Q. Dou, “Qos scheduling for nocs: Strict priority
queueing versus weighted round robin,” in IEEE International Conference
on Computer Design, 2010.

[2] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
RFC 1122. [Online]. Available: https://tools.ietf.org/html/rfc1122/ [Re-
trieved: November, 2015]

[3] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC
2581. [Online]. Available: https://tools.ietf.org/html/rfc2581/ [Retrieved:
November, 2015]

[4] “How to modify the TCP/IP maximum retransmission
time-out,” Microsoft Support Center. [Online]. Available:
https://support.microsoft.com/en-us/kb/170359/

[5] C.G Kang, T.W. Kim, and J.H. Kim, “Adaptive delay threshold-based
priority queueing scheme with opportunistic packet scheduling for in-
tegrated service in mobile broadband wireless access systems,” IEEE
Communications Letters, vol. 12, no. 4, 2008, pp. 241-243.

[6] T. Ferrari, G. Pau, and C. Raffaelli, “Measurement Based Analysis of De-
lay in Priority Queuing,” Proceeding of IEEE Global Telecommunications
Conference Globecom, 2001.

[7] T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: A True
End-to-End TCP Enhancement Mechanism for Mobile Environments,”
INFOCOM’00, 2000, pp. 1537-1545.

[8] R. Y. Zaghal, S. Davu, and J. I. Khan, “An interactive transparent protocol
for connection oriented mobility performance analysis with voice traffic,”
in Proc. of 3rd International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks, 2005, pp. 219-228.

[9] V. Pournaghshband, L. Kleinrock, P. L. Reiher, and A. Afanasyev,
“Controlling applications by managing network characteristics,” in IEEE
International Conference on Communications (ICC), 2012.

[10] “The ns-3 Network Simulator,” Project Homepage. [Online]. Available:
http://www.nsnam.org [Retrieved: November, 2015]

[11] R. Chang, M. Rahimi, and V. Pournaghshband, “Differentiated Service
Queuing Disciplines in NS-3,” in The Seventh IARIA International
Conference on Advances in System Simulation, 2015.

[12] “PlanetLab - An open platform for developing, deploying, and accessing
planetary-scale services”, [Online]. Available: http://planet-lab.org/ [Re-
trieved: November, 2015]


