Extras, Assignment 2
 Math 651b \& Phys 640

Problem I. The 3 -sphere, $S^{3}(R)$, of radius R is the hypersurface in \mathbb{R}^{4} given in Cartesean coordinates x, y, z, w by,

$$
x^{2}+y^{2}+z^{2}+w^{2}=R^{2}
$$

Polar coordinates in \mathbb{R}^{4} are given by,

$$
\begin{aligned}
w & =R \cos \chi \\
z & =R \sin \chi \cos \theta \\
y & =R \sin \chi \sin \theta \sin \phi \\
x & =R \sin \chi \sin \theta \cos \phi,
\end{aligned}
$$

where χ and θ range from 0 to π and ϕ ranges from 0 to 2π. Derive an expression for the metric on $S^{3}(R)$ induced by the usual dot-product (i.e., the Euclidean metric) on \mathbb{R}^{4} and express it in terms of χ, θ, ϕ. (For the answer, see prob. 2.9, page 52 of the text).

Problem II. Find the volume of $S^{3}(R)$.

Problem III. Find the area of the 2 -sphere defined by $\chi=\chi_{0}$

