Extras, Assignment 2 Math 651b & Phys 640

Problem I. The 3-sphere, $S^3(R)$, of radius R is the hypersurface in \mathbb{R}^4 given in Cartesean coordinates x, y, z, w by,

$$x^2 + y^2 + z^2 + w^2 = R^2.$$

Polar coordinates in \mathbb{R}^4 are given by,

$$w = R \cos \chi$$

$$z = R \sin \chi \cos \theta$$

$$y = R \sin \chi \sin \theta \sin \phi$$

$$x = R \sin \chi \sin \theta \cos \phi,$$

where χ and θ range from 0 to π and ϕ ranges from 0 to 2π . Derive an expression for the metric on $S^3(R)$ induced by the usual dot-product (i.e., the Euclidean metric) on \mathbb{R}^4 and express it in terms of χ, θ, ϕ . (For the answer, see prob. 2.9, page 52 of the text).

Problem II. Find the volume of $S^3(R)$.

Problem III. Find the area of the 2-sphere defined by $\chi = \chi_0$.