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Spectral parameters from inhomogeneously broadened or-
ganic-free-radical EPR spectra, using nearly all the information
in the spectrum, were extracted rapidly and accurately using an
approximation of the spectral shape by the sum of a Lorentzian
and a Gaussian function of equal linewidths. This approximate
shape was fitted to the spectrum by a nonlinear least-squares
fitting algorithm. Line position and overall spectral width were
extracted directly, whereas component Lorentzian and Gaussian
widths were extracted with further analysis of the fit parameters.
We investigated the accuracy with which the sum function can
be fitted to the more familiar Lorentzian/Gaussian convolution
(Voigt) representation of EPR spectra for both a singlet and a
closely spaced (overlapping) doublet spectrum. The strategy was
applied, first, to synthetic spectra involving noise added to the
Voigt doublet and, second, to spectral data from a nitroxide
manifold consisting of a closely spaced doublet. This parametric
extraction strategy increased the accuracy of the line-splitting
measurement by an order of magnitude compared with other
methods. It allowed deconvolution of the component Lorentzian
linewidth that is consistent with previous direct measurements.
It may allow the probing of subtle physical variations which
have heretofore been difficult, if not impossible, to measure.

€: 1993 Academic Press, Inc.

INTRODUCTION

This paper describes a fast and accurate fitting algorithm
for spectral lines subject to both inhomogeneous and ho-
mogeneous broadening. A commonly used representation
(1, 2) of an inhomogeneously broadened lineshape is a con-
volution of the Lorentzian spin-packet form with a Gaussian
approximation to the binomial (or multinomial ) weight of
the unresolved spectral lines. The derivative of this convo-
lution will be referred to as the Voigt or Voigt profile (/).
The computation time involved in the evaluation of this
convolution has discouraged its wide use in fitting, in which
multiple iterations may be necessary for adequate fits. How-

+ Current address: Department of Astronomy and Physics, California State
University at Northridge. Northridge. California 91330.
1 On leave of absence from Ruder Boskovic Institute, Zagreb, Croatia.

ever, it is well known that the Voigt is well represented by a
function that is the sum of a Gaussian function and a Lor-
entzian function, for both absorption ( 3) and first-derivative
line profiles [(4) and carly Varian EPR manuals]. In this
paper, all references to spectral lines imply first-derivative
lines unless otherwise specified.

The sum of derivative Gaussian and Lorentzian func-
tions—referred to as the sum function—may be evaluated
quite rapidly and [(4), vide infra] with excellent approxi-
mation to the Voigt. The previous context in which this
functional form was presented (4-6) presumed an excellent
signal-to-noise ratio, in which case a few representative points
of the spectrum were sufficient for reliable extraction of the
physically relevant parameters of the lineshape. The extrac-
tion of spectral parameters with the use of only a few points
of the spectrum ignores the information in the spectrum not
included in the immediate region of these points. Under
conditions of high noise or sample instability (e.g., those
involved with measurements from a hiving animal), it may
be necessary to bring the information of the full spectrum
to bear on the extraction of spectral parameters. This can be
done with spectral fitting.

We describe the adequacy with which two formulations
of the sum function can fit both a Voigt function form and
spectral data. The formulations differ in their normaliza-
tion—one is normalized to unit peak-to-peak amplitude, and
the other is normalized to unit area. The sum functions were
first fitted to a singlet Voigt line. The deviation of the spectral
parameters of the Voigt from those of the sum functions
depends on the region over which the spectrum is fitted.
Next, the sum function was used for extraction of spectral-
shape parameters of a doublet of Voigt lines with line splitting
equal to 1.5 peak-to-peak linewidths. We also investigated
the effect of noise added to the spectrum.

Finally, the technique was applied to the quantitative ex-
traction of the physical variables measured in the EPR spec-
trum of a nitroxide designed to optimize spin-label oximetry.
This example presents a system of substantial complexity—
an overlapping doublet each of whose lines consists of the
same inhomogeneous and homogeneous components, From
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this system, spectral fits and quantitative spectral information
were derived, and inhomogeneous and homogeneous line-
shape components were measured. Comparisons with direct
measurements of the homogeneous lineshape parameters
validate the method.

BACKGROUND

Inhomogeneously broadened EPR spectra can be de-
scribed with both good fidelity and good justification by the
derivative of the normalized convolution of Lorentzian and
Gaussian functions, or the Voigt function, provided that the
inhomogeneous, or Gaussian, component of the linewidth
is not too large. Following the conventions of Bales (4), this
convolution can be reduced to a functional form, the shape
of which can be characterized by a single parameter, Xvoig.,
as

(2)
312x32(ABG,) AB,
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Here, ABF, is the Lorentzian peak-to-peak linewidth, ABS,
is the Gaussian peak-to-peak linewidth, and By is the center
of the line. K is equal to the doubly integrated intensity or
the area of the absorption line; Xy, is proportional to the
parameter p used by Zemansky (7) and to the parameter a
of Castner (&) and Poesner (9), and

u = (2)"%(B - B,)/ABS, [4a]
v = (2)"*(B' — By)/ARBS, [4b]

The nonderivative convolution of the Gaussian and Lor-
entzian is approximated to 0.7% by a variably weighted sum
of Gaussian and Lorentzian terms of equal peak-to-peak
linewidth (3). The derivative spectral form presented above
can be approximated to 0.5% (10) by the vanably weighted
sum of the derivatives of the Gaussian and Lorentzian func-
tions of equal peak-to-peak linewidth. This sum can be de-
scribed by two forms which differ in their normalizations:
Fy is normalized to unit peak-to-peak amplitude (¥},), and
F, is normalized to unit doubly integrated intensity (4) (4):

8x
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For Vy, = |, the peak-to-peak signal amplitude of the deriv-
ative sum function is unity, independent of . For 4 = 1,
the doubly integrated intensity is unity, independent of 7, :

(7]

By is the center of the line, ABY, is the peak-to-peak linewidth
common to both the derivative Gaussian and the Lorentzian
components of both sum functions, and 5y and 7, is a nor-
malized, variable-weight term for Fy or F,, respectively.
Simple linear transformations which relate the weights of
the two functional forms appear in the Appendix.

The sum-function spectral shape is determined by a single
parameter, n, or ny (=7), as recognized by Wertheim et al.
(3). Because the Voigt function is dependent on a single
parameter, Xvoiy, a transformation can be established be-
tween 1 and Xy . Thus, should information concerning the
Gaussian and Lorentzian component linewidths be desired,
fits of data to the sum function can be performed rapidly,
and the overall linewidth ABY, and the sum-function weight
term ny OF 14 can be extracted and transformed to the con-
volution parameter Xvyoig-

A useful form of the transformation from 7 to Xv,g is

x = 2(B — Bo)/ ABY,.

an’*+ by + ¢

Xvoigt = m . (8]

The separate Gaussian and Lorentzian widths of the con-
volution can be derived from 7 and ABY, of the sum function
as follows. The Xy,iu can be obtained from [8]. Then, from
the relationships of Dobryakov and Lebdev, which are ac-
curate to 0.5% (4, 10),

L+ 4XF0ig)' 2 — 1
ABL = Ang( Vzg‘) [9a]
2xVoigl
ABS, = XvoigABS,. [9b]

MATERIALS AND METHODS

Fitting Strategy

The basic strategy of this approach is fourfold: (1) Derive
a rapidly evaluable analytic functional form with variable
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parameters, some of which may have no particular physical
basis. Within the likely range of variation of its parameters,
the functional form must fit the actual spectrum well. The
functional form chosen, as discussed above, consists of a
single line or of two lines, each of which is the sum of Lo-
rentzian and Gaussian functions. (2) Use this function to
fit a relatively complex spectrum by employing a nonlinear
least-squares fitting algorithm. (3) Relate the fit parameters
to physically relevant parameters by means of a predeter-
mined map. (4) Extract statistical uncertainties in the fit
parameters due to spectral noise.

The goodness-of-fit criterion was the X 2. The use of an
analytical functional form, in Eq. [5] or [6], to fit the spec-
trum allowed the use of parameter gradient information.
The Levenberg-Marquardt algorithm provided rapid con-
vergence to global minima provided that reasonably good
test functions and initial parameters were selected. This al-
gorithm is well known and available (/ /) and allowed a rapid
estimate of uncertainties in fit parameters.

For all fits to be described, initial linewidths, line heights,
and line positions were generated by searching for crude local
maxima and minima in the input data. The initial sum-
weight parameter n was set equal to 0.5. The initial linear
baseline, where applicable (i.e., with spectral data), was de-
termined by averaging of the first and last 5% of the spectral
data points.

The adequacy of the parameters extracted from the sum
function relative to those of the Voigt was estimated by
treatment of points of the Voigt (Eq. [2]) as synthetic data
and fitting the sum function to them. A Xy, and an initial
linewidth were chosen. The Gaussian and Lorentzian line-
widths were evaluated from Eq. [9] and assigned to be the
exact values of these parameters. The “exact” peak-to-peak
linewidth of the Voigt with these component linewidths was
evaluated numerically from the full Voigt integral. The exact
Voigt linewidth was then compared to ABS,, which was as-
signed to the sum function by the fitting procedure. This
procedure allows the variation of the input Xy, over a rel-
atively large range while maintaining the linewidth constant
to within 0.5%.

The Voigt doublet was modeled as the sum of two deriv-
ative convolution functions with the peak-to-peak linewidth
multiples of the line splitting ranging from 2/3 to 4. This
modeling focused on a peak-to-peak linewidth/splitting ratio
of 2/ 3 or a full-width-at-half-maximum/ splitting ratio of ~ 1.
This corresponds to the mean overall linewidth /splitting ra-
tio of the nitroxide spectral data to be discussed. Each Voigt
line was assumed to have the same height and Lorentzian
and Gaussian components. The two sum functions that were
fitted to this doublet were constrained to have identical line
parameters (common width AB}, spectral amplitude, and
Lorentzian /Gaussian weight 5 ) except for the line positions
that define the splitting.

For some measurements, random noise was added to the
Voigt doublet profile. One hundred sets of Gaussian noise
(12) were generated of standard deviation (o) equal to 2.5%
of the V,, and added to the Voigt. The sum function was
then fitted to each of the resulting spectra.

Sample Preparation and Spectral Acquisition Conditions

The compound 4-hydro-3-carbamoyltetraperdeutero-
methyl-3-pyrrolinyl-1-oxy, mHCTPO (13, /4), has collapsed
methyl splittings via the deuterium substitutions. The ring
hydrogen is retained. This induces a splitting of approxi-
mately 500 mG which varies with spin-label concentration
(but not with dissolved oxygen concentration) (/3), tem-
perature, and solvent ( /5). The linewidth, which varies with
the spin-label concentration and oxygen concentration (/3),
varied from 280 to 500 mG under the conditions described.
The compound synthesis has been described previously (/4).
We estimate the contamination of the ring hydrogen with
deuterium to have been 2%. Samples were measured at room
temperature (27°C).

Spectra were measured at 250 MHz (16). This low fre-
quency was chosen for measurements to be made in the
tissues of a living animal. There is little change in the aqueous
spectra relative to those at X band ( /6, 17). A low magnetic
field (¢ = 2 is ~90 G) gives good stability. Samples of
mHCTPO were prepared as 10 ml, 0.05 to 1.0 m M aqueous
solutions. Oxygen concentrations varied from less than 1 to
268 uM. The radiofrequency power was | mW (B, ~ 40
mG), the modulation amplitude was 0.1 G, the modulation
frequency was 5.12 kHz, the time constant was 0.1 s, and
the data point acquisition time was 0.1 s, with 256 points
per scan, 10 scans per spectrum. The spectral field window
encompassed at least four individual linewidths of the central
nitrogen manifold doublet plus the doublet splitting.

Sum Function for Fitting of Nitroxide Spectra

The function to which the nitroxide spectra were fitted
consisted of a pair of Gaussian/Lorentzian sum functions
constrained to have identical amplitudes, common line-
widths ABY,, and Lorentzian weights 7. A linear baseline
term was included in the fitting function. A third line, the
amplitude of which was 4% that of the amplitude of each
doublet line and the width of which was fixed to be 16%
larger than that of the doublet linewidth, was added to the
fitting function and centered between the doublet lines. This
represents contamination of the mHCTPO with perdeuter-
ated CTPO.' From the 7- Xy transformation for the Voigt

! Early syntheses of the mHCTPO compound showed constant deviations
of the fitting function from spectra of the central nitrogen doublet manifold.
Residuals indicated a third line, centered between the doublet line, consistent
with approximately a 15% perdeuterate contamination. Prolonging the ex-
change step in the synthesis of the mHCTPO reduced the contamination
to 2%.
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doublet with a fit region of four linewidths and from Eqgs.
[9a] and [9b], Lorentzian and Gaussian linewidths were
extracted from the doublet spectra.

Uncertainty Estimates in the Parameters from Fits to
Nitroxide Spectra

Varnance estimates in the parameters extracted from the
fits were obtained by multiplication of the diagonal elements
of the covariance matrix generated by the Levenberg—Mar-
quardt algorithm (the ‘““error” matrix ) by the X2 per degree
of freedom in the standard fashion (18, 19). Residuals in-
dicated that there was no systematic deviation of the fit from
the data. Histograms of the residuals were consistent with a
Gaussian distribution (data not shown). Estimates of un-
certainties of dependent parameters (e.g., ABk, in Eqs. [8]
and [9]) were propagated in the standard fashion, assuming,
for simplicity, that parameters extracted directly from the fit
were uncorrelated (20).

In fits to hypotheses thought to reflect the behavior of the
spectral parameters, weights were assigned to each data point
that were equal to the inverse of the variance (21). A simpler
hypothesis governing the behavior of the data was chosen
over a more complicated hypothesis when the more com-
plicated hypothesis failed to reduce the X per degree of free-
dom of the fit by more than 30%. Variance in fit parameters
of the hypothesis was evaluated with variable point weighting,

RESULTS

Fitting Spectral Simulations

Both of the sum functions fitted the derivative singlet Voigt
to within at most 7 parts per thousand. Fit parameters ex-
tracted with both normalizations were virtually identical.
The capability of both the area- and the height-normalized
sum-function fits to extract intrinsic first-derivative spectral

TABLE 1
Percentage Deviation of Various Parameters of the Singlet
Sum Function from Those of the Singlet Voigt for Various
Fit Regions

Maximum Maximum Maximum
deviation deviation deviation
Parameter (Xvoig) (Xvoig) (Xvoig)
Fit region (linewidths) 32 4.0 10.0
Linewidth (%) 0.2 (3) 0.2 (0.5) 0.5(1)
Height (%) 0.5(1) 0.6 (1) 0.9 (1)

Note. The fit region is defined in units of peak-to-peak Voigt linewidths.
Linewidth refers to the deviation of the fitted overall linewidth of the sum,
defined by the fit parameter ABY,,, the common Gaussian, and the Lorentzian
linewidth used in Egs. [5] and [6], from the peak-to-peak linewidth of the
Voigt. The Xy, shown in parentheses is selected from the values 0.25, 0.5,
1.0, and 3.0 at which the parameter deviation was maximum.

TABLE 2
Percentage Deviation of Various Parameters of the Doublet
Sum Function from Those of the Doublet Voigt for Various
Fit Regions

Maximum Maximum Maximum
deviation deviation deviation
Parameter (Xvoig) (Xvoig) (Xvoig)
Fit region (linewidths) 32 4.0 10.0
Linewidth (%) 0.2 (3) 0.2 (0.5) 0.6 (3)
Height (%) 0.6(1) 0.6 (1) 1.0 (1)
Splitting (%) 0.3(1) 0.3(h) 0.4 (1)
R parameter (%) 0.3(0.5) 0.3(1) 0.4(1)

Note. The fit region is defined in units of the number of peak-to-peak
Voigt linewidths plus the doublet splitting. The definition of the sum-function
linewidth is as given in the note to Table 1, with the lines of the doublet
assumed to have identical width. The linewidth deviation is that of the fitted
overall linewidth of each line of the sum-function doubler from the exact
peak-to-peak linewidth of each line of the Voigt doublet. The R value is
defined in the legend to Fig. L. Fits for which height- (Eq. [5]) and area-
normalized functions (Eq. [6]) were used gave identical results. Again, the
Xvoige Shown in parentheses is selected from the values 0.25, 0.5, 1.0, and
3.0 at which the parameter deviation was maximum.

parameters was tested by comparison of the overall linewidth,
the line center, and the height of the Voigt with those derived
from the sum functions. The fidelity of the sum-function fit
to the Voigt will depend on Xy, and the field (or frequency)
interval of the fit. Table | shows the percentage deviation of
vanous parameters of the fitted sum function from those of
the Voigt. These values are given for the Xy, at which the
deviation was maximal. With optimal fit regions, ABY, and
Vop deviated less than 0.2 and 0.6%, with deviations of less
than 1% for arbitranly large fit regions.

The fit to two overlapping lines, primarily a pair with line-
width two-thirds of the splitting, assumed to have identical
homogeneous and inhomogeneous components, presents a
substantially greater degree of complexity. Again, the fidelity
of the fit of the sum function to the Voigt is dependent on
the fit region, which is defined as the number of Voigt line-
widths plus the line splitting, and Xvy,. Table 2 shows the
percentage deviation of various parameters of the fitted sum-
function doublet from the corresponding parameters of the
Voigt, for Xvqg at which the deviation was maximal. Of
particular note is the splitting reproducibility, where, for a
fit region of four linewidths plus the splitting, a maximum
deviation of 0.3% was measured. The R parameter, a doublet
spectral-shape parameter defined in the legend to Fig. 1, was
reproduced to within 0.3% with this fit region.

It seems clear from the above that fitting should be done
in two passes. From the first pass, an initial estimate of the
linewidth can be obtained. The second pass is performed
with fit-region restriction. The extra time which this proce-
dure involves is relatively small in that the first pass provides
good initial parameters for the second pass.
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FIG. 1. (A) Voigt doublet (- « -) to which Gaussian noise of standard

deviation ¢ = 2.5% }, has been added with doublet sum-function fit
(—). The fit region is four peak-to-peak linewidths plus the splitting as
indicated in the figure. The Voigt doublet linewidth is 2/3 of the splitting.
Also shown are the heights of the flanking peak and trough (Y') and the
central trough and peak { X' ). An intrinsic shape parameter, the ratio of these
heights designated R = X/Y, provides a lineshape measure that is quite
sensitive to linewidth and splitting. ( B) Residuals of the Voigt without noise
minus the sum function. The residual scale is the same arbitrary unit as that
for the Voigt and sum functions,

The transformation between n and the convolution line-
width ratio Xy, was derived from fits of the sum-functional
form to Voigt profiles for different input values of Xvig
that yield corresponding values of 5. The (Xyeig, ) pairs
are shown in Fig. 2 for both the doubly integrated intensity-
and height-normalized sum functions. Coeflicients of the
rational function, Eq. [ 8], are derived by fitting Eq. [8] to
the - Xvoig pairs for both the area- and the height-nor-
malized sum functions. The coeflicients for typical fit re-
gions are enumerated in Table 3. The n determined by the
sum-function fit for a particular input Xy, varies with the
fit region, as indicated by the variation of the coefficients
in Table 3. To indicate the effect that the fit region has on
the 17— Xvoiy transformation, the deviation of the Xy, at a
given 7 for various fit regions from those calculated for a
fit region of four linewidths is shown as a function of Xv.ig
in the insert to Fig. 2. As with the singlet, the doublet »-
Xvoig transformation is specific for the fit region; use of a
fit region other than that for which the transformation is

specified results in the errors indicated in the insert to Fig.
2. The transformation for the doublet differs from that of
the singlet. The coefficients defined as for the singlet are
shown in Table 3.
Linewidth/Splitting Ratio Dependence of Fit Fidelity

The fidelity of the doublet sum-function parameters to
those of the Voigt depends on the ratio of the peak-to-peak
linewidth to the splitting. Table 4 shows the maximum de-
viation of sum-function fit parameters from the Voigt pa-
rameters with a fit region of the splitting plus four linewidths
for different linewidth-to-splitting ratios. With peak-to-peak
linewidth-to-splitting ratios of 2/3 and 1, the quantitative
results were virtually identical. At a peak-to-peak linewidth-
to-splitting ratio of 1, the central trough peak feature was no
longer visible (R = 0) (data not shown). Nonetheless, for
the fitting of the sum function to the Voigt doublet, the lines
appeared well decoupled by the fitting. As can be seen in
Table 4, for larger peak-to-peak linewidth-to-splitting ratios,
the fitting fidelity deteriorated rapidly.

Fitting a Noisy Voigt Doublet

The moderately noisy synthetic spectrum in Fig. { ( Voigt
+ Gaussian noise, ¢ = 2.5% F,,;,) is shown with a sum-func-

-4
2
=
=
5 -~
) a
1 =
o
47 >
1 37473
3 XVoigt
% 1
=
2
> 27
14
OJ[;T T T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
7

FIG. 2. Plot of the input Gaussian/Lorentzian linewidth ratio of the
Voigt singlet, Xvg, vs the sum-function weight parameter, », derived from
the sum-function fit to the Voigt. A, Xveig VS 74, the area-normalized sum-
function Lorentzian weight parameter; O, Xyqg VS nu. the height-normalized
sum-function Lorentzian weight parameter. The fit region is four peak-to-
peak linewidths. The interpolating lines are fits to Eq. [ 8] with the parameters
given in Table 3. (Insert) The change in Xy, at a given value of 5 induced
by a change in the fit region from the Xy evaluated with a reference fit
region of four linewidths. O, —0.8 linewidths; [J, +1 linewidth; A, +3 line-
widths. For a shift of the fit region by one linewidth from four, there is a
shift in the Xy, (and potential misassignment) of approximately 5%.
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TABLE 3
Coefficients for the 7—Xy,i, Transformation Indicated in the Equation [Eq. (8)] Xvei = (an* + bn + ¢)/(n* + dn + &) for Various
Fit Regions, Defined in Units of Peak-to-Peak Voigt Linewidths

Fit Line Fit
normalization type region a b ¢ d e

Area Singlet 3.2 ~2.49082 5.68959 —3.20739 -1.07298 —-0.00460
4.0 —2.35775 5.42045 —-3.07144 —1.0748 —0.00465
5.0 —-2.19226 5.09119 —2.90817 —~1.07901 —0.00449
7.0 —2.07936 4.86226 —2.79250 —1.08176 —0.00407
Doubilet 3.2 —2.26353 5.24725 —2.99338 —-1.08211 -0.00514

4.0 —2.11240 495808 —2.85612 ~1.08806 —0.00481
5.0 —1.95763 4.64381 —2.69693 —1.09142 —0.00463
7.0 —1.83688 4.40630 —2.58095 -1.09780 —0.00353
Height Singlet 3.2 —0.26625 1.36127 —1.13317 —1.34042 -0.00150
4.0 —0.23627 1.28380 —1.08474 —1.33738 —-0.00201
5.0 —0.16482 1.17093 —1.04828 —1.37594 -0.00137
7.0 —0.13915 1.10447 -1.00719 —1.37573 —0.00163

Doublet 32 -0.4317 1.3730 —0.9486 —~1.1187 —-0.0112

4.0 —-{1.3808 1.2814 -0.9084 —1.1269 -0.0110

5.0 -0.3289 1.1809 —0.8601 —1.1346 —-0.0105

7.0 -0.2937 1.1089 —-0.8236 —~1.1389 —0.0099

Note. Fit-region changes induced a 5% change in the Xy per linewidth change in the fit region. The coefficients for the 7—Xyoig transformation for the
doublet are also presented. The doublet, which was the principal focus of the spectral modeling, had a linewidth/splitting ratio = 2/3. The difference
between the doublet and singlet 7—-Xv,;, transformations is roughly that of singlet transformations differing in fit regions by two linewidths.

tion fit. Table 5 summarizes the results obtained with the
area-normalized sum function to fit the Voigt doublet (peak-
to-peak linewidth /splitting = 2/3) to which 100 sets of 2.5%
noise were added. The results are given for a fit region of
four linewidths plus the splitting, but they were essentially
the same for fit regions of the splitting plus three to seven

TABLE 4
Percentage Deviation of Various Parameters Extracted from
the Sum Function from the “Exact” or Input Values from the
Voigt Tabulated for Different Linewidth (AB)-to-splitting (4)
Ratios

Linewidth Splitting Height

discrepancy discrepancy discrepancy
AB/A (%) (X) (%) (x) (%) ()
2/3 0.2 (3) 0.25 (1) 0.6 (1)
1 0.2 (1, 3) 0.1(1,3) 0.4 (1)
2 2.6 (1) 2.5(1,3) 0.7 (1)
4 3 22(1,3) 0.7.(1)

Note. AB/A less than 2/3 was not considered insofar as the similarity of
the doubilet result to the singlet result indicates the fitting procedure to have
decoupled the lines adequately. The deviations were evaluated with a fit
region of 4 linewidths plus the splitting. Other fit regions (3, 3.2, 5, and 7
linewidths plus the splitting) gave nearly identical results. The numbers are
the maximum among a set of Voigt profiles with Xvgg = 0.25, 0.5, 1.0, and
3.0. The Xvoig. in parentheses, of maximum deviation is indicated.

linewidths. The deviations of the mean from the zero noise
deviation were comparable to the standard deviation of the
mean. Thus, no bias was introduced into the fits by Gaussian
noise. The population standard deviations for parameters
intrinsic to the spectral shape (e.g., height or linewidth ) were

TABLE 5
Characteristics of the Distributions of Fit Parameters from
Fits to a Voigt Profile to Which 100 Sets of 2.5% Noise, as
Defined in the Text, Were Added

Mean value — zero
noise value
(% deviation)

Estimated population
standard deviation (%)

ABY, 0.012 0.17
Splitting 0.005 0.04
Height 0.03 0.12
R value 0.04 0.24
AB, 0.03 1.5
ABg, 0.15 4.2

Note. The values are the maximum among fits performed with a set of
Xvoie = 0.25, 0.5, 1.0, and 3.0 and a fit region = 4.0 linewidths plus the
splitting. Other fit regions gave similar numbers. Note that the standard
deviation of the mean in each case is {/10th the standard deviation. The
similarity of these standard deviations of the mean to the difference between
the zero noise fit parameters and the mean value of the parameters extracted
from the noisy spectra indicates that the Gaussian noise has not biased the
mean.
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more than an order of magnitude smaller than the noise
standard deviation. The fits to the Lorentzian and Gaussian
components of the Voigt when the n—Xv,, transformation
was used were ‘‘noisier” than intrinsic shape parameters due
to the nonorthogonality of the component functions.

Fitting Data

Figure 3A shows the results of a typical fit of the area-
normalized sum function to a low-noise (ongise ~ 0.5%)
spectrum from the central nitrogen manifold of a 100 pM
nitrogen-equilibrated sample of mHCTPO. Figure 3B shows
the residuals. It is difficult to discern any systematic variation.
Both normalizations (area and height) gave identical line-
widths, line spacings, and line heights.

In Fig. 4 the Lorentzian linewidth is plotted as a function
of oxygen concentration for six spin-label concentrations
from 0.05 to 1 mM. The expected linearity of the response
is verified. The slope is 550 £ 13 mG/m /. Also plotted in
Fig. 4 are data from the work by Hyde and Subczynski at
0.1 mM and 10 GHz; they measured the linewidth of the
individual hydrogen lines in fully protonated CTPO (22).
This is a direct measure of the Lorentzian component. There
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FIG. 4. Lorentzian linewidth of the central doublet lines of mHCTPO
vs molecular oxygen concentration for different concentrations of mHCTPO.
Oxygen concentration is derived from a Henry's law constant of 12.5 uM/
% ( 1.64 uM/mm) in resonator room-temperature (27°C) water (43). The
Lorentzian (spin-packet) linewidth is extracted from the sum-function fits
over a fit region of the splitting plus four linewidths in a two-pass fit. Also
shown isa set of lines (- - -) fitted to the data with the hypothesis of identical
slopes as a function of oxygen concentration, but a different intercept for
each spin-label concentration. The common slope is 550 + 13 mG/mAM.
The individual point uncertainties and slope uncertainties were derived as
described in the text; they are measures of random noise only. The direct
measurement of the Lorentzian (spin-packet ) component at 37°C by Hyde
and Subczynski (22) () is also shown uncorrected for temperature. Mea-
surements (data not shown) indicate that the correction for temperature is
less than 10 mG. O, 50 pM: [J, 100 uM; B, 100 uM; A, 200 uM; ¢, 400
uM: 4+, 750 M X, 1000 pM.

is very good agreement with the measurements presented
here. The Lorentzian linewidth is plotted vs spin-label con-
centration at various equilibrating gas oxygen mole fractions
in Fig. 5. A linear relationship is seen, with a slope of 167
+ 3 mG/mAf that is independent of the oxygen concentra-
tion,

In Fig. 6, the hyperfine coupling vs concentration, fitted
at six spin-label concentrations, is plotted from 0.05 to 1
m M. Each point represents a total of 12 measurements taken
from samples equilibrated with N, /O, gas at six O, fractions
ranging from less than 0.1 to 21.5%. The error bars indicated
are the standard errors of the means of measurements taken
with the entire set of oxygen concentrations. These error
bars are typically 0.3 mG. The coupling diminished linearly
from an extrapolated zero concentration value of 518 + 2
mG with a slope of —27 + 2 mG/mM (errors include a
systematic allowance), with a 5% change over the range of
concentrations used. Despite the small fractional size of this
effect, it is two orders of magnitude larger than the effect of
oxygen on the coupling. The insensitivity of line splitting to
oxygen has been noted previously (23). The linear depen-
dence on spin-label concentration of the spin-exchange-in-
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FIG. 5. Lorentzian (spin-packet) linewidth of central doublet line of
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duced line-splitting collapse has been discussed previously
(24). This allows an intrinsic spectral feature sensitive to
the Jocal spin-label concentration to distinguish self-broad-
ening effects from those due to oxygen. The concentration
dependence of the Gaussian linewidth from the mHCTPO
was constant as a function both of spin label (50 to 1000
uM) and of oxygen (less than 1 to 250 uM) concentrations
to within =10 mG (data not shown) with a value of
220 mG.

DISCUSSION

In this work, we investigate the use of an easily evaluated
analytic shape, the Lorentzian /Gaussian sum function which
was chosen because it fits spectral lines well. Fitting this shape
to spectra was used to extract basic parameters of two kinds:
intrinsic lineshape measures—overall linewidth, line posi-
tion, height, and spectral feature height ratios—and modeli-
dependent line components— Voigt Lorentzian and Gauss-
ian components. The process focuses the full information in
the spectrum on the spectral parameters. The positions of
data points on the rising and falling portions of the spectrum
are more sensitive to slight variations of the line positions
and linewidths than are those in the peaks and troughs where
the width is most commonly defined (25). Fitting to a spec-
tral-shape hypothesis allows these points to be included in
the definition of hinewidth and line position. The definition
of the splittings of overlapping lines is also complicated in
the absence of some spectral-shape hypothesis.

The spectral fitting may be used to reduce noise. An ad-
equate fit hypothesis provides substantial a priori coordi-
nating information. In the noisy Voigt simulation, both the
fitted height and the splitting have population standard de-
viations that are reduced by more than an order of magnitude
relative to the point standard deviation. When compared
with earlier measurements of line splitting (4), the current
measurements are nearly an order of magnitude more ac-
curate. The error matrix from the algorithm provides a con-
venient estimate of the uncertainties in the fit parameters.
This is invaluable for determining whether parameter vari-
ation is statistical or systematic.

This technique is rapid relative to evaluation of full con-
volution, less affected by noise than the Fourier transform
(26-28), more compact than table look-up strategies (9),
and less baseline sensitive than moment analyses (29). An
algorithm that approximates the Voigt (30) may constitute
a possible alternative to the sum function. In circumstances
where array interrogation will not easily provide initial pa-
rameters, other strategies may be necessary (26, 3/-33).

Other minimization algorithms are available (34, 35). The
least-squares criterion may not be the optimum criterion for
judging goodness of fit (36-40). The derivative Voigt shape
is not necessarily the best by which to characterize EPR line-
shapes. However, they are familiar and give a good fit to
spectral data. The investigation of larger numbers of over-
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FIG. 6. Hyperfine splitting of the central doublet of mHCTPO vs
mHCTPO concentration for all oxygen concentrations. Each point represents
the average of splittings evaluated from spectra taken from solutions equil-
ibrated with various mole fractions of oxygen: 0, 3, 6, 9. 13.5, and 21.5%.
The point uncertainties indicated represent the standard deviation of the
mean of these values; they are consistent with the errors propagated from
the spectra as described in the text. Addition of oxygen dependence neglibly
diminishes the x? value per degree of freedom of the fit. The fit slope is 26.5
+ 0.2 mG/mM, the intercept is 517.6 + 0.2 mG, and the uncertainties
were obtained as described in the texi. These uncertainties are consistent
with the hypothesis of no oxygen dependence. The numbers quoted in the
text include estimates of the systematic uncertainty.
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lapping lines is incomplete; the large fit-region fit fidelity
indicated in the tables provides a worst-case estimate. The
effects of saturation, overmodulation, and spectral passage
for times small enough to affect the spectral symmetry have
yet to be investigated. The inclusion of a dispersive com-
ponent is straightforward (4/); an artifact of symmetry op-
posite to that of the spectrum has little effect on the extracted
parameters ( proof not shown).

In summary, we have developed a rapid and accurate
method by which to fit EPR spectra and with which to unfold
the Lorentzian and Gaussian components. This method has
been used to extract spectral parameters from EPR spectra
with noise. In the context of EPR in vivo (42), it provides
the possibility of relatively accurate spectral analysis. In a
more general context, it allows an increase in sensitivity, for
some spectral parameters, by an order of magnitude.

APPENDIX

This Appendix is devoted to a brief denvation of the
transformation between the Lorentzian weight parameter for
the sum function normalized to unit peak-to-peak height,
nu, and the Lorentzian weight parameter for the sum func-
tion normalized to unit doubly integrated intensity, 3. Both
sum functions are fitted to the same data with peak-to-peak
height ¥, and doubly integrated intensity 4. Equations [5]
and [6] are rewritten as

Fu(x) = Vo[ nue L(x) + (1 = 9u)c8G(x)]
Fa(x) = Alnact L(x) + (1 — n4)cdG(x)],
where the individual term normalizations are

el = 8(3)'?/[x(ABY,)*],
¢& = 4/[(2m) ' 2 (ABR,)’],

cH =8, c8=e%/2,

and the functions are
Lx)=x/(3+x%)? and G(x)= xexp(~—x?/2).
The conditions that

Fa(l) = Vp/2

and

ff dB?Fy[x(B)] = 4

may be used to eliminate the normalization constants (V,
and A), leaving a relationship between the Lorentzian weight
parameters and the ratios of the individual term normaliza-
tions,

no=ct/et! and g = ch/el,

such that [ny/re + (1 — )/ rg)(nare + (1 = na)rc] = 1,
giving

= rna/[nare + (1 — na)76]
and

Na = romu/[nwrg + (1 — gLl
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