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We have applied the method of Gor'kov for deriving the acoustic radiation potential on a sphere 
in an arbitrary sound field. Generalized potential and force expressions are derived for arbitrary 
standing wave modes in rectangular, cylindrical, and spherical geometries for the case where the 
sphere radius is much smaller than the wavelength {kR < 1). Criteria for determining radiation 
potential minima are derived and examples of characteristic spatial radiation potential profiles 
are presented. Single modes that can sustain stable positioning are discussed for each geometry. 
The localizing force strengths for representative standing wave modes in the three geometries are 
also compared. In this paper, we consider the positioning of samples due to acoustic forces only. 
However, the method developed here is general and can be extended to include gravity or other 
external forces. 

PACS numbers: 43.25.Qp, 43.25.Gf, 43.40.Qi, 43.20.Ks 

INTRODUCTION 

An object in the presence of a sound field will exper- 
ience forces associated with,the field. Kundt I was one of the 
first to observe the effect of acoustic forces through measure- 
ments on the motion of dust particles in resonant tubes. A 
detailed theoretical understanding of acoustic forces was 
first presented by King • for a rigid sphere in a plane standing 
or progressive wave field in an ideal fluid. King calculated 
the radiation force by summing the effect of acoustic pres- 
sures acting on each surface element of the rigid sphere. Yo- 
sioka and Kawasima s extended this method to include the 
effects of a compressible sphere. K/ng's theory was verified 
experimentally for liquid 4 and gaseous •'6 media. 

King's approach was later extended by Embleton to the 
case of a rigid sphere in a progressive spherical 7 or cylindri- 
cal s wave field. In an ingenious paper Gor'kov, 9 using a dif- 
ferent approach than King, derived a simple method to de- 
termine the forces acting on a particle in an arbitrary 
acoustic field. Gor'kov showed that his expression was equi- 
valent to King's in the case of a plane standing wave. Ny- 
borg •ø also derived simple expressions for the acoustic force 
by extending the methods of King • and Embleton. ? In the 
case of standing waves, Nyborg's expression reduced to that 
of Gor'kov? Several additional references are given in an 
excellent review of high intensity sound fields by Rosen- 
berg." 

The ability to influence the motion ofi•bjects by a sound 
field has many applications? At this time, NASA is sup- 
porting the development of acoustic positioning tech- 
niques •3 for the processing of materials in the low gravity 
environment of space. We define positioning as the ability to 
localize a sample at a position interior to the chamber boun- 

The researoh deacribed in this paper was carded out by the Jet Propulsion 
Laboratory, California Institute of Technology. under contract with the. 
National Aeronautics and Space Administration. 

daries. The motivation for this investigation comes from the 
need to understand in detail the acoustic loc.•li7ation capa- 
bilities of various resonator geometries. The main emphasis 
is to determine those normal modes that will sustain stable 
acoustic positioning of small samples. 

In this paper, we will develop general acoustic radiation 
potential and force expressions for standing waves in rectan- 
gular, cylindrical, and spherical geometries. In Sec. I, we 
present Gor'kov's general expression which is used to evalU- 
ate the acoustic radiation force in an arbitrary sound field. 
The range of validity of Gor'kov's results is discussed, and a 
method for determining the critical points of the potential is 
introduced. General radiation potential expressions are then 
derived in Sec. II for resonance modes in a rectangular ge- 
ometry. Selection rules for potential minima (localization 
positions} are developed, and examples of characteristic spa- 
tial profiles are presented. In Secs. III and IV, we extend the 
calculations to standing waves in cylindrical and spherical 
geometries, respectively. New positioning modes for these 
geometries will be discussed. A comparison of the position- 
ing capabilities of standing waves in the three geometries is 
given in Sec. V. Finally, Sec. VI contains a brief summary 
and conclusions. Preliminary results of this investigation 
were rep6rted previously.•4 

I. THEORY 

Gor'kov 9 derived a very useful expression for the poten- 
tial U of the acoustic force F that acts on a small spherical 
particle in an arbitrary acoustic field in an ideal fluid. Gor'- 
kov worked within the framework of the linear theory; thus 
the time-averaged force on the particle is correct up to terms 
of second order in the fluid particle velocity. The velocity 
potential • was represented as the sum of an incident and a 
scattered term 
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Gor'kov assumed that the radius of the spherical particle 
Re, A, wh•re X is the wavelength of the sound. ns Then using 
results derived in Landau and Lifshitz,•6 4• was expressed 
entirely in terms of incident field quantities. In addition, the 
compressibility of the particle and the possib/lity that it may 
be set in motion by the incident wave was taken into ac- 
count." After considerable algebra, ns Gor'kov finally ob- 
tained the expression for the time-averaged potential 

v= [ ( - 
where • and • are the mean-square fluctuations of the 
pressure and velocity in the wave at the point where the parti- 
cle is located. In terms of the velocity potential we have 

•t 

v• = grad •. 
The factorsf• andf• appear/ng in Eq. (1} are given by 

where c is the speed of sound in the fluid, c, is the speed of 
sound in the particle, p is the density of the fluid, andp, is the 
density of the particle. The allowable range of the factorsf• 
andf• are -- oo <fl<l and -- 2c•f•<l. In thecaseofa rigid 
sphere f• =f• = 1. The acoustic force components are ob- 
tained from the potential using the expression 

F = - grad U. 
For comparison and computational purposes, we define 

the following dimensionless expressions for the radiation po- 
tential, force components, acoustic pressure, and particle ve- 
locity: 

(6} 
ß • =p•.lpcv• • = v•./vo, 

where Vo/s the maximum particle velocity. 
We emphas/ze that Eq. (1)/s val/d for R•,A; in fact it is 

correct to lowest order in R//l, i.e., {R/A }•. Furthermore, as 
mentioned above, Eq. (l} is applicable to any acoustic field 
with the exception of fields similar to a plane traveling wave. 
In the latter case, the contribution to the force is much 
smaller, • of the order of {R/A )a. Gor'kov did not consider 
multiple scattering effects; thus this analysis becomes in- 
creasingly less precise as the chamber walls are approached. 
Gor'kov showed that in the case of a rigid sphere in a plane 
standing wave field, Eq. (l} gave an expression for the force 
that is identical to the corresponding one derived by King? 
As an additional application of Eq. (l), (3or'kov gave the 
expression for the potential Uin the case of a spherical (con- 
verging or diverging) wave. Embleton • has. aLso calculated 
the radiation force on a sphere due to a diverging spherical 
wave without restriction to R/X•l. Embleton goes on to 
evaluate his expression for the radiation force in detail for 
the rigid sphere case f• ---f• = l, as a double expansion in 
powersof(l/kr•A/r)and(kR•R/,t ). There are only a fin- 
ite number of terms to any given order in R/A; thus, one 
would expect Gor'kov's expression to agree with Embleton's 
lowest order terms, i.e., to order (R'/A)•. This is indeed the 
case, apart from a couple of misprints and taking into ac- 

count Embleton's different sign convention. 19 
For a given mode, the stable localization positions cor- 

respond to particular minima of the potential •'. The critical 
points of the potential are obtained by requiring 

= o, (7) 

or equivalently • = O, where i• = ix, for dimensioned x• 
coord/nates. To test the nature of these critical points, we 
must evaluate the eigenvalues of the Hessian matrix H•rcon - 
sisting of all possible second partial derivatives of the poten- 
tial at the positions given by Eq. (7). A critical point is a 
nondegenerate maximum if all the eigenvalues are negative 
and it is a nondegenerate minimum if all the eigenvalues are 
positive. Comb/nations of positive and negative eigenvalues 
lead to various types of saddle points while one or more zero 
eigenvalue• yield degenerate critical points {see Appendix 
A}. 

For practical applications of acoustic positioning, it is 
important to know the degree of stability prov/ded by a radi- 
ation potential well. When random external forces are pres- 
ent, a sample will move away from the potential m/n/mum. If 
the external force is small, the degree of sample stab/lity w/ll 
depend on the strength of the acoustic restoring force near 
the potential minimum. In general, the potential well is not 
symmetric, and there will be characteristic directions that 
correspond to the weakest restoring forces. The maximum 
restoring force •m• along any particular direction occurs at 
the inflection points between the potential maxima and mini- 
ma. 

In the neighborhood of a nondegenerate minimum, the 
potential energy and forces may be written in a form identi- 
cal to that of a three-dimensional anisotropic harmonic os- 
cillator (see Appendix B). 

Z (8) 
where the restoring force constants • are 

i, = (9) 

These dimensionless restoring force constants are useful 
quantities for comparing the positioning capabilities of var- 
ious potential minima for modes of the same or different 
geometries. 

In Seas. II-IV, we will develop the radiation potential 
and force expressions specific to chambers of rectangular, 
cylinckical, and spherical geometry. The three coordinate 
variables of a given geometry will each define nodal force 
surfaces. Potential minima correspond to the intersection of 
certain nodal force surfaces determined by selection rules. In 
most cases, these minima will be isolated points, lines, or 
surfaces depending on whether the normal mode is a func- 
tion of three, two, or one of the coordinate variables, respec- 
tively. However, for cylindrical and spherical geometries, 
there are special modes of only two coordinate variables that 
have isolated minima points. These special modes are impor- 
tant for acoustic positioning applications and will be dis- 
cussed in detail. The notation used for the rectangular, cylin- 
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TABLE I. Notation for parameters in rectangular, cylindrical, and spherical coordinate systems. 

Rectangular C•tindrical Spherical 

coordinates 
quantum numbers* n=,n•,n• m,n,n z i,n,m 

dimeruions !• ,i• ,i z a,l= r o 
wavenumbers k• ---- •rn•/l• k. = •rct.a/a k = •y•a/r o 

* All quantum numbers are non-negative integers beginning with zero. 

drical, and spherical geometries discussed in this paper are 
given in Table I. 

II. RECTANGULAR GEOMETRY 

We will first investigate the critical points of the radi- 
ation potential for a rectangular chamber. We shah be main- 
ly interested in the location of the minima and the behavior 
of the potential near the minima. For rectangular geome- 
tries, a spatial position is designated by thex,y, and z coordi- 
nates, (xyz), and a normal mode is given by the integer quan- 
tum numbers n,,,n•,n=,(nxn•nz). 2ø The origin (000) for the 
rectangular coordinate system is chosen to be at a comer of 
the chamber. 

The velocity potential for a standing wave field in a 
rectangular chamber of dimensions l:,,l,,lz is 
ß •.= - (volt)cos •x cos k•.v cos k,z sin tot, (10) 
where the wavenumber k is 

and 
(to/c) (11) 

kx trnx •rn• •rn. (12) andS.= 
The dimensionless acoustic pressure and particle veloc- 

ity for a rectangular normal mode are 
.• = cos kxx cos k•y cos k•z cos tot, (13) 

and 

• = [(k•,/k )2 sin 2 k•x cos 2 k•,y cos 2 
+ (•:y/•)2 cos2 k•,x sin 2 l•yy cos 2 •z 
+ (k•/k )2 •2 k•x •2 k•y s•2 k, z ] •/2 s• •t. (14) 
Su•fitu•g the m•-squ•e v•u• of•e pr•surc •d 

vel•ty •to •r'kov's •pr•ion [•. (1)] •el• •e •en- 
sio• •ti•: 

D = (f•/•)•s • •x • • • 
- (A/2)[(•/•)• s• • •x • • • 
+ (•,/•)' •' •x s• • • • 
+ (•/• )• •s• •x •s• •,y s• •z]. 

•e d•ionl• for• •m•n•t •, ob• from •e 
spat• d•fiv• of •e •t•ti•, is •v• by 

k 

To obtain •y and •, simply interchange x,-•y and x.-.z, 
respectively, in Eq. (16). 

The normal modes (nxnyn•) of a rectangular chamber 
may be divided into three categories m corresponding to (i) 
oblique modes having no n values zero, {ii) tangential modes 
having one n value zero, and ('fii) axial modes having two n 
values zero. The critical points of these modes naturally sep- 
arate into two sets. For the x coordinate, one set corresponds 
to sin 2kxx = 0, i.e., 

sin kxx = 0, cos kxx = 0, (17) 

with similar expressions for the y and z coordinates. The 
positions of these critical points are given by 

x__ = mx y _ my z m• (nx,n•, % •0), (18) I x 2n x !y .2ny 1 z 2n, 
where tax, my, and mz are non-negative integers less than or 
equal to 2nx, 2n•, and 2n,, respectively. This condition is 
valid for oblique, tangential, and axial modes. The nature of 
the critical points is determined from the evenness and odd- 
ness of m•, my, and m, as discussed in Appendix A. Unless 
otherwise stated, in the remainder of this paper we will limit 
ourselves to eases where the compressibility of the sample is 
less than and the density of the sample is greater than those 
of the surrounding medium, i.e., f• > 0 and f• > 0. Under 
these constraints, the positions of nondegenerate (isolated) 
potential minima are the intersection of the x, y, and z nodal 
force planes corresponding to having one m odd and the 
others even. When all the m values are even, the critical 
points are maxima, and when all the m values are odd, the 
critical points are degenerate. These coordinate selection 
rules for axial, tangential, and oblique rectangular modes are 
given in Table II. The positions of these critical points are 
independent of the sample characteristics {i.e., f• and f•); 
however, their type and the magnitude of the potential do 

TABLE 11. Potential minima nodal force surfaces for various modes in rec- 
tangular geometry. 

Mode x y z 

...... cos k. z = O 

tangential sin k•x = 0 ... cos k,z ---- 0 
(n,,On,) cos k,,x -- 0 ... sin k,z = 0 
oblique cos k•x -- 0 sin k•.v = 0 sin k,z 0 
(n,n•n,) sin k•x -- 0 cos ks,v ---- 0 sin k,z 0 

sink. x----O sin k• = 0 cos k.z 0 
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depend onf• andre. The magnitude of the potential at these 
maxima and minima are 

\2]\k] ' 
where the subscript i corresponds to the odd m direction. 
The magnitudes Um• and Um• are reduced for nonrigid 
spherical samples (A < l,f2 < 1). 

The second set ofcritical points comes from the zeros of 
the term in braces in Eq. (16). These points, which only arise 
for tangential and oblique modes, are either nondegenerate 
saddle .points or degenerate critical points. Thus the only 
nondegenerate (isolated} potential re'raima arise for oblique 
normal modes of a rectangular chamber with coordinates 
satisfying Eq. (18) with one m odd and the other two even. 

To illustrate the acoustic behavior of these rectangular 
chamber modes, we consider some representative cases. For 
•he simp•le case of the (00n,) z-axial or plane-wave mode, p, 
U, and F, are given by 

p(z) = cos k,z cos o•t, (20) 
•(Z) = (f•/3)cos 2 k,• -- (f•/2)sin 2 k,z, (21) 
•,(z) = [(•/3) + {f•/2)]sin 2k, z. (22) 

The force expression, Eq. (22), is equivalent to that derived 
by King • and Yosioka and Kawasima 3 for a plane standing 
wave. The resulL• discussed here for the (0On,) z-axial mode 
are also applicable to the (nx0O) and (0n•,0) modes. 

The spatial dependence of these functions for the (0Ol) 
z-axial mode is shown in Fig. I for the case of a stationary 
rigid sphere. The extrcma of the pbtential, where the force is 
zero, occur at the reflecting walls (z/l, =0 or 1) and the 
midplane (z/I, = 0.5). The forces associated with this plane- 
wave sound field will position a small sample at the mid- 
plane, where the potential is a minimum. The excitation of 
the n, th harmonic z-axial mode will produce zero force com- 
ponents at the reflecting walls and n, potential miniroa 
planes in the interior of the resonator with coordinates given 
by Eq. (18) for m, odd. 

The shape of the radiation potential well is strongly de- 
pendent on the magnitude and sign of the variablesf• andf•. 
The positions of the potential minima for a plane-wave mode 
are located at pressure nodes or antinodes depending only on 
the signs off• andf• as shown in Table III. When the sample 
density is greater than the surrounding medium (f• > 0), the 
potential minima coincide with pressure nodes, while for 
sample densities less than the surrounding fluid (f2<0), 
these minima occur at pressure antinodes. To illustrate these 
results, we show in Fig. 2 the radiation potential and force of 
the fundamental z-axial plane-wave mode for an air bubble 
in water. This curve corresponds to a bubble smaller than 
resonant size. 

It is clear from the above discussion that an axial or 
plane-wave mode cann6t localize a sample at unique posi- 
tions in the resonator interior. However, the modes can posi- 
tion a sample within a plane normal to the mode wave vec- 
tor. The loc•li7ation of a sample at a unique position can be 
attained by the simultaneous excitation of three orthogonal 
axial modes, in which case the intersection of the three sets of 
orthogonal planes is a set of points within the resonator inte- 

1.0 
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;• o.o 
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POSITION zl• z 
F•G. I. Position dependence o•th• a•c p•ure, •nd•, •d •o• 
• a •d sph• for the (•1) z• r• m•e. •e •t• •- 
m• p•e is •way •tw• t• •g z w• •d •• • •e 
p•e n• pl•. 

rior. This positioning technique was demonstrated experi- 
mentally • for a rectangular chamber and is now being devel- 
oped further for NASA's Microgravity Science and 
Applications program? 

Let us now consider an (nxOn,) x,z-tangential mode. 
The results discussed here are also applicable to the {n• ny0) 
and (On•nz) mode. The acoustic potential for this mode ex- 
hibits different behavior than was obtained for the axial 

TABLE III. Dependence of the potential minima location on the sign off• 
andf• for a plane-wave rectangular mad• 

f; • Location of minims 

positive zero, positive pre•ure node 
zero, negative positive pressure node 
zero, positive negative pressure antinode 

negative zero, negative pressure antinode 
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0.o 0.'6 ].o 
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FIG. 2. Position dependence of the acoustic potential and force on an air 
bubble {smaller than resonant size) in water for the {001} z-axial rectangular 
mode. The potential mi, ima planes now correspond to the reflecting z walls 
which axe pressure antinodal planes. 

modes due to the effects of the coupling between the x and z 
propagation directions. The values of • at the minima are 
always less than the critical value --0.5 obtained for the 
axial modes. Decreasing the chamber aspect ratio l,/l,: will 
further reduce the depth of the potential minima. For these 
modes the potential minima positions are all nonisolated 
lines, most of which lie on the walls of the chamber. The 
lowest-order tangential mode that has an interior minimum 
line is the {102}, where'the potential minimum is along the 
chamber axis (x/l,: = 0.5 andz/!z = 0.5). Figure 3 shows an 
x•.-contour graph of the potential on a rigid sphere for the 
(102} mode. This mode has seven minima lines along the y 
direction, with six of these being on the walls. The interior 
potential well is asymmetric, being steeper in the z direction. 
As was the case for an axial mode, the (102) tangential mode 
cannot localize a sample at a unique position, since one of its 
mode eigenvalues (%) is zero. Localization at a unique posi- 
tion can again be attained by the simultaneous excitation of 
two modes, which together provide appropriate forces in the 
three orthogonal directions. For example, exciting the (102} 
tangential mode and the (010) axial mode will produce a 
unique localization position at the center of the chamber. 

The oblique modes (n,:nyn,) exhibit the most compli- 
cated radiation potential structure. These modes have isolat- 
ed potential minima points with almost all of these posi- 
tioned at the chamber walls. The lowest-order oblique mode 
that has an interior potential minimum is the (221), or equiv- 
alently the (122) or (212). Figure 4 shows hidden line graphs 
for the (221) mode potential in the center planesy/ly = 0.5 
and z/l, = 0.5. There are 33 potential minima for this mode, 

L0 t ,/ I 
RECTANGULAR flO2! MODE 

• 0.4-"" ..• • 

0 0.2 0.4 0.6 0.8 1 
POSITION x/.• x 

FIG. 3. x,z-contour graph of the acoustic potential for the (102) x,z-tangen- 
tial rectangular mode. There are seven nonisolated potential rainima lines; 
six are along the walls, and the deepest minima •/!x =z/!, ----0.5) goes 
through the chamber center. The solid lines depict contotLrs near the mini- 
• while the d•qhed lines correspond to contours near the maxima. 

with 32 on the walls and one at the chamber center (x/l,: 
= 0.5, y/I•, = 0.5, and z/l• = 0.5). The depth of the interior 
potential well depends on the aspect ratios lr/l,: and 1,/1•,. It 
is clearly seen from these plots that the chamber center posi- 
tion is an isolated potential minimum. There are also higher- 
order oblique modes that have isolated minima in the interi- 
or of the chamber. For example, the {n• 21) modes with n x ß 2 

RECTANGULAR (221) MODE 

o 

FIG. 4. Hidden line graphs of acoustic potential for the (221) rectangular 
mode.(a)y/!•, • 0.5 center plane. There are six isolated minima on the x and 
z walls and one in the center. {b) z/l, =0.5 center plane. There are eight 
isolated minima on the x and y walls and one in the ceoter. 
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TABLE IV. C?naractefistics of potential minima for a rigid sphere for various modes in rectangular geometry. 

Mode Surface value Location Number of minima 

axial 
(00n,} plane -- 1/2 interior and walls 

tangential* interior and walls 2n• 
{nxOnz } line -- {k,/k }2/2 walls 2{nx + 
oblique point -- (k,/k)z/2 interior 3n=nyn• -- 
{nxn, n,) + n,n• + n, nx) 

+ {n• + 
walls 4{nxn• + nvn, + n, nx} 

'k• eorres•nds to k, or k, (tangential mode) or k,. k,, or k, (oblique mode). The subscript i denotes which variable has cos kix i = O. 

h•ve n• -- 1 interior minima at positions x/l• = m•/2n•, 
y/l• ---- 0.5, and z/l, = 0.5, with rn• = 2, 4,...,2n• -- 2. A 
summary of radiation potential m'mima characteristics for 
axial, tangential, and oblique. rectangular modes is given in 
Table IV. 

III. CYLINDRICAL GEOMETRY 

In a cylindrical chamber of radius a and length 1•, a 
spatial position is designated by the •, r, and z coordinates 
(•rz) and a normal mode is given by the quantum numbers m, 
n, and n•, {rnnn:}. •ø Other important notations for cylindri- 
cal geometries are given in Table I. The origin {000) for the 
cylindrical coordinate system is chosen to be at the center of 
az wall. The conversion from the lower symmetry of rectan- 
gular geometry to the higher symmetry of cylindrical geo- 
roetries leads to new positioning features. The x,y Cartesian 
coordinates and n• and ny quantum numbers are trans- 
formed into the •, r polar coordinates and m and n quantum 
numbers, respectively. In rectangular resonators, the acous- 
tic properties of a given mode are independent ofx or y as 
long as either n• or ny are zero. This is not the case in the 
cylindrical system, where all non-z-axial modes are r depen- 
dent regardless of the rn and n values. Furthermore, since 
there are no reflecting boundaries for cylindrical • waves, 
the velocity potential for a standing wave field in a cylindri- 
cal chamber contains an arbitrary phase constant •o (Ref. 22) 
and is given by 
ß • = -- (yolk V, (k,r)cos(m• + •o)cos k=z sin cot, (23) 
where the wavenumber k is specified by 

= b2l 1/2 k--cole (k•,+..,, , (24) 
with 

Assuming rigid boundary conditions, ct,•, is a solution of the 
relation d [ j,, (rra} ]/dct = 0, where./,, is the Bessel function 
of order m. Since •o is an arbitrary phase constant, we will let 
•o = 0 in the following calculations of acoustic properties. 
After calculating the mean-square fluctuations of the acous- 
tic pressure and particle velodty and substituting into F_q. 
(1}, we obtain the following expression for the dimensionless 
radiation potential of the (mn%) normal mode, 

where X = k,r. 
The dimensionless force components for a cylindrical 

chamber are obtained using the following expressions: 

0•' (27) 

o•' (29) 

where • = kr and • = kz. Explicit expressions for these force 
components are given in Appendix C. 

The normal modes of a cylindrical chamber may also be 
categorized in terms of axial, tangential, and oblique modes 
as was done for the rectangular modes. The z-axial modes, 
corresponding to m ---- n = 0, have motion only along the z 
axis while the r-axial modes, for which m = n= ----0, have 
entirely radial motion and focus the sound along the cylinder 
axis. The •-axial modes, with n = n= = 0, travel close to the 
curved walls, having little motion near the cylindrical axis. 
Modes for which only n= = 0 move parallel to the walls of 
the chamber and may he called •,r-tangential modes. 

The potential mirLima (localization positions} for cylin- 
drical modes are determined by the intersection of particular 
sets of nodal force surfaces. The types of nodal force surfaces 
for cylindrical geometries are shown at the bottom of Table 
V. The z-nodal force surfaces are circular planes defined by 

cos k=z = 0 or sin k•z = O, (30} 
with z coordinates given by Eq• (18). The •b-nodal force sur- 
faces are rectangular half-planes defined by 

cos rn• = 0 or sin m• = O. (31) 
In analogy with the rectangular coordinate definitions, these 
positions are given by 

q• /2•r = q/4m, (32) 
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TABLE V. Poteatial minima nodal force surfaces for various modes in cylindrical geometry. 

Mode r • z 

ß .. sin m• = 0 cos k.z = 0 

r axial 
(OHO) 
and 

tangential' 
(Onn.) . 

oblique' 

nodal 
surfaces 

•) - [(4f,/af•) + q•o(X') = o 
.r,(y) = o 

(m+ 1).r.+,(x)- (m - l•/._,(x) = o 
,r ?.(•) _ (•/•f•)(•/•.)•,r. (y) = o 

sin m• = 0 
sinn=O 

cosm•=0 
sin m• = 0 

•m•l• 

sin kzz : 0 
cos k, z : O 

sin k,z = 0 
sin k.z = 0 

'Valid for n>0, n, >0. 

where q is a non-negative integer less than or equal to 4m. 
Thus cos m• = 0 and sin m• = 0 correspond to q being odd 
or even, respectively. 

The r-nodal force surfaces are cylinders with r coordi- 
nates given by 

r/a = x/•rot,•,, (33) 
wherex is a solution of one or more of the following expres- 
sions, depending on the mode: 
Jr(x) = O, m = 0, (34) 
(m -I- l)J., + l(X) -- (m -- l)J._, (X) = O, re>O, (35) 
,[ • (X) -- (2f,/3A)(k /k,)2.[,,,(X) = O, m>O. (36) 
The allowable X solutions are thcr•e for which r/a, 1. The 
radial coordinates of the potential minima determined from 
Eqs. (34) and (35} depend on the mode quantum numbers m 
and n. On the other hand• solutions of Eq. (36) also depend 
on the chamber aspect ratio all z and sample properties (i.e., 
f• andf•). The potential minima for a given cylindrical mode 
are obtained from the selection rules for the r, q•, and z-nodal 
force surfaces given in Table V. The positioning features of 
representative axial, tangential, and oblique cylindrical 
modes are discussed below. 

The acoustic positioning properties of the (00n•) cylin- 
drical z-axial modes are identical to those of the rectangular 
chamber as shown in Fig. 1. The (0n0) r-axial modes only 
depend on the radial coordinate r. For these modes•, •, and 
F are given by: 

P(X) = uro(X)cos a•t, (37) 
•t (,t,)= (f•/3}./g(X)- (f•/2)./• (X), (38) 

and 

(39) 
The dependence of these functions on X is shown in Fig. 5 for 
a rigid sphere. The critical points of the potential correspond 
to positions where •, ----0. The position and magnitude of 
the first five potential maxima and minima for a rigid sphere 

O. 8 

0.4 

0.0 

-0.4 

0.4 

Q. 2 

-0.2 , , 

O. 4 

O. 2 

0.0 

x 

FIG. •. D•'•dence of the •cousti½ pressure, potential, and force on the 
va•iable• = k.. As• increases, the depth ofthe potential wells and mag•i- 
t•e of •e restoring force• decrea• 
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are given in Table VI. The potential maxima are given by the 
roots ofJ•{y) = 0. Assum/ngft andf• are positive, the mag- 
nitude of the potential is •, = ( f •/3 }J o z (X}. The x = 0 root 
of J• corresponds to the cylindrical axis and yields the largest 
value of •r,, u. Altogether there are n A- I maxima located at 
positions r / a = O, (ao •/ ao, } ..... (Cto, _ • / Cto, ),1. The potential 
minima correspond to the zeros of the term in braces in F_x 1. 
(39) and are situated between positions of successive maxi- 
ma. There are n minima, all in the interior of the chamber. 
The depth of the potential wells decreases as X (or r/a) in- 
creases. The potential maxima and minima for the r-axial 
modes are nonisolated critical points. They are cylindrical 
surfaces concentric to the cylindrical axis and extending 
between the z/l, = 0 and I chamber walls. 

In Fig. 6, we show the dimensionless quantities •5, •r, 
and •, as functions ofr/a for the lowest order (010} r-axial 
cylindrical mode. The potential minimum cylindrical sur- 
face occurs at r/a = 0.551. This minimum does not coincide 
with the acoustic pressure nodal surface {r/a = 0.628) in 
contrast to the case of axial modes in a rectangular chamber. 
This difference is due to the fact that the r-axial nodal cylin- 
drical surface depends on the chamber aspect ratio and sam- 
ple properties. The potential well for the (010) mode is asym- 
metric, resulting in a stronger outward-going restoring 
force. As was the case with the z-axial modes, the r-axial 
modes by themselves cannot produce a unique equilibrium 
localization position. 

The {mn0) •, r-tangential modes have strikingly ditfer- 
ent acoustic behavior than the r-axial modes due to the finite 
value of the quantum number m which introduces a • depen- 
dence. The potential minh•aum surfaces for these modes may 
be visualized from the intersection of nodal force r cylinders 
and • planes which produce potential minima lines. These 
{mn0) modes have two sets of nonisolated potential minima 
lines. The set defined by the r coordinate solutions ofFA I. {35} 
are situated at angles • given by cos m• = 0, while those 
corresponding to Eq. {36} are at • values satisfying 
sin m• = 0. For each unit increase in n there are 4m new 
lines introduced into the cylinder. The m ---- I modes are the 
most interesting for application pu•. For these m ---- ! 
modes, one set of r-nodal force surfaces [Eq. (35}] requires 
Jz(Y) = 0. The lowest-order solution gives r/a = 0 which can 
be thought of as the shrinking of an r-nodal force cylinder 
into the axial line. These {ln0) modes have a potential mini- 
mum •r,•i, = --f•/8 along the cylindrical axis. To illustrate 
the behavior of these modes, the radial dependence of•, •r, 

TABLE Vl. Position and magnitude of the first five force potential maxima 
and minima of the (0n0) r-axial cylindrical modes for a rigid sphere. 

0.0 0.3333 2.109 -- 0.1522 
3.832 0.0541 5.408 -- 0.0591 
7.016 0.0300 8.564 -- 0.0371 

10.173 0.0208 i !.740 -- 0.0271 
13.324 0.0159 14.891 -- 0.0214 

'The radial position of a maximum or m'mimum is determined using 
rla -- 

0.4 

0.O 

-0.4 

0.4 

O. 2 

0.O 

-'0.2 

O. 4 

O. 2 
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-0.2 
0.0 0.2 0.4 0.6 0.8 1.0 
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FI{3. 6. Radial dependence of the acoustic pressure, potential, and force for 
the (010} r-axial cyUndrical mode. The position of the non/solated cylindri- 
cal potential minimum does not coincide with the pressure nodal cylinder. 
The restoring force is asymmetric with the outward-going force being the 
strongest. 

and • for a rigid sphere is shown in Fig. 7 for the (100) 
tangential mode. The solid and dashed lines correspond to 
• = 0 and •r/2, respectively. The height of the potential well 
is largest along the direction • = 0 (•r} and decreases to its 
smallest value for • = •r/2 {3•r/2). The maximum restoring 
force occurs at r/a =0.493 for • =0 (•r). While the radial 
acoustic force is weakest along the directions • = •r/2 (3•r/ 
2), it has a finite restoring force at the chamber wall, r/a = 1. 
This finite force component at the wall directed toward the 
interior is a feature of cylindrical geometry that is not shared 
by rectangular chamber modes where the normal force com- 
ponents at the walls are always zero. 

Only the m = I, (ln0) modes have a potential minimum 
line along the axis (r/a = 0). All other minima lines for m> 1 
occur at finite r values. The positions of these m'mima lines 
are illustrated in Fig. 8 where we present a •, r-contour 
graph of the radiation potential for the {210) cylindrical 
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FIG. 7. Radial dependence of the acoustic pressure, potential, and force for 
the ( 100} •, r-tangential cylindrical mode. The potential minimum is a noni- 
solated line along the axis of the cylinder. The restoring force is finite at the 
chamber walls except for • = 0,•r. 

mode. For this mode there is a potential maximum at r/ 
a = 0 and 12 minima lines, four each on three radial circles. 
The radii of the inner and outer circles correspond to solu- 
tions of Eq. (35) while the middle circle radius is a solution of 
r•. (36). 

The (0nn=) r,z-tangential modes differ from the •, r- 
tangential modes in that the • dependence has been replaced 
by az dependence. Now, since rn = 0, the intersection of the 
nodal force r cylinders and the z planes leads to nonisolated 
potential re'raima circles and to isolated potential minima 
points. Again, there are two sets of potential minima with 
radii defined by either Eq. (34) 9 r Eq. (36). All solutions to 
Eq. (36) give nonzero radii. This set always includes circles at 
the z walls, z/lz = 0 or 1. The r-coordinate solutions to Eq. 
(34) also include the axis r/a .= 0. Thus this second set in- 
clud es isolated potential minima points along the axis as well 
as nonisolated circles located at positions 
r/a = (ao•/Cto.) ..... (Cto._•/ao'.),l. This second set always 
has circles at the r/a = 1 walls. These potential minima are 

3ff 

CYLINDRICAL (210) MODE 
0 

FIG. 8. •,r-contour graph of the acoustic potential for the (210) •, r-ta98en- 
tial cylindrical mode. There are 12 nonisolated potential minims lines situ- 
ated in sets of four on three radial circles. 

shown in Fig. 9, which represents a hidden line graph of the 
(011) mode potential. In the z/l= = 0.5 midplane, this mode 
has a minimum point at the chamber center r/a = 0 and a 
minimum circle at the r/a = I wall. In addition, there are 
another two minima circles at r/a = 0.605, one on each z 
wall (z/lz = 0 and 1). The (Onnz) modes have n= interior min- 
imum points along the axis at positions z/l• = mz/2n, with 
m, = 1,3 ..... 2n• -- 1. 

The potential minima of the (mnnz) oblique cylindrical 
modes are all isolated points since they are determined from 
the intersection of three orthogonal nodal force surfaces (•,r, 
and z). These minima points may also be derived from the 
properties of the axial and tangential modes. For example, 
let us first compare the potential minima of the (100) •, r- 
tangential mode shown in Fig. 7 and the (10n•) oblique 

CYLINDRICAL (011) MODE 

FIG. 9. Hidden line graph of the acoustic potential for the (011) cylindrical 
mode. This mode has no • dependence. There is an isolated minimum point 
at the chamber center and three nonisolated minima circles, two on the z 
walls and one on the cylinder wall in the midplane z/l, ---- 0.5. 
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CYLINDRICAL (102) MODE 

FIG. 10. Hidden line graph of the acoustic potential for the (102) cylindrical 
mode in the • = 0 plane. There is an isolated minimum point at the chamber 
center and six minima points on the walls. 

modes. The introduction of the z dependence in the (10nz) 
oblique modes leads to a preferential selection ofnz + 1 spe• 
citic minima points from the infinite number of such points 
along the potential minimum line r/a = 0 of the (100) mode. 
The z coordinates of these minima along the axis are given by 
Eq. (18) with m, even. Thus the (101) mode has two potential 
minima, one at each z wall. The lowest oblique mode to have 
an isolated potential minimum point in the chamber interior 
is the (102) mode. A hidden line graph of the (102) mode 
potential is shown in Fig. 10. This mode has isolated poten- 
tial minima at the chamber center (r/a = 0, a/l,= 0.5) and 
at the center (r/a -- 0) of each z wall (z/l, = 0 and 1). In 
general, the (10n,) modes have nz - 1 interior isolated mini- 
ma along the axis at positions z/lz = m•/2nz with m• 
=2,4 ..... 2nz-2. 

Extending this comparison to any (mnn•) mode shows 
that increasing rn by 1 introduces two additional •-nødal 

force planes that can intersect the existing r- and z-nodal 
force surfaces to produce new potential minima. Similarly, 
increasing n by 1 introduces an additional r-nodal force cyl- 
inder into the chamber. The characteristics of the potential 
minima for the various cylindrical modes discussed in Sec. 
III are given in Table VII. 

IV. SPHERICAL GEOMETRY 

In' a spherical chamber of radius r o, a spatial position is 
designated by the 0, r, and • coordinates (0r•) and a normal 
mode is given by the quantum numbers l, n, and rn, (lnm). 2ø 
The origin (000) for the spherical coordinate system is cho- 
sen to be at the chamber center. The sphere is the most sym- 
metric of the three geometries discussed in this paper and has 
positioning features not found in rectangular and cylindrical 
geometries. 

The velocity potential for a standing wave field in a 
spherical chamber is given by 23'24 

• = -- (vo/kt.)/t(•)P •'•)cos rn• sin •ot, (40) 
where • = kt. ß and/a = cos 0 with 

kl. = o•/c = rr?'l./r o. (41} 
Assuming rigid boundary conditions, %t. is a solution of the 
relation d [ 3(•r%)]/d% = 0, where3 is the spherical Bessel 
function of order l. Using Eq. (1), we obtain the following 
dimensionless radiation potential for the (inm) normal 
mode: 

• = ( f•/3•(• ) [ P ?•u) ] 2 cos 2 m• -- ( f2/2)( [ •/i (•')/g 
--J,+l (•)] 2 [P•u)] 2 c0s2 tn• 
+ I [Jll/ ]/ll I + 
-I-m + cos 
q- [mP?•u)] 2 sin a m• I). (42) 

The dimensionless force components for a spherical 
chamber are obtained using the following expressions: 

TABLE VII. Characteristics of potential miniran for a rigid sphere for various modes in cylindrical geometry. 

Mode Surface Location Number of minima 

z axial 
plane interior and r wall n• (0On,) 

ß axial 
cylindrical interior and z walls n 

(OHO) 

•,r tangential' line interior and z wnlls 2m(2n 

r,z tangential ' point interior 
(Onn. ) interior 2nn. -- n -- 

circle z walls 2n 
ß wall 

point interior 2m [(3n q- I -/•m• )n, 
-(•n + • - •1] 
4m(2n + 1) -- 

2rn% 

oblique u 
Imnn•l 

wails 
ß wall 

Includes (mOO) modes. 
Includes (mOn.) modes. 
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TABLE VIII. Potential m{.im• nodal force surfaces for various modes in spherical geometry. 

Mode 

{iron! 

nodal 
surfaces 

3+• •l - •/2}[2fd3f• + I - 1{i- 1}/• 21jdg) = 0 

.0,+, (gl - It-- l}jdgl--0 

sin m• =0 

sin m• -• 0 
cosm•--0 

(t- m +IlP?+, •)- (t+ •I•P7'0•)-o 

(i -- m -t- 1 )P •'+, •) -- (! + 2•'•) ---- 0 

sphere plane cone 

•,_ a9• ' (43) 
•_daD\ 

0• (45) 
Explicit expressions for these force components are given in 
Appendix C. For discussion purposes, the normal modes of a 
spherical chamber will be divided into r-axial, 0, r-tangen- 
tial, and oblique modes. The (0n0) r-axial modes have only 
radial motion while the (/nO} 0, r-tangential modes have mo- 
tion in the r and 0 directions only (no • dependence). 

As was the case for rectangular and cylindrical geome- 
tries, the potential minima for spherical modes can be ob- 
tained from the intersection of sets of r-, 0-, and •-nodal 
force surfaces? The types of nodal force surfaces for spheri- 
col geometry are shown at the bottom of Table VIII. In the 
case of spherical modes, the •-constant nodal force surfaces 
are circular half-planes with coordinate positions given by 
Eq. •32). The 0-constant nodal force surfaces are cones with 
0 coordinates given by 

0 = cos-' p, (46) 
where/• is a solution of one or more of the following expres- 
sions: 

/z = 0, -I- 1, (47) 
(l-m+ 1•?+,•)- (!+ 11uP?•) = 0, (48) 
(l-m+ l•"?+,(•) - (t + 21•?•} = 0. (4•) 

The r-constant nodal force surfaces are spheres with r co- 
ordinates given by 

r/r o = •/•ryt., {50) 
where • is a solution of one or more of the following expres- 
sions, depending on the mode: 
.0,+ ,EC) -- I•- ll/,(•) = 0, (51) 
3+,•)--{•/•)[2f,/3A + 1--•(1-- 1)/•=lj,(•)=0. (5•) 
The allowable • solutions are those for which r/ro( 1. Solu- 
tions to Eq. (51) depend on the mode quantum numbers, 
while solutions to Eq. (52) also depend on sample properties 
throughf• and f2. This dependence of the position of a Ix)ten- 

' tial minimum on the properties of the sample was also ob- 
served in cylindrical geometry but not in rectangular geome- 

try. Table VIII gives the selection rules for determining the 
sets of r-, 0-, and •-nodal force surfaces corresponding to 
potential minima obtained from the closed form expressions 
[Eq. {32} and Eqs. (46)-{52}]. Besides the selection rules pre- 
sented in Table VIII, there is an additional set with the 
nodal force surface satisfying sin m• = 0. However, closed 
form expressions for the r- and O-nodal force surfaces for this 
set cannot be obtained since the r and 0 dependences do not 
ticcouple in the force expressions, Eqs. {43) and (44). 

The positioning features of representative axial, tangen- 
tial, and oblique spherical modes are discussed below. The 
(0n0) r-axial modes are independent of 0 and •. For these 
modes, the dimensionless parameters•, •r, and •. are 

• ) =Jo•)Cos o•t, (53) 
•/•) = (A/3• (•) -- ( f2/2• (•), (54) 
•,(•) = [ [ (2œ•/3f2) + 1 ] Jo(•) - (2/•)j,(• )} f2J,(• ). 

(55) 
These parameters have a decaying oscillatory dependence on 
• similar to the r-axial cylindrical mode dependencies on 
shown in Fig. 5. The position and magnitude of the first five 
.potential maxima and minima for a rigid sphere are given in 
Table IX. The positions of the potential maxima correspond 
to the roots ofj•) = 0 [see Eq. (55)], and assumingf• and f2 
positive, the potential has a magnitude given by 
= (f•/3)jeoo•;m,.,). The lowest root •,,_, = 0 corresponds to 
the center of the sphere and yields the largest value of •rm•. 
For a given (0n0) mode, there are n + 1 maximum spherical 
surfaces at r/r o = 0,Yo•/Yo ...... Yo,- •/•o,,1. The potential 
miniran are obtained from the zero of the term in braces in 
Eq. (55) and are situated between positions of successive 
maxima. Altogether there are n minima, all in the chamber 

TABLE IX. Position and magnitude of the first five force potential maxima 
and minima of the (OHO) r-axial spherical modes for a rigid sphere• 

0.0 0.33333 2.639 -- 0.06939 
4.493 0.01573 6.082 -- 0.01350 
7.725 0.00550 9.295 -- 0.005787 

10.904 0.00278 12.470 -- 0.003215 
14.066 0.00157 15.631 -- 0.002046 

'The radial position of a maximum or minimum is determined using 
r/to -- •' /•ryo.. 
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interior. These potential maxima and minima are concentric 
spherical surfaces and, except for the origin r/r o = 0, they 
are nonisolated critical points. The potential maximum at 
the origin may be thought of as a sphere that has collapsed to 
an (isolated) point. 

The dimensionless parameters,•, •r, and •, are shown in 
Fig. 11 as a function of r/r o for the lowest-order r-axial 
spherical mode (010). The r-axial spherical and cylindrical 
modes have simil•tr features (see Fig. 6). The potential mini- 
mum spherical surface occurs at r/r o = 0.587 and has a radi- 
us less than the pressure nodal sphere (r/ro -- 0.699). There is 
greater asymmetry in the spherical potential well than the 
cylindrical well which leads to an even stronger outward- 
going force. 

The (lnO) t), r-tangential modes are the most interesting 
for application purposes. Since there is no 4• dependence 
(m = 0) for these modes, the potential minima correspond to 

the intersection of r-spherical and O-conical nodal force sur- 
faces. In general, these intersections are circles. However, 
there are two special cases that lead to isolated potential 
minima. For I = 1, one set of r-nodal force surfaces [Eq. (51)] 
requiresj2(• ) = 0. The lowest-order solution gives r/r o ---- 0 
which corresponds to an isolated potential minimum in the 
center of the sphere. This shrinking of the radial nodal force 
sphere to the origin only occurs for the I = 1 modes. To illus- 
trate this special case, the radial dependence of the dimen- 
sionless parameters,•, •/, and •, is shown in Fig. 12 for the 
(100) •, r-tangential mode. The radial dependence of these 
parameters for t) = 0 and •r/2 are very similar to the behav- 
ior of the (100) •6, r-tangential cylindrical mode for $ = 0 and 
•r/2 (see Fig. 7). The maximum restoring force occurs at r/ 
ro = 0.487 for t) = 0. There is a finite restoring force at the 
chamber wall, r/to = 1 for all t) values differing from 0 or •r. 

For finite n values, a second set of isolated potential 
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-0,4 

0.4 

0.2 

i,.,. • 

,• 0.1 
0.(• 

-0.1 0.'4 o.'8 
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FIG. 11. l•i,• dependence of the acoustic pressure, potential, and force 
for the (010) r-axial spherical mode. The potential !ninimum is • nonisolated 
spherical surface that does not coincide with the pressure nodal sphere. The 
outward-going restoring force is much stronger than the inward-going 
force. The mode has similar features to the (010) r. axial cylindrical mode. 
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FIG. 12. Radial dependence of the acoustic pressure, potential, and force 
for the (100) 8,r-tangential spherical mode. This mode has an isolated poten- 
tial minimum point at the chamber center. The restoring force near the min- 
imum is strongest along the t) = 0 direction. The restoring force is finite at 
the chamber walls except for t) = 0,•r. 
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m'mima occurs for the (lnO) modes. These unique points arise 
from the shrinking of the 0-nodal force cones into the lines 
0 = 0, zr. There are 2n potential minima for this set with n 
positions along each of the lines 0 --- 0 and zr at the same r/r o 
values determined from Eq. (51). 

The wavelength and resonance frequency of a spherical 
mode are specified by the I and n quantum numbers [see Eq. 
(41)]. For spherical modes, there are 21 + 1 degenerate 
modes for each quantum number L These degenerate modes 
are specified by the quantum number m which has integer 
values between -- I and I. Different m values lead to differ- 

_cent spatial distributions of the dimensionless.parameters •, 
U, and F. The axial and tangential spherical modes discussed 
above have m = 0 and are independent of •6. The (lnrn) 
oblique spherical modes are distinguished by finite m values 
(I m l E1 ) that give these modes a • dependence. The radiation 
potential and forces for negative m values are simply related 
to those of positive rn values through the expressions, 

- m) = (56) 
- (½ (57) 

where 

= ( - - m)!/(l + m)!. (58)' 
For finite rn, C• < 1 and decreases with increasing m. Thus 
the negative m modes produce much weaker acoustic poten- 
tial wells and restoring forces. Since the only difference 
between the acoustic properties of positive and negative rn 
values is in the scale, evaluation of either positive or negative 
m modes will define the positions of the potential minima. In 
the rest of Sec. IV, we will consider only positive m modes. 

We carried out a detailed analysis of the potential minl- 
ma positions for the oblique spherical modes with l•2. All of 
these modes have 21n minima points along the 0 -- 0, rr lines 
independent of m. Various additional combinations of po- 
tential minima given by the selection rules in Table VIII 
appear as I and m increase. 

In general, the potential minima of oblique spherical 
modes are isolated critical points derived from the intersec- 
tion of r-, 0-, and •-nodal force surfaces. However, the high 
degree of symmetry in the spherical geometry can lead to a 
situation where only two of the variables need to be specified 
in order to have all the forces vanish. This case occurs only 
for the (ln 1) modes where, for one potential minima set, the 
•-nodal force surfaces satisfy • ---- zr/2, 3zr/2 and the r-nodal 
force surfaces satisfy Eq. (51). For these • values, the force 
F o = 0 for all r and 0. This unique circumstance leads to n 
POtential minima circles in the • ----rr/2, 3•r/2 plane. The 
characteristics of the potential minima for the various 
spherical modes discussed in Sec. IV are given in Table X. 

V. DISCUSSION 

It is of interest to compare the positioning capabilities 
of various modes in the same geometry as well as in different 
geometries. Let us initially assume the same sample and gas 
medium is used in these comparisons. Then, for dimensioned 
variables 

TABLE X. Characteristics of potential minima for a sphere for various 
modes in spherical geometry. 

Mode Surface Location Number of minims* 
r axial 

sphere interior n (oho) 

O,r tangential point interior 2n -4- •t • 

circle interior n + 2(n + 1)(1 -- 8t• ) 

oblique point interior 21n + bt • 
(into) + (1 -- bt• }(n + l)(m + 1) 

oblique circle interior n 

ß Valid for •<2. 

where the modes 1 and 2 can be the same mode, different 
modes in the same geometry, or modes of different geome- 
tries. The subscripts i and j describe the dimensioned vari- 
able of interest in modes 1 and 2, respectively. In this discus- 
sion we will compare restoring forces at the same relative 
displacement, xi/l i ß 1, from the equilibrium position. For 
comparison of modes in different geometries, it is usually 
convenient to specify certain additional constraints. The 
modes may be required to have the same resonance frequen- 
cy, maximum particle velocity, average energy density, 
chamber volume, or some combination of these or other conø 
straints. 

As an example, let us consider the x, y, and z restoring 
forces for the (221) rectangular mode in a resonator of square 
cross section (l,, = ly). The restoring force constants are 

• =f•k•k • , • 2 4 z/*, (6Oa) -- f•k •k z/k , 

and the ratio of F. to F, at the same relative displacement is 

For a rigid sphere F•/F, < 1 with the largest value of this 
ratio being 0.67 for l,/I, = 0.55. The ratio F•/F, has the 
same form as Eq. (61) with x replaced by y. Thus F, will 
always be larger than F, = F•. 

We will now compare the lowest-order single mode po- 
sitioners in each geometry, e.g., the (22 I) rectangular mode, 
the (01 I) cylindrical mode, and the (100) spherical mode. It 
will be assumed that each resonator has the same volume 
and the same maximum particle velocity. For each mode 
there is a particular direction that has the weakest restoring 
force. This direction is determined by comparing the orthog- 
onal dimensioned force components associated with transla- 
tional stability. The po and Fa dimensionless forces are asso- 
ciated with rotational stability and will not be considered 
here. Except for spherical geometries, the strength of the 
weakest force component can be maximized by the appropri- 
ate adjustment of the chamber dimension ratios. The various 
restoring force components will be compared for the same 
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relative displacement, xl/!i.•l , from the equilibrium posi- 
tion. 

In the (221J rectangular mode, the force in the z direc- 
tion is always larger than the x and y force components, as 
shown above. For a given dimension 1,, the x and y forces 
will be maximum and equal when the length ratio l•/lx = 1. 
For a constant volume constraint, these x and y forces are 
further maximized by having lx/l• = 21•. For these dimen- 
sion ratios, the x and y restoring forces are approximately a 
third of the z restoring force. 

For the {011 • cylindrical mode, the z force component is 
again always larger than the radial force. The weaker radial 
force is ma.ximi:•ed for the dimens'ion ratio a/!• = 
The radial restoring force is about six and a haft times 
weaker than the z restoring force for this dimension ratio. 

The (100} spherical mode has a radial restoring force 
that depends on the angle 0. The maximum restoring force is 
along 0 = 0 and is approximately six and a half times stron- 
ger than the weakest direction 0 = 0/2. Maximization of the 
restoring forces with respect to chamber dimensions is not 
possible in a sphere for the assumption of a constant volume 
resonator. For the imposed constraints, this analysis shows 
that the (2211 rectangular mode has the strongest restoring 
forces. The ratio of the weakest restoring forces between 
each mode are (221) rectangular/(011 ) cylindrical -- 2.8 and 
(221) rectan•udar/(100) spherical---- 115. If, instead of hav- 
ing the same maximum particle velocity v o in each geometry, 
we assume the same space-time-averaged energy density (P) 
Isee Appendix D), we find the following ratios for the wea- 
kest restoring forces: {221} rectangular/(011) cylindri- 
cal= 1.65 and (221) rectangular/(100} spherical----47. 
These comparisons suggest that the overall positioning abi- 
lity of the single mode levitators decreases as the chamber 
symmetry increases. This is partially due to the fact that the 
optimh,ation of the chamber dimension ratios becomes more 
limiting with increased symmetry. 

The expressions developed in this paper were analyzed 
primarily for a rigid sphere. However, these expressions are 
also applicable to the general case of samples with arbitrary 
density and compressibility. Of particular interest in this re- 
gard is the acoustic behavior of gas bubbles in a liquid. Re- 
senators with free boundaries is another area where the anal- 
ysis is useful. The only required change in the analysis is the 
use of different boundary condition coefficients (i.e., n•, 
or 

A useful feature of Gor'kov's 9 method is the ability to 
couple the acoustic force field with other external fields such 
as gravity. Under these conditions, the resultant force field is 
simply determined by summing the force potentials and tak- 
ing the appropriate derivatives. This procedure will lead to 
new potential minima positions and restoring force con- 
stants. An investigation of the effect of gravity on acoustical- 
ly positioned samples in arbitrarily oriented chambers is now 
in progress. 

Vl. CONCLUSIONS 

In this paper, we have developed expressions for the 
acoustic radiation potential and forces in rectangular, cylin- 
drical, and spherical geometries. The critic. a] points were 

analyzed to determine the positions of potential minima 
which correspond to unique localization positions. Besides 
isolated potential minima points, nonisolated minima con- 
sisting oflines and circles, and plane, cylindrical, and spheri- 
cal surfaces were also obtained. It was demonstrated in cy- 
Undrical and spherical geometries that under special 
conditions certain tangential modes are capable of produc- 
ing isolated potential minima. Conversely, certain oblique 
spherical modes exhibit nonisolated potential m|n;ma cir- 
cles. 

This analysis has demonstrated that in each geometry 
there are single acoustic modes that can position a small 
sample at the center of the chamber. The lowest-order modes 
in each geometry that exhibit isolated potential minima are 
the (221}, (212), and 022) modes in rectangular geometries, 
the (011) and (102) modes in cylindrical geometries, and the 
II00} mode in spherical geometries. Stable positioning of 
small samples was demonstrated experimentally for all of 
these modes? Isolated potential m|nima may also be pro- 
duced by the simultaneous excitation of two or more modes, 
each of which individually cannot produce isolated minima. 
The most practical set of modes that can position a sample at 
the chamber center are the ( 102} and l010} rectangular modes 
and the (100) and (001) cylindrical modes. The present inves- 
tigation has presented acoustic positioning properties of var- 
ious modes in different geometries that will have application 
in basic and applied research programs. 
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APPENDIX A: CRITICAL POINTS OF A FUNCTION OF 
SEVERAL VARIABLES 

We give below a brief summary (without proofs) of the 
results and terminology pertinent to this paper, concerning 
the critical points of a function f of several-variables: 
x•, x•,...,x,. For our cases n is at most 3. We assume that 
f•(xl,...,xn) is differentiable as many times as necessary. 

A point x½ = (x,ox•,...,x,½) is a criticalpoint off if 

• I • •-•"•1 • o•x. 
The value off(x½) at a critical point x½ is called the critical 
value off. 

In order to determine the type of critical point atx½, we 
form the so-called Hessian matrix off. The Hessian off, 
denoted by Hf, is the symmetric matrix of all possible second 
partial derivatives off, i.e., 

•lOx2 

Oxfx, (A2) 
: 

941 J. Acous.t. Soc. Am., Vol. 77, No. 3. March 1985 M. Barmatz •nd P. Coilas: Acoustic radiation potential 941 



The Hessian is diagonalizable and its eigenvalues may 
be found by the usual techniques. The determinant of the 
matrix Hf[x,, denoted det(Hf[•,), and the trace of Hf]•,, 
denoted tr(Hf[•,), are invariant under the transformation 
which yields the eig, enva]ues •ci. Thus we have 

det(Hf[x,) = 1-[ •ci (A3) 

t•l 

We also wish to remind the reader of two useful terms: The 
rank r of an n X n matrix is the order of the largest submatrix 
with a nonvanishing determinant, while the corank 
m = n r Clearly then, the rank is equal to the number of 
nonzero eigenva]ues, while the corank is equal to the number 
of eigenva]ues Which are equal to zero. 

The type of critical point at xc is determined from a 
eousideration of the various possibilities listed below: 

(1) .411 the eigenvalues of rifle, are different from zero 
[i.e., det(Hf [•,) • O,r = n,m = 0]. In this case we have a non- 
degenerate critical point. It can be shown that a nondegener- 
ate critical point off is an isolated critical point off, i.e., there 
are no other critical points within some neighborhood ofx½. 
(However, the converse is not true; there are degenerate eriti- 
ca] points Which are isolated). 

(a) If a]l the eigenvalues arepositive, we have an isolated 
minimum at x•. 

(b) If all the eigenvalues are negative, we have an isolat- 
ed maximum at x½. 

(c) If some eigenvalues are positive and some are nega- 
tive, we have an isolated saddle at x½. 

(2) One or more of the eigenvalues of rifle, vanish [i.e., 
det(Hf [•, = 0,r • n,m • 0]. In this case we have a degenerate 
critical point. The corank m is equal to the number of inde- 
pendent "directions" in which the critical point is degener- 
ate. 

A degenerate critical point is structurally unstable 
which means that by adding a small perturbation to our 
functionf we may change the behavior at x½ drastically. For 
example f-- x 4 has an isolated but degenerate minimum at 
x = 0, while f= x 4 - 6x 2, • • 0 has a (nondegenerate) maxi- 
mum there. Physically this means, for example, that by tak- 
ing into account attenuation, or the size of the object more 
realistically (which amounts to the introduction of new pa- 
rameters in our potential •), we may modify the nature of 
the degenerate critical points of •. By contrast, it can be 
shown that a nondegenerate critical point is structurally sta- 
ble. That is, a small perturbation will not alter the behavior of 
fat x•. Except for the case of one variable where the type of 
critical point is determined by the first nonzero derivative of 
f (if it exists), the general theory of degenerate critical points 
of functions of several variables is rather involved, and we 
refer the interested reader to established references in this 
field? a? The best policy in such situations is to investigate 
the nature of the critical point by computer. 

As an illustration of the above ideas, consider the situa- 
tion for the rectangular geometry discussed in Sec. II, Eqs. 
(16)-(18). The off-diagonal elements ofH•r ]• with •½ given 
by Eq. (18), vanish. Thus the diagonal elements • •r/c• •, 

O2•r/o• 2, •r/vTz •, evaluated at ic, are the eigenvalues of 
H• le,. We have 

•f k• V • = ( -- 1) •+ •) •m,,m•). •2 
To ob• •/• •d •/•, •ply •terch•ge 
•d x•z, r•tively, • •. (AS). •e f•ction g h• the 
foHow•g pro•i•: 
•m•,m•) = 0, for m•,m• •th •d, 

•m•,m•)= _[•[k•l for m• •d, m• even, •k:][k•] ' form• •d, m• even, 
-- • + , for m•,m• •th even. 

(A6) 
•t • •sume, for example, •at n•, n•, n• •0, andf•,• • 0. 
We then have the follow•g c•: 

(1) At le•t two of the m• v•u• •e •en. •en aR thr• 
eigenvalu• are nonvanis•ng •d we have a nondegenerate 
cfiti• •int. 

(a) If• thr• m• v•ues •e •en, then aH t• •genv•- 
ues •e negative and we have a ma•mum. 
(b) If o•y two of the m• v•u• •e even, then • t• 
eigenv•u• •e •sitive •d we have a •mum. 
(2) At l•t two of the m• v•u• •e •d. • at l•t 

one eigenv•ue v•sh• •d we have a deg•erate cHti• 
po•t. 

(a) Ifa]l t• m• v•u• •e odd, th• aH t• eigenval- 
u• v•sh. In the (111) •d (222) r•n•l• m•, 
which were •v•figat• by •mputer for the above 
choice off; andS, this ty• of cfiti•l po•t tum• out 
to be a m•imum. 

(b) If only two of the m• vMu• are •d, then one eigen- 
vMue vanish•, and •e other two •e negative. Here 
ag•n a computer analysis would pro,de the simpl•t 
me•s of d•iding whether the cfitic• •t is a m•- 
mum or a "saddle." 

Nowsup•sethatn• = 0. •en•/• = •/• = 0 
for all j, •d •nsequently we have non•lated c•ti• 
•ts. •nsider, for ex•ple, the (102) r•l• m•e 
•d ch•e m• = 1 •d m• = 2 (my h• to • • to zero). 
•en, forfl,• • 0, •/• • 0, •d •/•0, •d we 
have a line of minima in they d•tion at x/l• = z/l• • 0.5 
(s• Fig. 3). Tabl• V and VIII •st the v•ous t• of s•- 
fac• of noni•lat• c•tic•.•in• ob• • the cy• 
•d spheHc• g•metfi•, r•tively. 

S• we only n• to •ow the sign of the eigenv•u• 
ofHf]• •d not their actu• v•u•, some• we •e able to 
d•u• the ty• of critical •t by l•g at tr(Hf]•) and 
det(Hf]•). For ex•ple, if tr(Hf]•,) • O, the c•tic• •t 
•ot • a m'•um, If t•Hf]•) •0 w•e det(Hf]•) • 0, 
we must have a (nondegenerate) sadie. Now suppose 
tr(Hf ]•) • 0, but det(Hf [•) • 0, •d the numar of v•abl• 
involv• is •d (i.e., n is •d); ag• the cfitic• •t at x• 
h• to • a (nondegenerate) saddle. • the other h•d, fin is 
even, the cfitic• •t may • a saddle or a m•. 

•e index I of for Hf ]• at a nondegenemte c•ti• 
•t x• is •u• to the numar of n•ative eigenv•u• of 
Hf[•. •e •dex ch•te• the ty• of c•ti• •t. For 
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example, for a n Xn (nondegenerate) Hessian, I =- 0 means a 
minmum, I---- n means a maximum, and 0<l<n means a 
sadd/e. Both the index I and the corank m are invariant 
numbers under differentiable invertible coordinate changes 
{ditfeomorphisms). • Therefore, fff has, for example, a non- 
degenerate minimum at xc and we perform a diffeomor- 
phisin i = i{x}, the transformedf will have a nondegenerate 
minimum at the corresponding position •c = i(x•}. How- 
ever, one has to be careful, as the following simple example 
illustrates. Consider the elliptic paraboloid given by 
f(xj•}----x 2 -b t2y •. f has a nondegenerate minimum at 
x =y --- 0 for t •0, since 

If we change to polar coordinates, we have 
f = F(r,4• ) = r•(cos2 • +t2sin2•). Now JF /3r = JF / 
&• = 0 for r = 0 and any •, and 

Hf[,_o = (2 cos2• + 212 sin2 • 00), 0 

which seems to imply that now we have a degenerate critical 
point at r ---- 0. The paradox is resolved when we realize that 
the Jacobion determinant of the transformation from Carte- 
sion to polar coordinates is equal to r and hence the transfor- 
marion is not invertible at r •- 0. In our investigation of the 
spherical geometry {Sec. IV), 

aD aD aD 
.... 0 

at t = 0 for all !and m, where t = kt, r. So t = 0 is always a 
critical point of •'•g,8,• }. Ifw•e let (!nm•(lnO), the • de- 
pendence drops out and U = U(g,0 }. Now 

.... 0, --=A(k,0)>0 (A0) 

at t = 0, for all k and 0 {f•,f2 > 0). •nis is a nondegenerate 
minimum as in the previous example, and it is better to think 
of 0 here as a "parameter" rather than an independent vari- 
able so that the relevant H• r consists oft1 2•r/0• a only. 
APPI=NDIX B: EF•I=C!'I¾•: RI=$TORIN• 
½ON•'ANT$ 

In Appendix B we restrict ourselves to the case of three 
independent variables, although the results generalize readi- 
ly to the case of n variables. In order to mak• comparisons 
between the various minima of the potential •r for different 
modes of the same geometry, or even for different geome- 
tries, we introduce the concept of an effective restoring force 
constant •. This concept only has meaning for the case of 
nondegenerate m/nima of the potential. It can be shown that 
in the neighborhood of a nondegenerate minimum the po- 
tential •may be written, with a proper choice of coordinates 
x, as the quadratic form 

I • •t + const., (BI} 
where the dimensionless parameters • = •/•rR Zp•k • and 

This result is a special case of the so-called Morse 
lemma? We give a brief outline of the proof: (a) Translate 
the coordinate origin to the position of the minimum. 
Expand •'in a Taylor series about the origin (the minimum). 
(c} Retain only the first nonvanishing terms; these are the 
terms involving the second derivatives (since the first deriva- 
tives vanish at the minimum). (d) Finally, rotate the coordi- 
nate system so as to eliminate cross terms. We now have (B 1 
which is, of course, identical to the potential energy of a 
three-dimensional anisotropic harmonic oscillator. The ef- 
fective restoring force constants R• are the eigenvalues of the 
Hessian matrix of • evaluated at the minimmn under consi- 
deration (see Appendix A). 

The fact that minitoo of interest are nondegenerate 
guarantees the existence of the • and the convexity of •'near 
the miniram. Thus by defining the • as above, we insure 
that the smallest • is in the direction of the minimum restor- 
ing force, the largest in the direction of the maximum restor- 
ing force, and so on. If the critical point is not a nondegener- 
ate minimum, some of the • may be zero or negative and 
thus lose their meaning as "restoring force" constants. How- 
ever, we may still define restoring force constants for certain 
directions. To see this, we give below a somewhat simplilicd 
version of the so-called splitting lemma 27 as it applies to our 
?ses. Suppose that •' has a critical point and the Hessian of 
/./evaluated at this critical point has rank r (and corank 
3 -- r). Then in a neighborhood around this critical point, 
is equivalent to a function of the form 

i,e., •' may be put in this form by a proper choice of coordi- 
nates. If the critical point under consideration is nonisolated, 
then we assume that Eq. (B2) is evaluated at one of the criti- 
cal points of this nonisolated set. More generally, of course, 
the •c•'s could be considered as depending on the variable(s) 
along the direction(s) in which the critical point is nonisolat- 
ed. We note that the splitting lemma is a generalization of the 
Morse lemma, and it enables us to deal with degenerate 
points by "splitting" the function into a Morse (nondegener- 
ate) piece on one set of variables and a degenerate piece on a 
different set of variables, whose number is equal to the co- 
rank. For example, consider again the (102) rectangmlar 
mode discussed in Appendix A. We found that under certain 
conditions •' has a line of minima in the y direction at 
x/!,• ---- z/l• = 0.5. H• r evaluated on this set of nonisolated 
critical points has rank r = 2 and coranit m = 1. Therefore, 
in the neighborhood of this set of minima, we may write 

•= •2 + •,• + D.(g) + const. 
In this example it turns o•t that •a (.•) = 0 since they depen- 
dence drops out of •rwith the choice n• = 0. From Eqs. {AS}, 
(A6), etc. we readily find that 

The unimportant constant in (B3) is, ofconrse, •r(x = 0.5/•, 
z=o. sz.). 
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It is rather interesting that the k•s as defined above are a 
special case of what are known as the principal curvatures of 
a hypersurface in differential geometry? In our case, they 
are the principal curvatures at a minimum of the hypersur- 
face defined by •'. The sum and product of the k•s are also 
useful quantities and, as can be seen from Eqs. (A3) and {A4), 
they are, respectively, the tr(H• r I•c) and det{H• 

I 

where 

and 

APPENDIX C: FORCE COMPONENT EXPRESSIONS 
FOR CYLINDRICAL AND SPHERICAL GEOMETRY 

As an aid to computer calculations, we present below. 
the force component expressions for cylindrical and spheri- 
cal geometry. The force components for rectangular geome- 
try are given by F_q. (16). 

In_cylindrical geometry, the evaluation of Eqs. (27)-(29) 
for the F,,F•, and F= force components yields 

In sphed• g•me•, the eviction offs. 14a•45} for the •:, •, •d • for• •m•n• •elds 

• = [2/g0 - p•)'•] [•/••)[(1+ ;•P•) -(;- m + 1•+ •)]• mO 
- •/g •)([•,•) - •,+• •)]•P•)[(/+ 1•) - (;- m + •+• •)]• mO 
+•z/(• -p•) +•(•)/(1 -f){ [(;+ ;•P•)- (;- • + •+ •)] W+ 1)0 + 
_(;+m + •)(;_ m + •)]p•)•2 • + m:p•)[(; + l•P•)- (;•m + ;•+ •)]s• mO })]. 
[• s• 2mO /gO -W) m] [(f,/3•)[P•)]• - (/•/• •)([•,•) - •,+ •)]•[P•)]• 
+ •)/(• -W)] { [(;+ •P•) - (;- m + •. •)]• - [•P•)]•})], 

B = [(I+ l•uP•(p) -- (1-- m + I}P •:+ :(/.t)]: cos 2 m• -l- [mP?•u)]: sin: 

A: [•/t•) -- .•t+: {•)]:[P•'•u)] 2 cos• mJ -t- [j•)/(1 

(C6} 

(c•) 

(C8) 

APPENDIX D: THE SPACE-TIME-AVERAGED ENERGY 
DENSITY 

In comparing the positioning characteristics of various 
modes, it is appropriate to assume that each mode has the 
same space-time-averaged energy density given by z9 

1 

where the overbars denote time averages, and V is the vol- 
ume of the chamber. This expression can be simplified to 
give 

(•) = (.o•)N', (02) 
where N is a dimensionless constant, 

I 

The magnitude of N depends on the geometry and mode. 
For rectangular geometries, we can easily integrate F_.q. 

(03) to obtain 
N= 2 -•'+ ", (134) 

where s is equal to the number of nonzero quantum numbers. 
For cylindricalgeometries, {03) gives us 
N'= {2 -w +:l/'•[a•,• 

x({im + •[•. + 
m/•a.,.)}J,•{•ra,..) X(1-- : : 

-l- [•r•a•, --(m+ ]):]J•+,(•.,.)), (05) 
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where 

s'----2 if m•O, 
s'=l if m=O and n•O, or rn•O and n,=O, 
s'---O if m----n,----O. 
Finally, for spherical geometries, we find 

,v= (. + 
\ •rYtn / I 

where s' ---- 1 ffm•O and s' = 0 ffm ---- O. 
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