A new argument against the existence requirement

TAKASHI YAGISAWA

It may appear that in order to be any way at all, a thing must exist. A possible – worlds version of this claim goes as follows:

\[(E) \quad \text{For every } x, \text{ for every possible world } w, Fx \text{ at } w \text{ only if } x \text{ exists at } w.\]

Here and later in (R), the letter ‘F’ is used as a schematic letter to be replaced with a one – place predicate. There are two arguments against (E). The first is by analogy. Socrates is widely admired now but he does not exist now. So, it is not the case that for every \(x\), for every time \(t\), \(Fx\) at \(t\) only if \(x\) exists at \(t\). Possible worlds are analogous to times. Therefore, (E) is false (cf., Kaplan 1973: 503 – 05 and Salmon 1981: 36 – 40). For the second argument, replace ‘F’ with ‘does not exist’. (E) then says that for every \(x\), for every possible world \(w\), \(x\) does not exist at \(w\) only if \(x\) exists at \(w\). This is obviously false. Therefore (E) is false (cf., Kaplan 1977: 498). Despite their considerable appeal, these arguments are not unassailable. The first argument suffers from the weakness inherent in any argument from analogy; the analogy it rests on may not
hold in relevant respects or to a sufficient degree. The second argument suffers from the controversial nature of non-existence; either ‘does not exist’ is not a predicate hence not a legitimate substituent for ‘F’ or negative existential statements are too ill understood to provide a secure basis for a strong argument. Perhaps the two arguments may prove ultimately satisfactory despite these complaints. Perhaps not. In any case, it will strengthen the opposition to (E) if we have an independent third argument with less controversial premisses. I propose to supply one.

Here is my argument in a nutshell:

(Premiss 1) Iterated modal indexing is redundant.
(Premiss 2) If iterated modal indexing is redundant, (E) is false.
(Conclusion) (E) is false.

To say that iterated modal indexing is redundant is to say the following:

(R) For every x, for every possible world w_i, for every possible world w_2, Fx at w_i at w_2 if and only if Fx at w_i.

The second modal index, w_2, is idle. I shall give two examples to illustrate the wide acceptance the first premiss enjoys. I shall then show that the second premiss is true.

Saul Kripke proposed that Wittgenstein’s example,

(W) The standard metre stick is one–metre long,
is an example of the contingent a priori (Kripke 1980: 54 – 6, 75 – 6). Reactions to Kripke’s proposal have been mixed but one particular theoretical position is almost universally deemed as untenable, namely, the position which maintains the contingency of (W) while interpreting (W) as saying that the metre stick is one – metre long at @ (the actual world). The almost universally accepted reason is that if the metre stick is one – metre long at @, then for any possible world w, the metre stick is one – metre long at @ at w, and vice versa.

Alvin Plantinga proposed the notion of α – transform (Plantinga 1978). (See also Plantinga 1974: 62 – 3, 72 – 3 for world – indexed properties in general.) The α – transform of a property is that same property as indexed to @: e.g., the α – transform of being a philosopher is being a philosopher at @. It is almost universally accepted that the operation of α – transformation produces necessity out of contingency, i.e., even if a thing has a property contingently, it has the α – transform of that property necessarily. The widely accepted reason is that if x is F at @, then for any possible world w, x is F at @ at w, and vice versa.

In both of these cases, not only has the redundancy of iterated modal indexing not been questioned but it has been so widely accepted that any discussion of a related topic has come to presuppose it automatically.

I now argue for the second premiss. Al Gore lost the presidential election to George W. Bush in the United States in the year 2000, but Gore could well have won it. Thus:

(1) Gore lost at @.

(2) For some possible world w, Gore won at w.
Against this familiar background, consider the following consequence of (R):

\[(R')\quad \text{For every possible world } w_1, \text{ for every possible world } w_2, \text{ Gore lost at } w_1 \text{ at } w_2 \text{ if and only if Gore lost at } w_1.\]

Consider also the following consequence of (E), where \(x\) is Gore and ‘\(Fx\)’ is ‘\(x\) lost at @’:

\[(E')\quad \text{For every possible world } w, \text{ Gore lost at } @ \text{ at } w \text{ only if Gore exists at } w.\]

\((R')\) and \((E')\) jointly entail:

\[(RE)\quad \text{For every possible world } w, \text{ Gore lost at } @ \text{ only if Gore exists at } w.\]

But \((RE)\) is false. It is easy to see why. There is some possible world \(w\) at which Gore does not exist. Given \((RE)\), it follows that it is not the case that Gore lost at @. This contradicts (1). Therefore, if \((R)\) is true, \((E)\) is false.

The consensus on the truth of \((R)\) is wider than that on the analogy with time or what exactly to say about negative existential statements. Thus, if I am right, we have a new and more widely acceptable argument against the existence requirement.

(There is a parallel argument against the counterpart – theoretic version of (E):

\[(EC)\quad \text{For every } x, \text{ for every possible world } w, \text{ } Fx \text{ at } w \text{ only if } x\text{'s counterpart exists at}\]
If x's counterpart at w is not identical with x, x is said to be F at w in absentia (Lewis 1986: 9 – 10).

As a bonus, (R) may be regarded as a principle which bolsters the analogy with time, thus strengthening the first argument against (E). Times as temporal indices are governed by the following principle:

$$(T) \quad \text{For every } x, \text{ for every time } t_1, \text{ for every time } t_2, \text{ } Fx \text{ at } t_1 \text{ at } t_2 \text{ if and only if } Fx \text{ at } t_1.$$

Consider (R) and (T) as special cases of the following more fundamental principle governing alethic indices in general, and we have uncovered a common basis for the two arguments against (E):

$$(I) \quad \text{For every } x, \text{ for every index kind } k, \text{ for every index } i_1 \text{ of kind } k, \text{ for every index } i_2 \text{ of kind } k, \text{ } Fx \text{ at } i_1 \text{ at } i_2 \text{ if and only if } Fx \text{ at } i_1.$$

1 If x’s counterpart at w is not identical with x, x is said to be F at w in absentia (Lewis 1986: 9 – 10).

2 ‘Gore lost at time t at @’ is not equivalent to ‘Gore lost at time t’. The redundancy holds only when the iterated indices belong to the same kind. Hence the need for k.

California State University, Northridge
Northridge, CA 91330 – 8253, USA
References

