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Abstract

We first study isometric immersions of Kahler manifolds of nonnegative isotropic curvature
in Fuclidean spaces with low codimension. We conclude that such manifolds have nonnegative
sectional curvatures and are covered by the Riemannian product S%° x P?" x N x C!, where
each factor is a Kahler manifold such that S is a compact manifold and P?" diffeomorphic
to Euclidean space. We also study isometric immersions of Kahler manifolds of nonnegative
isotropic curvature with flat normal bundle. We show that they are covered by the Riemannian
product §%* x P x C!, where S is a Riemannian product of spheres and P diffeomorphic to
the Euclidean space.

1 Introduction

Let M be an n-dimensional Riemannian manifold with n > 4. For z in M we consider the
complexified tangent space T, M @ C and we extend the Riemannian metric { , ) to a complex
bilinear form (,). An element 7 in T, M ® C is said to be isotropic is (7,7) = 0. A two-plane
I C Ty M ® C is called totally isotropic if (Z,7) = 0 for any Z € I. The Riemannian metric can
also be extended to a Hermitian inner product, denoted by ({, )), so that

{2, WYy = (2, W), for Z, W €TyM @ C.

Let R denote the complex linear extension of the curvature operator R : AZ — A?. Let I be a
totally isotropic two-plane spanned by Z and W. The isotropic curvature of I, denoted by K7, is
defined as (see [6])

(R(Z NW), Z AW))
I1Z A W2

In [7], the authors proved that a compact K&hler manifold of K; > 0 is simply connected, its second
Betti number is 1 and it has positive first Chern class. They also conjectured that it is biholomorphic
to a Hermitian Symmetric Space of compact type. This conjecture is still wide open.

Recall that the complexified tangent bundle TM ® C of a Kahler manifold splits as TM =
719 @ 701 and a vector in the holomorphic bundle 719 is written as Z = X — iJ(X), where
J denote the parallel complex structure and i2 = —1. The bisectional curvature, K,, of a Kahler
manifold is given by

Ky =

UR(Z AW, Z AW))
1Z AW |2

Ko(Z,W) =
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In [8], compact Kahler manifolds of nonnegative bisectional curvatures were classified. They are
covered by Riemannian products of Hermitian Symmetric Spaces of compact type with the complex
space and with manifolds biholomorphic to the complex projective space.

It is obvious that if Z and W span a totally isotropic two-plane I, then K; = K,(Z, W). However
the nonnegativity of the isotropic curvature does not imply the nonnegativity of the bisectional
curvature. Likewise, Ky > 0 & K; > 0. This is easily seen by considering a compact manifold N
with K, > 0 but with some negative sectional curvature. The Riemannian product M = N x T2,
where T? denotes the flat torus, is still a compact Kahler manifold of K > 0 but M does not have
K1 > 0 since the latter would imply that the sectional curvatures of N are nonnegative (see proof
of Proposition 2.1). The relationship between these two types of curvature, if exists, is not well
understood.

Complete non-compact Kahler manifolds of K, > 0 and complete non-compact Kahler mani-
folds of Ky > 0 are even less understood. In this paper we classify the ones with K; > 0 that
admit isometric immersions in Euclidean Space with codimension p < n — 1, 2n being the manifold
dimension. We also study Kahler submanifolds of Euclidean spaces and K; > 0 and flat normal
bundle.

Before stating the results we recall that if f: M"™ — R™*? is an isometric immersion, the space

NR(z) = {X € T,M|a(X,Y) = 0,VY € T, M},

where a denotes the second fundamental form, is called the Relative Nulllity Space, and its dimension
v¢(z) is called the index of relativity nullity. In the following we use the notation vy = mingearvy(x).
Our first result is the following theorem.

Theorem 1.1 Let f : M?"* — R?"*P be an isometric immersion of a complete Kahler manifold of
nonnegative isotropic curvature such that p<n—1. Then M = M} x C?, d>n—p, f= fi xi
and vy, = 0. Moreover, the uniwersal covering M is the Riemannian product 525 x P2 x N, where
each factor is a Kahler manifold of nonnegative sectional curvature such that:

(1) S?* is a compact manifold.

(11) P is diffeomorphic to the Euclidean space.

(iii) N splits in a Riemannian product ¥ x Q, where ¥ is compact and Q is diffeomorphic to the
Fuclidean space.

It follows from the classification of compact manifolds with nonnegative bisectional curvature
([8]) that S?* above is either an Hermitian Symmetric Space of compact type or biholomorphic
to the Complex Projective Space. However, nothing can be said about the complex structure of
the complete Kahler manifold P27, which is diffeomorphic to Euclidean space, since the problem of
classifying complete Kéhler manifolds of positive (nonnegative) sectional curvature is still open.

We also obtain the following splitting theorem for complete Kahler manifolds of K > 0.

Theorem 1.2 Let f : M?* — R?**P be an isometric immersion of a complete Kahler manifold of
nonnegative bisectional curvature such that p < n. Then M = M x C% and f = fi x i, where
i:C* = C? d>n—p. Moreover vy, =0 and fi : M*™ — R*™ P with p > m.

In the last section of this paper we focus on isometric immersions that have flat normal bundle.
Since these manifolds have pure curvature tensor (see Definition 4.1), their classification will follow
from the following result.

Theorem 1.3 Let M?*, n > 3, be a complete Kdihler manifold with pure curvature tensor and
nonnegative 1sotropic curvature. Then M has nonnegative sectional curvatures and is covered by
528 x P where S?* splits in a Riemannian product of surfaces homeomorphic to the sphere and
P s a complete Kihler manifold diffeomorphic to the Euclidean space.



We point out that the above result does not hold for n = 2, since the product of the sphere S?
with the Hyperbolic plane is a Kahler manifold that admits a metric with pure curvature tensor
and nonnegative isotropic curvature but does not have nonnegative sectional curvatures. Theorem
1.3 together with Hartman’s Theorem [4] imply the following theorem.

Theorem 1.4 Let f : M2 — R?»™1P, n > 3, be an isometric immersion of a complete Kihler
manifold of nonnegative isotropic curvature and R+ = 0. Then M = M x C¢, f = fi x i and
vy, = 0. Moreover, M, is Kdhler manifold of nonnegative sectional curvatures and pure curvature
tensor and hence as in Theorem 1.3.

2 A splitting result for submanifolds of nonnegative isotropic

curvature
We start this section by pointing out that if 7 is a totally isotropic two-plane, we find 4 orthonor-
mal vectors eq,...,e4q such that 7 = e; + ite5 and W = e3 + ieyq span [ and
[([ = [((61, 63) + [((61, 64) + [((62, 63) + [((62, 64) + 2<R(61, 62)63, 64>, (1)

where K (X,Y) denotes the secional curvature of the plane spanned by X and Y.

Proposition 2.1 Let f : M™ — R"? be an isometric immersion of a complete manifold of non-
negative 1sotropic curvature. If v; > 1 then M = M x R*, where k = e, and f = fi x ¢, where
i: R¥ = R is the identity map and Uy, = mingen, vy (2) = 0. Moreover, if vy > 2, then My and
thus M have nonnegative sectional curvatures.

Proof Let U denote a unit vetor in the Relative Nullity Space. Then we consider the isotropic plane
spanned by Z = X +::V and W =Y + U, where X, Y,V and U are orthonormal vectors. From
equation (1) we get that

KX, YV)+ K(V,Y) >0,

for all orthonormal vectors X,Y, and V| which implies that M has nonnegative Ricci curvature.
Therefore the result follows from Hartman’s Theorem [4]. Moreover, if 7y > 2 we then take V in
the Relative Nullity Space as well and we conclude that K(X,Y) > 0. g

Corollary 2.2 Let f: M™ — R™*P be an isometric immersion of a complete manifold of nonneg-
ative 1sotropic curvature. If k = vy > 2, then M = M{* x R* and the universal covering M, splits
in a Riemannian product of S x P™~' where S is the soul of M and P™~! a complete manifold
diffeomorphic to the Euclidean Space R™~!.

Proof If M is not compact, since M; has nonnegative sectional curvature, we use the Soul Theorem
of Cheeger and Gromoll ([1]). If the sould is a point we have the result for [ = 0. Since M, the
soul cannot have dimension 1. If the codimension of the soul is 1, the result follows from the Soul
Theorem. For the remainder cases, we consider two i1sotropic planes, one spanned by 7 = X + Y
and W = U 4 iV and a second spanned by Z = X 4+iY and W = U — iV, where X and Y are
tangent to the soul and U and V are orthogonal to the soul. Since the sectional curvature of a
plane determined by two vectors such that one is tangent and another is perpendicular to the soul
vanishes, we obtain, from the definition of isotropic curvature for plane {Z W}, that

KX, U)+ K(X,/V)+ KY,U)+ K(Y,V) + 2(R(X,Y)U, V) = 2AR(X,Y)U, V) > 0.
Likerwise, for plane {Z, W} we get
KX, U)+ K(X,/V)+ KV, U)+ K(Y,V) =2(R(X,Y)U, V) = =2(R(X,Y)U,V) > 0.



We the have that (R(X,Y)U, V) = 0, which applied to the Ricci equation of the totally geodesic
immersion i : S — M gives (R (X, Y)U, V) = 0.

Now if M is simply connected, so is S that together with (R (X,Y)U, V) = 0 implies that the
holonomy group of the normal bundle NS is trivial. The result now follows from Strake’s theorem

(19) m

3 Kahler submanifolds of nonnegative isotropic curvature

Recall that if J denotes the parallel complex structure of a Kahler manifold then for al vectors
X,Y and U we have

R(JX,JY)U = R(X, YU and R(X,Y)JU = JR(X,Y)U.
These properties imply that
Ko(Z, W)= K(X,Y)+ K(X,JY)= K(X,Y)+ K(JX,Y),
for Z=X—iJX and W =Y +iJY, X and Y orthonormais.

Proof of Theorem 1.2

It follows from the Fwu’s lemmain [2] (on page 100) that for each # € M there exists a J-invariant
subspace N, C T, M of dimension 2(n — p) and an orthogonal transformation J:TEM — TEM
such that
(i) a(X,Jn) = ja(X, n), for all X € T, M and all n € N,.
(i) jza(X, n) = —a(X,n).

We will show that under the hypothesis of K > 0, the subspace N, is a subspace of the Relative
Nullity Space. In fact, since K > 0, in particular, implies nonnegative holomorphic curvature, we
have

K(n,Jn) = (a(n,n),a(Jn, Jn)) — (a(n, Jn),a(n, Jn)) = —2|a(n,n)|* > 0,

and thus a(n,n) = a(Jn, Jn) = a(n, Jn) = 0. Now let X be a unit vector orthogonal to n and Jn.
Using that Kp > 0 we get

K(X,n)+ K(X,Jn) = (a(X, X), a(n,n)) + {a(X, X),a(Jn, Jn)) — |a(X,n)]* — |a(X, Jn)|? >0,

which implies that a(X,n) =0,V X L n,Jn.

Since K > 0 also implies nonnegative Ricci curvature we obtain that the desired splitting by
Hartman’s theorem. In addition, the complex structure J preserves the Riemannian splitting and
since it is parallel, we conclude that M; is a Kahler manifold. g

Proof of Theorem 1.1

Since p < n, we apply Fwu’s lemma quoted above. Since 7 = X —iJX and W = n+1¢Jn span a
totally isotropic 2-plane, and Kj(Z, W) = 2K (X, n) + 2K (X, Jn) we get using the Gauss equation
that

Ki(Z,W)=2{a(X, X),a(n,n)) + (a(X, X), a(Jn, Jn)) — |a(X,n)|* = (X, Jn)*| >0, (2)
which then implies a(X,n) =0,V X L n, Jn.
Since p < n — 1 we have that dem/N > 4 and we have totally i1sotropic two-planes contained in

N. We consider Z = ny +ins and W = Jna + ¢Jny. Therefore, from equation (1) we obtain

K(nl, Jnl) + [((nz, an) + K(nl, an) + [((nz, Jnl) + 2<R(n1, nz)an, Jn1> Z 0.



Using the Gauss equation, and the facts (R(n1,ns)Jnse, Jn1) = (R(ny,na)ne,ni), K(ny, Jno) =
K(Jny,ng), and {a(ny, n1), a(Jne, Jng)) = —(a(n1, n1), a(na, na2)), we conclude that

—2]a(ny, 711)|2 — 2|a(na, n2)|2 >0,

implying then that a(n,n) =0,¥n € N.

From Corollary 2.2 we get that M is Riemannian product M; x C? where M; has nonnegative
sectional curvature. Again, because the complex structure J preserves the Riemannian splitting and
is parallel, we conclude that M; is a Kahler manifold. Moreover,the universal covering M, splits
in a Riemannian product of X! x P?"~! where ¥ is the soul of M and P™~! a complete manifold
diffeomorphic to the Euclidean Space R™~*.

Now we consider two orthogonal distributions defined on M;: J(T¥) and J(T1X). Since T'Y
and T+ are parallel and involutive distributions and J is parallel we conclude that J(7T'%) and
J(T+Y) define parallel and involutive distributions and therefore M also splits in a Riemannian
product of two other manifolds Ny x Ny, with TNy = J(TS) and TNy = J(T+X). Since each N;
has nonnegative sectional curvatures, each one splits in a Riemannian product N; = ¥; x P;, where
¥; 1s the soul of ;. Therefore ¥ = 3 x Xs.

Now observe that if a vector X € TXq, since X € J(TX), J(X) € TX and, in particular,
J(X) € T%;. Similarly, we obtain that J(T'P3) is invariant by J. It follows that X;, Ps, and
N = ¥y x P; are Kahler manifolds and Ml =¥ XxPyxN. g

4 Kahler Submanifolds of Flat Normal Bundle

We start this section by proving a preliminary lemma for manifolds whose curvature tensor satisfies
the condition defined below:

Definition 4.1 A Riemannian manifold is said to have pure curvature tensor if for every v € M
there is an orthonormal basis {e1, ... ey} such that the two forms e; A e; are eigenvectors of the
curvature operator R.

Notice that this definition is equivalent to saying that there exists an orthonormal basis {e1, ... e, }
for which (R(e;,¢e;)er, em) = 0, whenever the set {7, j, k, m} has more than two elements. We call
this basis an R-basis. Observe also that the Ricci equation implies that submanifolds of Space Forms
with flat normal bundle have pure curvature tensor.

Lemma 4.2 Let M?" be a Kihler manifold of pure curvature tensor. Then there exists an R-basis

{e1,...,en} such that the plane spanned by ea;_1, eo; is invariant by the complex structure J for all
J=1,...,n. Moreover, if ej is orthogonal to ea;_1 and es;, then

K(ek,ezj_l) = K(ek,ezj) =0. (3)
Proof Since J?> = —I, J splits the tangent space in n planes invariant by J. Therefore, if all

sectional curvatures are zero, any orthonormal basis 1s an R-basis and the result is obvious.
Let us then suppose that we reorder an R-basis {e1,..., ey} so that K(ey,ez) # 0. We have

R(@l, 62)J(62) = J(R(@l, 62)62) = J(K(el,ez)el) = [((61, 62)J(61),

where the first equality was implied by the fact that J 1s parallel and the second by the purity of
the tensor. On the other hand, we also have

R(@l, 62)J(62) = <J(62), 61>R(61, 62)61 = —<J(62), 61>[((61, 62)62.



Since K (e1,e2) # 0 we obtain that J(e1) = es.
Now if e, L e1, e we have R(ey, ex)J(er) = 0, since J(ex) # e1, ex. Therefore

0= Rler,er)J(ex) = J(R(e1, er)er) = K(e1,ex)J(e1),

implying that K(ey,ex) = 0. Likewise we obtain K(es,e;) =0
By repeating this procedure for another sectional curvature K (e;,e;) # 0 we complete the proof
of the Lemma.g

Proof of Theorem 1.3
Let {e1,...,e,} be an R-basis as in Lemma 4.2. Let us consider the isotropic plane spanned by

Z =eaj_1+tep and W =eq; + e,
where ey, e; L eg;_1,€es; and J(ex) # ;. It follows from Equation 1 and Lemma 4.2 that
[([ = [((62]'_1, 62]') Z 0.

Now observe that in the case of pure curvature tensor, the sectional curvatures of planes spanned
by the vectors in the R-basis are the eigenvalues of the curvature operator. Therefore we conclude
that R is a nonnegative operator.

Let us suppose that M is compact. Irreducible Compact manifolds of pure nonnegative operator
were classified in [3]. Their holonomy algebra is the orthogonal algebra o(m), m being the dimension
of the manifold. It follows that our M is locally reducible, since the only possible case for a Kahler
manifold would be a surface of nonnegative curvature. We also conclude that if the universal covering
of M is still compact, then M is a Riemannian product of surfaces homeomorphic to spheres. If M is
not compact, as in the proof of Corollary 2.2 and Theorem 1.1, we get that M splits in a Riemannian
product of X! x P! where ¥ is the soul of M and P?"~! a complete manifold diffeomorphic to
the Euclidean Space R?7~!

If M is complete and non-compact we also obtain that the same splitting X! x P>*~!. With the
same arguments and notation used in the proof of Theorem 1.1, we get that M = X1 x Py x N, where
each factor is a Kahler manifold. We show next that in the case of pure crvature tensor, J(TX) = X,
that is, M = X x Ps. In fact, if not, the manifold N = X, x Py is such that J(T%3) = T(Py). This
implies that the holomorphic curvatures Kp(X,JX) =0 for all X € TE5 and all X € T(P;). Using
Lemma 4.2, it is straightforward to verify that this implies that all holomorphic curvatures of N
would be zero and therefore N would be holomorphically isometric to the complex space C'. ([5],
Theorem 7.9). In this case the soul of N would be a point and hence dimT%, = dimTP, = 0.

We then have M = X x P,, where ¥ is a compact Kahler manifold of nonnegative sectional
curvatures and pure curvature operator. Therefore, ¥ must be a product of spheres.g
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