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1 Introduction

The Collatz conjecture remains today unsolved; as it has been for over 60
years. Although the problem on which the conjecture is built is remarkably
simple to explain and understand, the nature of the conjecture and the be-
havior of this dynamical system makes proving or disproving the conjecture
exceedingly difficult. As many authors have previously stated, the prolific
Paul Erdos once said, “Mathematics is not ready for such problems.” Thus
far all evidence indicates he was correct (see [2]). Although the conjecture
may be stated in a variety of ways this paper will focus on the modified
Collatz map T : Z+ → Z+ defined by

T (n) =
{

3n+1
2 n ≡ 1 (mod 2)
n
2 n ≡ 0 (mod 2)

The conjecture is that for every integer n there exists a k such that T k(n)=1.
First we will take steps toward refining an upper bound of the growth

of a divergent trajectory if one exists. We will also look at an interesting
pattern found when counting the number of iterations of certain operations
on numbers of the form (2p+1)m−1, for some p > 1. Lastly we will consider
a continuous extension of this map to the real line.

Although this paper is not exactly a bibliography of previous works we
will reference known results. This survey will document the course we took
to analyze the Collatz problem and provide our own proofs even for known
results.

2 Divergent Trajectories

Following Lagarias‘ suggestion (see [5]) we sought an upper bound for the
growth of a divergent trajectory, if one exists. The most obvious upper
bound comes from the observation that the fastest possible growth occurs
in a monotonically increasing trajectory of odd numbers.

By iterating α(n) = 3n+1
2 we find the following upper bound

αk(n) =
(

3
2

)k

n+
k−1∑
i=0

3i2k−i−1

2k
,

which simplifies to the geometric series:(
3
2

)k

n+
1
2

k−1∑
i=0

(
3
2

)i

.
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Upon further simplification we find

αk(n) =
(

3
2

)k

(n+ 1)− 1. (1)

Let φ(n) be the first k such that αk(n) is an even integer. If a monoton-
ically increasing trajectory exists starting with n0 then there is no largest k
for n0 and φ(n0) is undefined. From equation (1) no such trajectory exists.
The exact behavior of φ(n) we describe in Theorem 1.

Theorem 1. If p0 is such that

p0 ≡ −1 (mod 2n),

where n is the largest integer such that this congruence holds, then

φ(p0) = n.

Proof. Although this theorem follows from (1) by observing that n+1 ≡
0 (mod 2k), k-maximal implies that αk(n) is even and for 1 6 i < k, αi(n)
is odd, we offer an alternative proof:

Suppose without loss of generality that p0 is odd. Then

3p0 + 1 ≡ −2 (mod 2n),

hence
p1 ≡

3p0 + 1
2

≡ −1 (mod 2n−1).

Repeating this argument we get that

p2 ≡ −1 (mod 2n−2)

...

pn−1 ≡ −1 (mod 2).

Since all those pj are odd, this gives us that φ(p0) > n.
Suppose now that φ(p0) > n, i.e.

pn ≡ −1 (mod 2).

But 2pn − 1 = 3pn−1, and since 2pn ≡ −2 (mod 22)

pn−1 =
2pn − 1

3
≡ −1 (mod 22).
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Repeating this reasoning we get that

p0 ≡ −1 (mod 2n+1),

which contradicts the fact that n is maximal.

Corolary φ(m) is finite for every m.

Corolary For every natural number k there are infinitely many numbers n
such that φ(n) = k.

Proof. Just take n = l · 2k − 1, where l is an odd number.

From the formula (1) it is easy to see that αk(n) ≡ 2 (mod 3) for all k
such that this number is an integer. In particular αφ(n)(n) ≡ 2 (mod 3), but
since (from the definition of φ(n)) it is also even, we have that

αφ(n)(n) ≡ 2 (mod 6).

But now, since every even number is eventually taken to an odd number
by successive applications of the function T , and T executes the operation
α on an odd number m exactly φ(m) times, we deduce that every number
is taken to a number congruent to 2 (mod 6), which gives us the following
theorem:

Theorem 2. In order to prove the Collatz conjecture, it is sufficient to
prove it for every number congruent to 2 (mod 6).

Since φ(m) is finite for every integerm it is not possible for an unbounded
trajectory to consist entirely of odd numbers and thus our initial upper
bound can be improved. From Theorem 1 we conclude that if m 6 m0 =
2k − 1 for some integer k, then φ(m) 6 k = log2(m0 + 1). After φ(m)
applications of α we must divide the result by 2 at least once. Since our
goal is an upper bound, we will assume division by 2 occurs exactly once and
that this process continues indefinitely. In other words let us assume that

mk = αφ(mk−1)(mk−1)
2 is odd for all k > 1. We know φ(m0) 6 log2(m0 + 1),

so when we iterate this process:
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m0 = m

m1 6

(
3
2

)log2(m0) (m0 + 1)− 1
2

...

mn 6

(
3
2

)log2(mn−1) (mn−1 + 1)− 1
2

Already m2 is quite complicated. We were unable to find a closed form
equation for this recursively defined upper bound. Instead we choose a par-
ticular starting integer m and apply the following algorithm to demonstrate
the growth according to this new upper bound:

Given a starting integer m0 recursively define mn+1 = (3mn + 1)/2
for 0 6 n < ceiling(log2(m0 + 1)). Then define mn+2 = mn+1

2 . Re-
peat the process, now starting at mn+2, applying (3mk + 1)/2 exactly
ceiling(log2(mn+2 + 1))-times.

Figure 1:
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Figure 1 shows a graph of the function (3/2)k(m0+1)−1 where m0 = 31
(red-dashed) and a plot of points found by the above algorithm (blue-solid).

Since there are estimates on lower bounds for the growth of a divergent
trajectory (see [5]), finding a sufficiently small upper bound would lead to a
proof that no divergent trajectory exist. Also Theorem 2 and equation (1)
will be useful in developing optimizations for algorithms which test the con-
jecture for all values less than some large integer. Although such computer
programs will never result in a proof of the conjecture, they can be used to
obtain minimum lengths of non-trivial cycles.

3 Further Investigations

The natural step after the investigation of the behavior of the function φ
would be to investigate the function ψ(m) : N → N, which we define as
the highest power of 2 that divides m. If we consider the natural ordering
of even numbers, ψ(m) results in the same pattern as φ(n) acting on odd
numbers in their natural ordering:

m φ(m) n ψ(n)
1 1 2 1
3 2 4 2
5 1 6 1
7 3 8 3
9 1 10 1
11 2 12 2
13 1 14 1
15 4 16 4
17 1 18 1
19 2 20 2
21 1 22 1

However if one starts with odds in their natural order and applies α until
the first even integer appears, and then considers the ψ function a much more
complicated pattern emerges. In fact it appears that no pattern exists at all
so we tried to understand the pattern which arises when we restrict ourselves
to certain subsets of the odd numbers. Our first investigation concerned
numbers of the form 3n − 1, because these are the numbers obtained from
φ(2n − 1) iterations of T on 2n − 1. Theorem 1 gives us that numbers of
the form 2n − 1 grow the most of any number less than or equal to 2n − 1
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before shrinking the first time. We observed that a similar pattern to the
abovemay exist when we restrict ourselves to this subset of odd numbers.

Then we investigated the pattern of ψ(pm − 1) where p = 2n + 1. This
is the subject of this section.

m φ(2m− 1) ψ(5m − 1) ψ(9m − 1)
1 1 2 3
2 2 3 4
3 1 2 3
4 3 4 5
5 1 2 3
6 2 3 4
7 1 2 3
8 4 5 6
9 1 2 3
10 2 3 4
11 1 2 3
12 3 4 5
13 1 2 3
14 2 3 4
15 1 2 3
16 5 6 7
17 1 2 3
18 2 3 4
19 1 2 3
20 3 4 5
21 1 2 3
22 2 3 4
23 1 2 3
24 4 5 6
25 1 2 3
26 2 3 4
27 1 2 3
28 3 4 5
29 1 2 3
30 2 3 4
31 1 2 3
32 6 7 8

m φ(2m− 1) ψ(5m − 1) ψ(9m − 1))
33 1 2 3
34 2 3 4
35 1 2 3
36 3 4 5
37 1 2 3
38 2 3 4
39 1 2 3
40 4 5 6
41 1 2 3
42 2 3 4
43 1 2 3
44 3 4 5
45 1 2 3
46 2 3 4
47 1 2 3
48 5 6 7
49 1 2 3
50 2 3 4
51 1 2 3
52 3 4 5
53 1 2 3
54 2 3 4
55 1 2 3
56 4 5 6
57 1 2 3
58 2 3 4
59 1 2 3
60 3 4 5
61 1 2 3
62 2 3 4
63 1 2 3
64 7 8 9
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Lemma 1. Let m ∈ Z and n > 1. Let k be the greatest number that satisfies

m ≡ 0(mod 2k). Then
(
m
i

)
2in ≡ 0(mod 2k+n+1), for 1 < i 6 m.

Proof. This is the same as proving that

α =
m

2k

(
= m− 1
i− 1

)
2(i−1)n

i

is even. But m/2k is an integer, so is
(
m− 1
i− 1

)
. Then the only problem is

2(i−1)n/i. But since i 6 2(i−1), if i > 1 the numerator of the fraction must
contain at least one more factor of 2 then the denominator. Since(

m
i

)
2in

is an integer, the denominator of α must be a power of 2. Since we proved
that there are more factors of 2 in the numerator than in the denominator,
this proves the lemma.

Theorem 3. Let p = 2n + 1, for n > 1. Let ψ(pm − 1) be the number of
times that pm−1 is divisible by 2. Let k be the greatest number that satisfies
m ≡ 0( mod 2k). So

γn(m) = n+ k, for m > 1.

Proof. In order to prove the theorem, we separate two cases:
First Case: m odd.
We have that

pm − 1 = (p− 1)(pm−1 + pm−2 + ...+ p+ 1)

= 2n(pm−1 + pm−2 + ...+ p+ 1).

Since p is odd, we have that pi is odd for every i. Hence

(pm−1 + pm−2 + ...+ p+ 1)

is odd. Therefore,
pm − 1 ≡ 0 (mod 2n),

where n is maximal. Since m is odd, we have that m ≡ 0(mod2k) if and
only if k = 0. Hence ψ(pm − 1) = n.
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Second Case: m even.
We know, from our hypothesis, that

m2n ≡ 0 (mod 2n+k)

n+ k is maximal with that property. In other words,

m2n = 2n+kz,with z odd.

Now, from lemma 1:(
m
i

)
2in = 2n+kbi, com bi par (1 < i 6 m).

Hence z + b2 + ...+ bm is an odd number. And since

pm − 1 = 2n+k(z + b2 + ...+ bm),

we have that:
pm − 1 ≡ 0( mod 2k+n)

and n + k is the largest possible that satisfies this equation. Therefore
ψ(pm − 1) = k + n, as we wished.

4 Mixing Properties of the T map

If we choose an odd integer m0 at random and iterate T until the next odd
number appears, it is not difficult to see that the next odd will occur after
one iteration with a probability of 1/2, in other words m1 = (3m0 + 1)/2
1/2 of the time. Similarly the probability that m1 = (3m0 +1)/4 is 1/4 and
in general m1 = (3m0 + 1)/(2n) with probability 1/(2n). Now if we assume
that T acts in such a way that successive odds appear as if drawn at random
then one can find the expected growth between successive odds.(

3
2

) 1
2
(

3
4

) 1
4
(

3
8

) 1
8

... =
3
4
.

This is the expected growth of an odd integer to the next odd, and so we ex-
pect the sequence to shrink. This argument supports the Collatz conjecture
but relies on the assumption that successive odds appear at random under
the action of T . The following section discusses one known result which
seems to support this conjecture.
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Definition We will let xi(m) be the binary sequence defined by

T i(m) ≡ xi(m) (mod 2).

Theorem 4. Let

vk(m) = (x0(m), x1(m), . . . xk−1(m)).

Now fix k. If we make m run over any set of 2k consecutive numbers, vk(m)
will run over every possible binary combination exactly once.

Proof. We will reason by induction on k. The theorem is obvious for k = 1.
Now suppose that it is true for some fixed k. Notice that this implies that
vk(m) = vk(m+2k), because if we let n run over the intervalm 6 n < m+2k,
vk(n) will run over all possible binary k-tuples exactly once, and the same
will happen if we let n run over the interval m < n 6 m + 2k. But the
intersection of those two sets contains 2k−1 numbers, which leaves only one
possible value to be assumed by both vk(m) and vk(m+ 2k).

Now take two numbers m and m+ l · 2j where l is an odd number, and
j > 1. Then if m is even so is m+ l · 2j and

T (m) =
m

2
, T (m+ l · 2j) =

m

2
+ l · 2j−1 = T (m) + l · 2j−1,

and if m is odd,

T (m) =
3m+ 1

2
, T (m+ l · 2j) =

3m+ 1
2

+ 3l · 2j−1 = T (m) + k · 2j−1,

where k is again odd. Now observe that xj(m) defines which operation
will be executed by T on T j(m). Therefore, since vk(m) = vk(m + 2k), T
will execute the same operation over both numbers k times, and from the
observation above, we will get

T k(m) = T k(m+ 2k) + l,

where l is an odd number. Therefore

T k(m) 6≡ T k(m+ 2k) (mod 2).

This shows that if we take a set of 2k+1 consecutive numbers and fix a binary
k-tuple v = (v0, v1, . . . vk−1), since v is the image under vk of two numbers
m and m+2k in this set, we can find the k+1-tuples (v0, v1, . . . vk−1, 0) and
(v0, v1, . . . vk−1, 1) in the image of this set under vk+1, and that proves the
theorem.
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Although the above result is interesting it is not enough to prove the
conjecture. This theorem merely shows that no two starting values from any
2k consecutive integers share the same sequence of the first k-operations by
T .

5 Dynamical System approach

As an exercise we sought to create a continuous extension of the Collatz map
to the complex plane and follow the work of Chamberland [1]. In that article
Chamberland extends the Collatz map to a function f : R → R defined to
be:

f(x) =
3x+ 1

2
sin2

(πx
2

)
+
x

2
cos2

(πx
2

)
.

We pursued a function of the form:

g(x) =
p(r(x))
q(r(x))

x+ r(x),

Which led to g : C → C

g(x) =
2 + (−1)x+1

2
x+

(−1)x+1 + 1
4

What we found is that if we restrict this function to the real axis, g(x)
is identically f(x).

Proposition 1. Re(g(x)) = f(x).

Proof. First observe:

g(x) =
(
x+

1
4

)
−

(
2x+ 1

4

)
cos(πx)−

(
2x+ 1

4

)
sin(πx)i

and therefore

Re(g(x)) =
(
x+

1
4

)
−

(
2x+ 1

4

)
cos(πx)
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But

f(x) = −
(
x+

1
2

)
cos2

(πx
2

)
+

3x+ 1
2

= −
(
x+

1
2

) (
1 + cos(πx)

2

)
+

3x+ 1
2

= −
(

2x+ 1
4

)
(1 + cos(πx)) +

3x+ 1
2

=
(
x+

1
4

)
−

(
2x+ 1

4

)
cos(πx) = Re(g(x))

Using a bisection algorithm we numerically approximated solutions to
f(f(x)) − x = 0. Clearly these values approximate two-cycles and one-
cycles. With this list we can analyze the behavior of the two cycles by
differentiating f(f(x)). If |f(f(x0))′| < 1 we say (x0, f(x0)) is an attrac-
tor. We verified Chamberland’s findings that c1 :=(1,2), the trivial cycle
and c2 :=(1.192531907..., 2.138656335...) are attractors (see [1]). Cham-
berland conjectures that these are the only attracting two-cycles on R+.
Although the complexity of f(f(x))′ seems to prohibit proving this conjec-
ture by analyzing the derivative explicitly, we numerically verified that no
other two-cycle with an element less than 1000 is an attractor.

In addition to the analysis of the real continuous extension we sought
the set of points in the complex plane which converge. Picking an ε > 0 we
say a point z ∈ C has converged if after n iterations of f , |fn(z)− (ci)k| < ε.
This set is a fractal domain of convergence in the complex plane as seen in
Figures 2 and 3.
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Figure 2:
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Figure 3:

Research on this problem is still very active. There are many different
ways to approach this problem, a handful of which we have presented. We
hope to continue investigating this problem and further develop the results
discussed in this paper. For a more detailed bibliography see Lagarias’
annotated bibliography [6].

Our efforts were partially supported by NSF grant OISE: 0526008, and
CNPq. Our thanks go out to IMECC and UNICAMP as well as the NSF
and CNPq and our advisers.
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