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Abstract

Given the Fourier–Legendre expansions of f and g, and mild conditions on
f and g, we derive the Fourier–Legendre expansion of their product in terms
of their corresponding Fourier–Legendre coefficients. We establish upper
bounds on rates of convergence. We then employ these expansions to solve
semi-analytically a class of nonlinear PDEs with a polynomial nonlinearity
of degree 2. The obtained numerical results illustrate the efficiency and
performance accuracy of this Fourier–Legendre-based solution methodology
for solving a class of nonlinear PDEs.
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1. Introduction

Fourier-type series have proven to be powerful tools for solving (semi-)
analytically a large class of linear PDEs that arise in a range of applications,
including wave propagation, heat diffusion, compressible and incompress-
ible fluid mechanics, free surface flow, flow in porous media, particle flow,
strength of materials, elasticity, structural dynamics, transport engineering,
and electrical engineering. Fourier-type series have also been incorporated
into a variety of numerical strategies for solving linear PDE formulation prob-
lems. For example, they have been used to construct absorbing boundary
conditions (exact or approximate) to reformulate exterior electromagnetic
or acoustic scattering problems in bounded domains (see, for example, [1]
and references therein). In addition, they have been extensively employed
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to generate exact solutions to serve as reference solutions for assessing the
performance accuracy of numerical methods designed to solve PDEs (see, for
example, [2]).

Solution methodologies that are based on expanding the solutions of the
considered linear PDEs in terms of Fourier-type series including trigonomet-
ric, Legendre, Chebyshev, or Bessel series are often involved with the appli-
cation of spectral methods. This class of methods was first introduced in the
early 70s (the first paper was authored by Orszag in 1969 [3]) and emerged
since the 90s as an alternative and effective computational tool to the ubiq-
uitous finite element (FEM) and finite difference (FED) methods in scientific
computing, as attested by the hundreds of publications in various applica-
tions (see, e.g., [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references therein).
These methods have been extensively investigated from both mathematical
and numerical viewpoints. Results pertaining to convergence, stability, error
estimates, boundary conditions and uniqueness, etc. can be found in the
monographs [4, 5, 6, 7, 8, 9, 10], among others. The orthogonal property of
the basis functions is the key feature of spectral methods that significantly
reduces their implementation complexity and enhance their computational
cost-effectiveness, but more remarkably it makes them outperform in terms of
accuracy FEM and FED, particularly for smooth solutions in domains with
simple geometries in which spectral methods have exponential convergence.

By contrast, for nonlinear problems, Fourier-type series have so far only
been included in already established solution methodologies. Indeed, as is
well-known [15], standard methods for solving nonlinear problems involve
two-step approaches, where in the first step, the nonlinear problem under
consideration is formulated as a set or sequence of linear problems via lin-
earization processes such as gradient methods, fixed-point, or path following
approaches. In the second step, the linear problems from the first step are
solved using approximation methods employing various representations such
as polynomial bases, spectral expansions, wavelets, or reduced bases [16].
There is a second class of methods that uses approximation prior to the lin-
earization process. The main difference between the two approaches is that
this latter class of methods gives rise to a sequence of linear problems in
finite dimensional vector spaces whereas the standard approaches involve in-
finite dimensional spaces (such as Sobolev spaces) prior to the application of
the discretization schemes. We are not aware of any work in which Fourier-
type expansions are employed as the primary tool for solving the nonlinear
PDEs. The main obstacle is that the presence of the nonlinearity prevents a
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significant gain in terms of computational complexity.
In this paper, our focus is on Fourier–Legendre series [17, 18]. Fourier–

Legendre series have found wide applications across scientific disciplines, for
example, in the theory of the hypergeometric functions and complete elliptic
integrals [19], in the theory of the hypergeometric functions and fractional
operators [20], for derivations and proofs of convergent series to 1/π and
1/π2 [21], and in chemical physics [22]. Here, we prove new theorems on
products of Fourier–Legendre series and show how they can be exploited to
approximate solutions to a class of nonlinear PDEs in which the nonlinearity
is a polynomial of degree 2. The method is generalizable to polynomials of
arbitrary degree, and it is particularly well suited to PDEs with diffusion
terms, since the diffusion operator is diagonal in the orthogonal basis of
Legendre polynomials in L2[−1, 1].

More specifically, we show how the Fourier–Legendre coefficients of a
product of two functions, f and g, can be expressed in terms of the respective
Fourier–Legendre coefficients of f and g, and we derive an easily computable
partial finite sum. The key ingredient is a well-known combinatorial formula
that expresses the product of two Legendre polynomials as an explicit linear
combination of Legendre polynomials [23, 24, 25, 26]. This is carried out
in Section 2. Section 3 establishes upper bounds of rates of convergence for
product series approximations, depending on the smoothness of the factors
f and of g. In Section 4, we illustrate how our results may be applied to
find semi-analytic solutions to a class of nonlinear partial differential equa-
tions with diffusion, and quadratic polynomial nonlinearity. In Section 5,
we summarize and assess our results, and identify further applications. Two
appendices are also included. Appendix A includes data related to Section
5 and Appendix B analyzes a function that fails to satisfy the hypotheses of
Theorem 3, but satisfies its conclusion, demonstrating that the hypotheses
are sufficient but not necessary.

2. Product Theorem

The Legendre polynomials, {P0(x), P1(x), P2(x), . . . }, constitute a com-
plete orthogonal basis of L2([−1, 1]) and may be defined by the Rodrigues
formula [18],

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (2.1)
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Thus, P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, etc., and they satisfy the
orthogonality relationship,∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δnm, (2.2)

where δnm is the Kronecker delta function.
Assume that f, g, f · g ∈ L2([−1, 1]) and denote the expansions of f and

g in the orthogonal basis {Pn(x)} by,

f(x) =
∞∑
n=0

αnPn(x) g(x) =
∞∑

m=0

βmPm(x) (2.3)

where,

αn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx, βm =

2m+ 1

2

∫ 1

−1
g(x)Pm(x)dx. (2.4)

Since the function f · g is in L2([−1, 1]), it also has a Fourier–Legendre
expansion,

(f · g)(x) =
∞∑
k=0

µkPk(x). (2.5)

Assuming pointwise and absolute convergence of Eqs (2.3), we show in this
section how to express each coefficient µk as a function of the coefficients
{αn}n∈{0,1,2,... } and {βm}m∈{0,1,2,... } in the form of an infinite series, by first
finding finite sum approximations.

Unless otherwise indicated, we assume throughout that the series in
Eqs.(2.3) converge in the sense of L2([−1, 1]) and with pointwise absolute
convergence. This is the case, for example, when f and g are absolutely
continuous on [−1, 1] and f ′ and g′ are of bounded variation, conditions that
hold for the case that f and g are continuously differentiable [27]. Under
these assumptions, we can express the product of the two series in Eq.(2.3)
as a sum of products of Legendre polynomials as follows,

(f · g)(x) =

(
∞∑
n=0

αnPn(x)

)(
∞∑

m=0

βnPm(x)

)
=
∞∑
n=0

n∑
`=0

αn−`β`Pn−`(x)P`(x).

(2.6)
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Let N be a positive integer. We define the following two convenient se-
quences:

αN
n =

{
αn if n 6 N

0 otherwise
βN
n =

{
βn if n 6 N

0 otherwise.
(2.7)

Substituting αN
n and βN

n for αn and βn respectively in Eq.(2.6) gives,(
N∑

n=0

αnPn(x)

)(
N∑

m=0

βnPm(x)

)
=

(
∞∑
n=0

αN
n Pn(x)

)(
∞∑

m=0

βN
n Pm(x)

)
(2.8)

=
∞∑
n=0

n∑
`=0

αN
n−`β

N
` Pn−`(x)P`(x) (2.9)

=
2N∑
n=0

n∑
`=0

αN
n−`β

N
` Pn−`(x)P`(x), (2.10)

where the last step follows because all terms in Eq.(2.9) with n > 2N are
zero.

In addition, assuming that both series in Eqs.(2.3) converge uniformly
and that f or g is bounded on [−1, 1] we have,

(f · g)(x) = lim
N→∞

[(
N∑

n=0

αnPn(x)

)(
N∑

m=0

βnPm(x)

)]
(2.11)

= lim
N→∞

2N∑
n=0

n∑
`=0

αN
n−`β

N
` Pn−`(x)P`(x) (2.12)

and the convergence is uniform.
To proceed further, we use the fact that the product of any two Legendre

polynomials can be expressed as a linear combination of Legendre polynomi-
als according to this formula (see for example [26]),

Pm(x)Pn(x) =

min(m,n)∑
j=0

(
1
2

)
j

(
1
2

)
m−j

(
1
2

)
n−j (m+ n− j)!

j!(m− j)!(n− j)!
(
3
2

)
m+n−j

(2(m+ n− 2j) + 1)Pm+n−2j(x),

(2.13)
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where (a)r is the rising factorial function given by,

(a)0 = 1, (a)r = a(a+ 1)(a+ 2) . . . (a+ (r − 1)), r = 1, 2, 3, . . .

Thus,

k∑
`=0

αk−`β`Pk−`(x)P`(x) =
k∑

`=0

αk−`β` ×min(k−`,`)∑
j=0

(
1
2

)
j

(
1
2

)
k−`−j

(
1
2

)
`−j (k − j)!

j!(k − `− j)!(`− j)!
(
3
2

)
k−j

(2(k − 2j) + 1))Pk−2j(x)

 . (2.14)

For simplicity of notation, define Ajk` by,

Ajk` =

(
1
2

)
j

(
1
2

)
k−`−j

(
1
2

)
`−j (k − j)!

j!(k − `− j)!(`− j)!
(
3
2

)
k−j

(2(k − 2j) + 1) , (2.15)

so that,

k∑
`=0

αk−`β`Pk−`(x)P`(x) =
k∑

`=0

min(k−`,`)∑
j=0

αk−`β`Ajk`Pk−2j(x), (2.16)

with an analogous equation holding when αN
n and βN

n are substituted for αn

and βn respectively.

Remark 1. Ajk` is undefined unless j ≤ min(k − `, `) because of the terms
(k− `− j)! and (`− j)! in the denominator of Eq.(2.15). We note, however,
that since the reciprocal of the Gamma function, 1/Γ(z), is entire, Ajk` may
be understood to take the value 0 when these inequalities are violated.

Lemma 1. For any integers j, k, ` satisfying 0 ≤ j ≤ min(k − `, `) ≤ ` ≤ k,

0 < Ajk` ≤ 1,

where Ajk` is given by Eq.(2.15).

Proof. Set x = 1 so that Pn(x) = 1 for all n = 0, 1, 2 . . . , in Eq.(2.16). Now
choose any k0 and any `0 ≤ k0. Choose functions f and g so that β` = 1 if
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` = `0 and β` = 0 otherwise, and so that αn = 1 for n = 0, 1, . . . , k0. Then
Eq.(2.16) becomes,

1 =

min(k0−`0,`0)∑
j=0

Ajk0`0 . (2.17)

Since each summand in Eq.(2.17) is positive, it follows that each is bounded
by 1.

Next, we combine Eqs(2.6), (2.14) and (2.16) to deduce that,

(f · g)(x) =
∞∑
k=0

k∑
`=0

min(k−`,`)∑
j=0

αk−`β`Ajk`Pk−2j(x), (2.18)

and similarly using Eq.(2.11), we obtain,

(f · g)(x) = lim
N→∞

2N∑
k=0

k∑
`=0

min(k−`,`)∑
j=0

αN
k−`β

N
` Ajk`Pk−2j(x). (2.19)

Again, under the assumption that the series in Eq.(2.3) converge uniformly
and that f or g is bounded on [−1, 1], the convergence in Eq.(2.18) is uniform.

The next lemma enables us to make a change of dummy variables and
then interchange the inner two sums in Eqs. (2.18) and (2.19).

Lemma 2. Let χA(j) denote the indicator function on nonnegative integers
which takes the value 1 if j ∈ A and 0 otherwise. For nonnegative integers
j, k, `,

χ[0≤`≤k](`) · χ[0≤j≤min(k−`,`)](j) = χ[j≤`≤k−j](`) · χ[0≤j≤ k
2
](j)

where the subscript [0 ≤ ` ≤ k] stands for {` : 0 ≤ ` ≤ k} and similarly for
the other subscripts.

Proof. Observe first that χ[0≤j≤min(k−`,`)](j) = χ[0≤j≤`](j)·χ[0≤j≤k−`](j). Thus,
it suffices to show that

χ[0≤`≤k](`) · χ[0≤j≤k−`](j) · χ[0≤j≤`](j) = χ[j≤`≤k−j](`) · χ[0≤j≤ k
2
](j). (2.20)

We show that left side of Eq.(2.20) = 1 if and only if the right side = 1.
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Assume that the left side equals 1. Then 0 ≤ j ≤ k−` and j ≤ `. Adding
these inequalities, it follows that 0 ≤ 2j ≤ k and therefore 0 ≤ j ≤ k

2
. If the

left side equals 1, it also follows that j ≤ ` and 0 ≤ j ≤ k − `. Therefore
0 ≤ ` ≤ k − j. Thus, the right side of the equation = 1.

Next, assume that the right side of Eq.(2.20) equals 1. Then, 0 ≤ j ≤ k
2

and j ≤ ` ≤ k − j. It follows that 0 ≤ j ≤ ` and 0 ≤ j ≤ k − ` and thus
χ[0≤`≤k] · χ[0≤j≤k−`] = 1. Also, since ` ≤ k − j, then ` ≤ k and χ[0≤j≤`] = 1
and the right side of Eq.(2.20) equals 1.

Corollary 1. Let f and g be given as in Eqs. (2.3) with pointwise absolute
convergence. Then, for each x ∈ [−1, 1], we have,

(f · g)(x) = lim
N→∞

N∑
k=0

b k
2
c∑

j=0

k−j∑
`=j

αk−`β`Ajk`Pk−2j(x), (2.21)

where bk
2
c is the greatest integer less than or equal to k/2. If both series in

Eq.(2.3) converge uniformly and f or g is bounded on [−1, 1], then

(f · g)(x) = lim
N→∞

2N∑
k=0

b k
2
c∑

j=0

k−j∑
`=j

αN
k−`β

N
` Ajk`Pk−2j(x), (2.22)

with uniform convergence.

Proof. From Lemma 2, we have for any k ≥ 0,

k∑
`=0

min(k−`,`)∑
j=0

αk−`β`Ajk`Pk−2j(x)

=
∞∑
`=0

∞∑
j=0

χ[0≤`≤k] · χ[0≤j≤min(k−`,`)]αk−`β`Ajk`Pk−2j(x)

=
∞∑
j=0

∞∑
`=0

χ[j≤`≤k−j]χ[0≤j≤b k
2
c]αk−`β`Ajk`Pk−2j(x)

=

b k
2
c∑

j=0

k−j∑
`=j

αk−`β`Ajk`Pk−2j(x). (2.23)
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Combining with Eq.(2.18) gives,

(f · g)(x) =
∞∑
k=0

b k
2
c∑

j=0

k−j∑
`=j

αk−`β`Ajk`Pk−2j(x)

with pointwise convergence. Uniform convergence of Eq.(2.22) follows from
the uniform convergence of Eq.(2.19).

Theorem 1. Let f and g be given as in Eq. (2.3). Then,
(a) For each N = 0, 1, 2 . . . ,

N∑
k=0

k∑
`=0

min(k−`,`)∑
j=0

αk−`β`Ajk`Pk−2j(x) (2.24)

=
N∑

n=0

bN−n
2
c∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

Pn(x).

(b) Assuming pointwise absolute convergence in Eq. (2.3),

(f · g)(x) = lim
N→∞

N∑
n=0

bN−n
2
c∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

Pn(x), (2.25)

for each x ∈ [−1, 1].
(c) If the series in Eq.(2.3) converge uniformly and f or g is bounded on

[−1, 1], then,

(f · g)(x) = lim
N→∞

2N∑
n=0

b 2N−n
2
c∑

m=0

n+m∑
`=m

αN
n+2m−`β

N
` Am,n+2m,`

Pn(x), (2.26)

and the convergence is uniform.

Proof. For Part (a), observe from the proof of Corollary 1 that for each N ,

N∑
k=0

k∑
`=0

min(k−`,`)∑
j=0

αk−`β`Ajk`Pk−2j(x) =
N∑
k=0

b k
2
c∑

j=0

k−j∑
`=j

αk−`β`Ajk`Pk−2j(x).

(2.27)
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In order to make a change of variables for the first two sums,
N∑
k=0

b k
2
c∑

j=0

, on the

right side of Eq. (2.27), we define a linear transformation T : R2 → R2 by

(n,m) = T (k, j) = (k − 2j, j). (2.28)

Note that, in this expression, the variables j, k, n,m are real numbers, but
below we will restrict them to take integer values. Since T is a linear home-
omorphism, it maps line segments to line segments and boundaries and in-
teriors respectively of closed sets to boundaries and interiors respectively of
closed sets, in the plane.

The the first two sums
N∑
k=0

b k
2
c∑

j=0

on the right side of Eq. (2.27) can be

expressed as a finite sum of the points (k, j) in the triangular region in
R2 ∩ Z2 whose boundary in R2 is the triangle consisting of the union of the
following three line segments:

{(k, 0) | 0 ≤ k ≤ N},
{

(k, j)

∣∣∣∣ 0 ≤ k ≤ N, j =
k

2

}
,

{
(N, j)

∣∣∣∣ 0 ≤ j ≤ N

2

}
.

Under the transformation T of (2.28), the above triangular region is mapped
to the region whose boundary is the triangle consisting of the union of the
following line segments:

{(n, 0) | 0 ≤ n ≤ N},
{

(0,m)

∣∣∣∣ 0 ≤ m ≤ N

2

}
,

and {
(n,m)

∣∣∣∣ 0 ≤ n ≤ N,m =
N − n

2

}
.

Therefore, with the change of variables, n = k− 2j and m = j, we can make
the substitutions,

k = n+ 2j = n+ 2m, k − j = n+ j = n+m,

and find that,

N∑
k=0

b k
2
c∑

j=0

k−j∑
`=j

αk−`β`Ajk`Pk−2j(x) (2.29)

=
N∑

n=0

bN−n
2
c∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

Pn(x),
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thus establishing Part (a). Parts (b) and (c) now follow from Part (a) and
Corollary 1.

We will make use of the following result from Wang [28].

Theorem 2. (Wang [28]) Suppose that f, f ′, . . . , f (j−1) are absolutely con-
tinuous on [−1, 1] and f (j) has bounded variation. Then, using the notation
of Eq.(2.3), for n ≥ j + 1 and j ≥ 1,

|αn| ≤
√

2/π||f (j)||
√
n− j (n− 1

2
)(n− 3

2
) · · · (n− 2j−1

2
)
, (2.30)

where ||f (j)|| is the total variation of f j on the interval [−1, 1]. If j = 0, then
|αn| ≤

√
2/π||f ||/

√
n for n ≥ 1.

We note that in the case that f j is absolutely continuous, ||f j|| =∫ 1

−1 |f
(j+1)(x)|dx.

Corollary 2. Suppose that f, f ′, . . . , f (j−1) are absolutely continuous on [−1, 1]
and f (j) has bounded variation. Then, using the notation of Eq.(2.3), for
n ≥ j + 1 and j ≥ 1,

|αn| ≤
√

2/π||f (j)||
√
n− j (n− 1

2
)(n− 3

2
) · · · (n− 2j−1

2
)
≤
√

2/π||f (j)||
(n− j)(2j+1)/2

. (2.31)

Proof. The lemma follows immediately from Theorem 2 and the observation
that,√

n− j
(
n− 1

2

)(
n− 3

2

)
· · ·
(
n− 2j − 1

2

)
≥ (n− j)

2j+1
2 . (2.32)

Lemma 3. Suppose that f and g are absolutely continuous on [−1, 1] and f ′

and g′ are of bounded variation. Then, the collection
N∑

n=0

bN−n
2
c∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

Pn(x)


is uniformly bounded in N and x.
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Proof. From Eqs.(2.16) and (2.24), we have,

N∑
n=0

bN−n
2
c∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

Pn(x)

=
N∑

n=0

n∑
`=0

min(n−`,`)∑
j=0

αn−`β`Ajn`Pn−2j(x) (2.33)

=
N∑

n=0

n∑
`=0

αn−`β`Pn−`(x)P`(x).

Thus, it suffices to show that the collection,{
N∑

n=0

n∑
`=0

|αn−`β`Pn−`(x)P`(x)|

}

is uniformly bounded in N and in x. Since |Pn(x)| ≤ 1 for all n and
x ∈ [−1, 1] [8] (Eq. 2.3.4), we show that the set of numbers,{

N∑
n=0

n∑
`=0

|αn−`β`|

}
is uniformly bounded in N . Using Corollary 2 with j = 1, we have the
following bounds,

|αn| ≤
A1

(n− 1)3/2
(2.34)

|βn| ≤
B1

(n− 1)3/2
, (2.35)

for n ≥ 2, where A1 and B1 are constants depending on f and g respectively.
For n ≥ 6, we may write

n∑
`=0

|αn−`β`| =
2∑

`=0

|αn−`β`|+
2∑

`=0

|βn−`α`|+
n−3∑
`=3

|αn−`β`| (2.36)

and the sum on n of the first two terms on the right side of Eq.(2.36) is finite
by Eqs.(2.34) and (2.35). Again, by Eqs.(2.34) and (2.35), the third term on
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the right side of Eq.(2.36) is bounded as follows,

n−3∑
`=3

|αn−`β`| ≤ A1B1

n−3∑
`=3

1

(n− `− 1)3/2 (`− 1)3/2
(2.37)

< A1B1

∫ n−2

2

dx

(n− x− 1)3/2(x− 1)3/2
(2.38)

= A1B1
4(n− 4)√

n− 3(n− 2)2
, (2.39)

which is summable on n. The integral in Eq.(2.38) is an upper bound for the
sum in Eq.(2.37) because the integrand is a convex function with minimum
at n/2. Thus, the set {

N∑
n=0

n∑
`=0

|αn−`β`|

}
(2.40)

is uniformly bounded in N , and the lemma is proved.

Theorem 3. Suppose that f and g are absolutely continuous on [−1, 1] and
f ′ and g′ are of bounded variation. Then, the Fourier–Legendre expansion of
f · g in L2([−1, 1]) is given by,

(f · g)(x) =
∞∑
n=0

[
∞∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

]
Pn(x). (2.41)

Thus, in the notation of Eq.(2.5),

µk =
∞∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`. (2.42)

Proof. We first note that the inner product on L2([−1, 1]) given by,

〈φ, ψ〉 =

∫ 1

−1
φ(x)ψ(x) dx (2.43)

is continuous in the L2([−1, 1]) Hilbert space topology. To simplify the no-
tation, we set

φN(x) =
N∑

n=0

bN−n
2
c∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

Pn(x). (2.44)

13



By Theorem 1b, (f · g)(x) = limN→∞ φN(x) pointwise, and by Lemma 3 the
sequence{φN(x)} is uniformly bounded by a constant on [−1, 1]. Thus, by the
Dominated Convergence Theorem (f · g)(x) = limN→∞ φN(x) in L2([−1, 1]).
Then, referring to Eq.(2.5), we find that,

2

2k + 1
µk = 〈f · g, Pk〉 (2.45)

= 〈 lim
N→∞

φN , Pk〉 (2.46)

= lim
N→∞

〈φN , Pk〉 (2.47)

=
2

2k + 1
lim

N→∞

bN−k
2
c∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`, (2.48)

where the last step follows from orthogonality of the Legendre Polynomials.
Thus,

µk = lim
N→∞

bN−k
2
c∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,` (2.49)

=
∞∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,` . (2.50)

Remark 2. We give an example of a function in Appendix B that fails to
satisfy the hypotheses of Theorem 3, but nevertheless satisfies its conclusion.

3. Rates of Convergence

In this section, we collect results on the rate of convergence of the Fourier–
Legendre series for f · g and for the rates of convergence of the series in Eq.
(2.42) for the coefficients {µk}. For the sake of notational simplicity, we
adopt the following conventions,

Aj =
√

2/π||f (j)|| (3.1)

Bj =
√

2/π||g(j)|| (3.2)

Cj =
√

2/π||(fg)(j)|| (3.3)

for j = 1, 2, 3 . . . where, on the right hand side, we are using the notation of
Theorem 2.
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Theorem 4. Suppose that f and g are absolutely continuous on [−1, 1] and
f ′ and g′ are of bounded variation. Then, the following series converges
uniformly:

(f · g)(x) =
∞∑
n=0

µnPn(x) =
∞∑
n=0

[
∞∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

]
Pn(x). (3.4)

Moreover,∣∣∣∣∣(f · g)(x)−
N∑

n=0

[
∞∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

]
Pn(x)

∣∣∣∣∣ (3.5)

≤ C1

∞∑
n=N+1

1√
n− 1

(
n− 1

2

) (3.6)

for any N ≥ 1 and all x ∈ [−1, 1]. In particular, for N ≥ 2 and all x ∈
[−1, 1],∣∣∣∣∣(f · g)(x)−

N∑
n=0

[
∞∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

]
Pn(x)

∣∣∣∣∣
≤ C1

√
2
(
π − 2 tan−1

(√
2
√
N − 1

))
≤ 2C1√

N − 1
. (3.7)

Proof. Since the product of two absolutely continuous functions is absolutely
continuous and products and sums of functions of bounded variation are of
bounded variation [29], it follows that f · g is absolutely continuous and
(f · g)′ has bounded variation. Thus, Theorem 2 applies to f · g with j = 1.
Therefore,∣∣∣∣∣(f · g)(x)−

N∑
n=0

[
∞∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

]
Pn(x)

∣∣∣∣∣
≤

∞∑
n=N+1

|µnPn(x)| ≤
∞∑

n=N+1

|µn| (3.8)

≤ C1

∞∑
n=N+1

1√
n− 1

(
n− 1

2

) ,
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where in the second line we have used the fact that |Pn(x)| ≤ 1 for all x
and n. Inequality (3.7) follows from direct calculation of the integrals in the
following inequalities,

∞∑
n=N+1

1√
n− 1

(
n− 1

2

) ≤ ∫ ∞
N

dn√
n− 1

(
n− 1

2

) ≤ ∫ ∞
N

dn

(n− 1)
3
2

, (3.9)

As noted in the proof of Theorem 4, f · g is absolutely continuous and
products and sums of functions of bounded variation are of bounded varia-
tion. It follows that f · g is absolutely continuous and (f · g)′ has bounded
variation. In light of this, the following result is a direct consequence of
results in [28].

Theorem 5. Suppose that f, f ′, . . . , f (j−1) and g, g′, . . . , g(j−1)are absolutely
continuous on [−1, 1] and f (j) and g(j) have bounded variation. Then, with
the notation of Eqs.(2.3), (2.5), and Theorem 2, for N ≥ j + 1 and j ≥ 2,∣∣∣∣∣(f · g)(x)−

N−1∑
n=0

[
∞∑

m=0

n+m∑
`=m

αn+2m−`β`Am,n+2m,`

]
Pn(x)

∣∣∣∣∣ (3.10)

≤ Cj

(j − 1)
√
N − j

j∏
k=2

1(
N − 2k−1

2

) (3.11)

for all x ∈ [−1, 1].

Theorem 6. Suppose that f, f ′, . . . , f (j−1) and g, g′, . . . , g(j−1)are absolutely
continuous on [−1, 1] and f (j) and g(j) have bounded variation. Then, with
the notation of Eqs.(2.3) and (2.5), for M ≥ j + 1 and j ≥ 1,

∣∣∣∣∣µk −
M∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

∣∣∣∣∣ (3.12)

≤ AjBj

∞∑
m=M+1

∫ k+m+1

m−1

dx

(k + 2m− x− j) 2j+1
2 (x− j) 2j+1

2

.

Proof. From Eq.(2.31), for j + 1 ≤ m ≤ ` ≤ m+ k, we have,

|αk+2m−`| ≤
Aj

(k + 2m− `− j)
2j+1

2

, (3.13)
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and,

|β`| ≤
Bj

(`− j)
2j+1

2

. (3.14)

By Lemma 1, for m ≤ ` ≤ k +m, |Am,k+2m,`| ≤ 1, so

k+m∑
`=m

|αk+2m−`β`Am,k+2m,`| ≤
k+m∑
`=m

|αk+2m−`β`|

≤
k+m∑
`=m

AjBj

(k + 2m− `− j)
2j+1

2 (`− j)
2j+1

2

(3.15)

≤
∫ k+m+1

m−1

AjBj dx

(k + 2m− x− j) 2j+1
2 (x− j) 2j+1

2

,

where in the last step, we have used the readily verified fact that the integrand
is a convex function. Thus, from Eq.(2.42),

∣∣∣∣∣µk −
M∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

∣∣∣∣∣ ≤
∞∑

m=M+1

k+m∑
`=m

|αk+2m−`β`Am,k+2m,`|

(3.16)

≤
∞∑

m=M+1

∫ k+m+1

m−1

AjBj dx

(k + 2m− x− j) 2j+1
2 (x− j) 2j+1

2

.

Corollary 3. Suppose that f and g are absolutely continuous on [−1, 1] with
derivatives of bounded variation. Then, in the notation of Eqs.(2.3), (2.5),
for M ≥ 3,

1

A1B1

∣∣∣∣∣µk −
M∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

∣∣∣∣∣
≤ 4(k + 2)

(k + 2M − 2)(2(
√

(M − 2)(k +M) +M − 1) + k)
. (3.17)
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Proof. From Eq.(3.12) with j = 1,∣∣∣∣∣µk −
M∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

∣∣∣∣∣
≤

∞∑
m=M+1

∫ k+m+1

m−1

A1B1 dx

(k + 2m− x− 1)
3
2 (x− 1)

3
2

(3.18)

= 4A1B1

∞∑
m=M+1

(k + 2)√
(m− 2)(k +m)(k + 2m− 2)2

≤ 4A1B1

∫ ∞
M

(k + 2)dm√
(m− 2)(k +m)(k + 2m− 2)2

,

where in the last step, we require M ≥ 3. This last integral may be evaluated
exactly as,∫ ∞

M

(k + 2)dm√
(m− 2)(k +m)(k + 2m− 2)2

=
k + 2

(k + 2M − 2)(2(
√

(M − 2)(k +M) +M − 1) + k)
. (3.19)

The result now follows by combining Eqs.(3.18) and (3.19).

Below, we plot the right side of Inequality (3.17) for k = 2, which can be
viewed as a kind of relative error.
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(a) right side of Inequality (3.17) for µ2
with j = 1

� � � � � � ��
-���

-���

-���

-���

-���

(b) Log of right side of Inequality (3.17)
for µ2 with j = 1

Figure 1: Error bound according to Corollary 3 for µ2 for values of M on the horizontal
axes. The vertical axis for the graph on the left is the right side of Inequality (3.17), and
the vertical axis on the right is the logarithm of the right side of Inequality (3.17).
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Corollary 4. Under the assumptions of Theorem 6 with j = 2. Then, in the
notation of Eqs.(2.3), (2.5), for M ≥ 4,

1

A2B2

∣∣∣∣∣µk −
M∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

∣∣∣∣∣
≤ 4

3(k + 2M − 4)2
[
(k + 2M − 4) log

(
k+M−1
M−3

)
− 2(k + 2)

]
+ 4(k + 2)3

9(k + 2)2(k + 2M − 4)3
√

(M − 3)(k +M − 1)
.

(3.20)

Proof. From Eq.(3.12) with j = 2,∣∣∣∣∣µk −
M∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

∣∣∣∣∣
≤

∞∑
m=M+1

∫ k+m+1

m−1

A2B2dx

(k + 2m− x− 2)
5
2 (x− 2)

5
2

(3.21)

= 4A2B2

∞∑
m=M+1

(k + 2) (k2 + 4k(3m− 8) + 12(m− 4)m+ 40)

3((m− 3)(k +m− 1))3/2(k + 2m− 4)4

≤ 4A2B2

∫ ∞
M

(k + 2) (k2 + 4k(3m− 8) + 12(m− 4)m+ 40) dm

3((m− 3)(k +m− 1))3/2(k + 2m− 4)4
,

where in the last step, we require M ≥ 4. This last integral may be bounded

19



as follows,∫ ∞
M

(k + 2) (k2 + 4k(3m− 8) + 12(m− 4)m+ 40) dm

3((m− 3)(k +m− 1))3/2(k + 2m− 4)4
(3.22)

≤ k + 2

3
√

(M − 3)(k +M − 1)

∫ ∞
M

(k2 + 4k(3m− 8) + 12(m− 4)m+ 40) dm

(m− 3)(k +m− 1)(k + 2m− 4)4

=
k + 2

3
√

(M − 3)(k +M − 1)

×

[
− 2

(k + 2)2(k + 2M − 4)
+

4

3(k + 2M − 4)3
+

log
(
k+M−1
M−3

)
(k + 2)3

]
=

k + 2

3
√

(M − 3)(k +M − 1)

×

[
3(k + 2M − 4)2

(
(k + 2M − 4) log

(
k+M−1
M−3

)
− 2(k + 2)

)
+ 4(k + 2)3

3(k + 2)3(k + 2M − 4)3

]

=
3(k + 2M − 4)2

(
(k + 2M − 4) log

(
k+M−1
M−3

)
− 2(k + 2)

)
+ 4(k + 2)3

9(k + 2)2(k + 2M − 4)3
√

(M − 3)(k +M − 1)
.

The result now follows by combining Eqs.(3.21) and (3.22).

Below we plot the right side of Inequality (3.20) for k = 2, which can be
viewed as a kind of relative error.
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(a) Right side of Inequality (3.20) for
µ2 with j = 2
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(b) [Log of right side of Inequality
(3.20) for µ2 with j = 2

Figure 2: Error bound according to Corollary 4 for µ2 for values of M on the horizontal
axes. The vertical axis for the graph on the left is the right side of Inequality (3.20), and
the vertical axis on the right is the logarithm of the right side of Inequality (3.20).
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4. Application

Our goal is to use Legendre polynomial expansions given by Eqs. (2.3)-
(2.25) to solve semi-analytically a class of nonlinear partial differential equa-
tions with polynomial nonlinearity of degree 2.

4.1. Model Prototype

Throughout this section, we consider the following class of nonlinear ini-
tial boundary value problem (IBVP),

(IBVP)



∂T

∂t
=

∂

∂x

[
(1− x2)∂T

∂x

]
+ c T 2 + f(x, t) (4.1)

∂

∂x
T (−1, t) =

∂

∂x
T (1, t) = 0 (4.2)

T (x, 0) = g(x) (4.3)

where f(x, t), g(x) are two sufficiently regular functions and c is a given
positive constant. The nonlinear term here is the quadratic monomial T 2.
Note that although the IBVP considers homogeneous Neumann conditions
given by (4.2), the proposed solution methodology can accommodate other
boundary conditions including Dirichlet and Robin-type conditions.

4.2. Solution Methodology

Our approach here is to use the Legendre expansions given by Eqs. (2.3)
and (2.25) and reformulate IBVP as initial value problem that incurs a system
of ordinary differential equations, which is a more simple problem from a
numerical view point. To this end, we assume the functions f and g to
admit the Legendre expansions:

f(x, t) =
∞∑
n=0

dn(t)Pn(x), g(x) =
∞∑
n=0

cnPn(x), (4.4)

We also assume that the sought-after solution T of IBVP can be represented
by the following Legendre series:

T (x, t) =
∞∑
n=0

an(t)Pn(x). (4.5)
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Hence, using the truncated Legendre expansion for T 2 yields:(
T (x, t)

)2
≈

N∑
n=0

bn(t)Pn(x), (4.6)

where the bn are the coefficients in the Fourier–Legendre expansion given by
Eq.(2.25).

Consequently, substituting expansions (4.4)-(4.6) into IVBP allows the
determination of the Legendre coefficients an by solving the following initial
value problem (IVP),

(IV P )

a
′
n(t) = −n(n+ 1)an(t) + c bn(t) + dn(t)

an(0) = cn
n = 0, · · · , N

(4.7)
The resulting IVP is a system of nonlinear ODEs. Consequently, as stated
earlier, the use of the Legendre expansions for both T and T 2 results in
a reduction of the numerical complexity to the requirement to solve a sys-
tem of ODEs instead of a nonlinear PDE problem. We used the Runge-
Kutta method of order 4 to solve the IVP. More specifically, we used the
MathematicaR© software package NDSolve. Once we numerically determine
the coefficients an, we evaluate TN ′(x, t), the partial sum of the series (4.5)
as follows:

TN ′(x, t) =
N ′∑
n=0

an(t)Pn(x) (4.8)

where the integer N ′ (N ′ ≤ N) is chosen to be smallest integer such that the
values of TN ′(x, t) remain invariant as the values of N ′ increase.

4.3. Illustrative Numerical Results

We assess in this section the performance efficiency of the proposed solu-
tion methodology. Due to space limitations, we present results obtained in
the case where the solution T of IBVP is given by:

T (x, t) = ex
2−t−2. (4.9)

In this case, the constant c and the functions f and g are set to be:
c = 1

f(x, t) = ex
2−t−2(4x4 + 2x2 − 3)− e2x2−2t−4

g(x) = ex
2−2.

(4.10)
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Other examples highlighting the salient features of the proposed solution
methodology can be found in [30]. The obtained results in the case where T
is given by (4.9) are reported in Figures (3)-(5) as well as in the Appendix
(see Tables A.1-A.5). Note that all numerical experiments reported in this
section have been performed using a spatial discretization step ∆x = 0.005
and a time discretization step ∆t = 0.01. The following two observations are
noteworthy.

• Figure (3) provides a comparison between the exact Legendre coeffi-
cients of T and the computed ones obtained by solving the IVP for
Legendre coefficients of low-orders n = 0 to 4, medium-orders n = 6
to 10, and high-orders n = 20 to 30. These results show the curves
corresponding to the exact values and the computed ones are undistin-
guishable at all times t. The results reported in Tables A.1-A.5 demon-
strate that the proposed solution methodology recovers the Legendre
coefficient values with an impressive accuracy level. More specifically,
as demonstrated by the absolute error values, the computed and the
exact coefficients have identical number of digits ranging from 15 to 40
depending on the order of the coefficients and the computational time.
Note that the Legendre coefficients tend to rapidly decrease to zero
with respect to both the order n and the time t. Moreover, we have
not represented the coefficients corresponding to odd values of n as
they are all zero since the solution T given by (4.9) is an even function
with respect of the spatial variable x.

• Figure (4) depicts a comparison between the exact solution T and the
truncated sum TN ′ given by (4.8) for different values of N ′ and at
different times t represented as multiples of the time step ∆t = 0.01.
Note that at t = 4000∆t, the solution T reaches its equilibrium which
is 0 and therefore there is no need to go further in time. These results
reveal that using only 6 terms in the truncated sum (N ′ = 6) allows
us to retrieve the solution T with TN ′ at all times with an impressive
accuracy level, as reported in Figure (5). Indeed, Figure (5) depicts,
at each time tm = m∆t (m = 100, 500, 1000, 2000, 3000, 4000), the
effect of N ′, the number of terms left in the partial sum given by (4.8),
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on the relative error given by:

‖T (x, tm)− TN ′(x, tm)‖2
‖T (x, tm)‖2

=

(
M∑
j=1

|T (xj, t
m)− TN ′(xj, tm)|2

)1/2

(
M∑
j=1

|T (xj, t
m)|2

)1/2
,

(4.11)
where T (resp. TN ′) is given by (4.9) (resp. (4.8)) and xj = j∆x, with
∆x being the spatial step. We point out that such fast convergence of
the Fourier–Legendre series to the exact solution with this high accu-
racy level is consistent with what has been observed and reported in the
literature [31]. Indeed, Fourier–Legendre polynomial series appear to
converge much more rapidly than Taylor expansion. More specifically,
it was observed in [31] that a sixth-order Fourier–Legendre polynomial
approximation yields an error at least an order magnitude smaller than
that of the analogous Taylor series polynomial.
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25



F
u
n
c
t
i
o
n
V
a
l
u
e

-1.0 -0.5 0.0 0.5 1.0

0.06

0.08

0.10

0.12

0.14 N'=4

N'=6

N'=8

N'=10

N'=12

N'=14

N'=16

N'=18

N'=20

T(x,t)

Unit Length

(a) t = 100∆t

F
u
n
c
t
i
o
n
V
a
l
u
e

-1.0 -0.5 0.0 0.5 1.0

0.0010

0.0015

0.0020

0.0025 N'=4

N'=6

N'=8

N'=10

N'=12

N'=14

N'=16

N'=18

N'=20

T(x,t)

Unit Length

(b) t = 500∆t

F
u
n
c
t
i
o
n
V
a
l
u
e

-1.0 -0.5 0.0 0.5 1.0

6×10-6

8×10-6

0.000010

0.000012

0.000014

0.000016

N'=4

N'=6

N'=8

N'=10

N'=12

N'=14

N'=16

N'=18

N'=20

T(x,t)

Unit Length

(c) t = 1000∆t

F
u
n
c
t
i
o
n
V
a
l
u
e

-1.0 -0.5 0.0 0.5 1.0

3×10-10

4×10-10

5×10-10

6×10-10

7×10-10

N'=4

N'=6

N'=8

N'=10

N'=12

N'=14

N'=16

N'=18

N'=20

T(x,t)

Unit Length

(d) t = 2000∆t

F
u
n
c
t
i
o
n
V
a
l
u
e

-1.0 -0.5 0.0 0.5 1.0

1.5×10-14

2.0×10-14

2.5×10-14

3.0×10-14

3.5×10-14 N'=4

N'=6

N'=8

N'=10

N'=12

N'=14

N'=16

N'=18

N'=20

T(x,t)

Unit Length

(e) t = 3000∆t

F
u
n
c
t
i
o
n
V
a
l
u
e

-1.0 -0.5 0.0 0.5 1.0

6.0×10-19

8.0×10-19

1.0×10-18

1.2×10-18

1.4×10-18

1.6×10-18 N'=4

N'=6

N'=8

N'=10

N'=12

N'=14

N'=16

N'=18

N'=20

T(x,t)

Unit Length

(f) t = 4000∆t

Figure 4: Exact solution of IBVP given by Eq.(4.9) vs. Truncated computed series given
by Eq.(4.8). Sensitivity to the sum truncation N ′ at various times
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Figure 5: Sensitivity of the relative error given by Eq.(4.11) to the truncation number N ′

at various times.

5. Concluding Remarks

With mild restrictions on the functions f and g, with respective Fourier–
Legendre coefficients {αn} and {βn}, we have shown that the Fourier–Legendre
coefficients {µk} of f · g are given by Eq.(2.42). A bound on the rate of con-
vergence of that series, depending on the smoothness of f and g, is given
by Theorem 6 together with its two corollaries, and bounds on the rate of
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convergence of the Fourier–Legendre series of f · g are given in Theorems 4
and 5. Our formulas may be iterated in a straightforward way to determine
the Fourier–Legendre coefficients of fp(x) in terms of those for f(x) for any
positive integer p.

Our motivation for proving the results of Sections 2 and 3 was to ap-
ply them to finding solutions to PDEs with polynomial nonlinearities. To
that end, we demonstrated in Section 4 that the search for the solution of
such a PDE in the form of a Fourier–Legendre series leads to an ordinary
differential equation (ODE) system in which the unknowns are the Fourier–
Legendre coefficients, just as for the case of linear PDEs. In contrast to the
linear case, the resulting ODE in the nonlinear PDE case is also nonlinear.
Difficulties in solving this nonlinear ODE are overcome in large measure by
the rapid convergence of the solution series and of the corresponding series
for the nonlinear term. We showed that a high degree of accuracy is achieved
by solving this system for only a few coefficients, essentially a reduced, or
truncated, ODE system. We note that the resulting reduced ODE system can
be solved by any preferred numerical scheme for ODEs. To our knowledge,
this is the first use of Fourier-type expansions to solve semi-analytically a
nonlinear PDE problem.

This example, along with other equations with non constant coefficients
studied by the third listed author of this paper in [30], include reference solu-
tions to assess the accuracy of our semi-analytical solution methodology. We
anticipate that this approach will be successful in solving PDEs with poly-
nomial nonlinearities such as PDEs arising in global climate models. In such
models, outgoing long wave radiation is often modeled by a linear function
of temperature (the unknown function of position and time), see e.g. [32],
but it is more accurately modeled by a multiple of the fourth power of tem-
perature, according to the Stefan-Boltzmann law, and lateral heat diffusion
may be effectively modeled by the same term as in the nonlinear PDE we
solved in Section 4 [33, 34].

Acknowledgement. The authors thank Cord Perillo for helpful discussions
related to this research.
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Appendix A. Exact and Computed Legendre Coefficients Numer-
ical Values

Table A.1: Legendre coefficients an(t): computed values vs. exact values at t = 100∆t.

n Computed Coefficient Exact Coefficient Absolute Error
0 0.072 821 142 472 0.072 821 142 472 2.690 843 955 7× 10−17

4 0.009 137 899 698 9 0.009 137 899 698 9 3.376 374 718 0× 10−18

6 0.000 930 086 372 73 0.000 930 086 372 73 3.437 728 532 4× 10−19

10 3.747 001 209 3× 10−6 3.747 001 209 3× 10−6 1.474 850 221 3× 10−21

20 1.710 280 689 4× 10−13 1.710 280 689 7× 10−13 3.262 790 078 2× 10−23

30 5.401 711 731 3× 10−22 5.675 875 450 1× 10−22 2.741 637 188 4× 10−23

Table A.2: Legendre coefficients an(t): computed values vs. exact values at t = 500∆t.

n Computed Coefficient Exact Coefficient Absolute Error
0 0.001 333 765 749 0 0.001 333 765 749 0 1.999 869 380 0× 10−19

4 0.000 167 366 471 09 0.000 167 366 471 09 2.419 719 268 2× 10−20

6 0.000 017 035 126 138 0.000 017 035 126 138 2.462 903 346 1× 10−21

10 6.862 872 106 4× 10−8 6.862 872 106 4× 10−8 9.952 256 704 5× 10−24

20 3.132 488 351 1× 10−15 3.132 488 351 1× 10−15 1.093 881 631 2× 10−26

30 1.038 653 316 2× 10−23 1.039 572 851 2× 10−23 9.195 350 350 3× 10−27

Table A.3: Legendre coefficients an(t): computed values vs. exact values at t = 1000∆t.

n Computed Coefficient Exact Coefficient Absolute Error
0 8.986 842 925 8× 10−6 8.986 842 925 8× 10−6 1.529 307 056 5× 10−20

4 1.127 706 411 6× 10−6 1.127 706 411 6× 10−6 1.018 341 218 0× 10−21

6 1.147 817 770 4× 10−7 1.147 817 770 4× 10−7 1.036 501 725 1× 10−22

10 4.624 166 851 5× 10−10 4.624 166 851 5× 10−10 4.175 725 061 2× 10−25

20 2.110 654 048 5× 10−17 2.110 654 048 5× 10−17 5.156 546 072 8× 10−31

30 7.004 545 023 2× 10−26 7.004 586 773 2× 10−26 4.175 000 566 4× 10−31
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Table A.4: Legendre coefficients an(t): computed values vs. exact values at t = 2000∆t.

n Computed Coefficient Exact Coefficient Absolute Error
0 4.080 020 376 1× 10−10 4.080 020 376 2× 10−10 7.177 931 263 8× 10−21

4 5.119 779 187 9× 10−11 5.119 779 187 9× 10−11 2.748 439 288 9× 10−27

6 5.211 084 615 7× 10−12 5.211 084 615 7× 10−12 2.797 320 092 8× 10−28

10 2.099 368 502 7× 10−14 2.099 368 502 7× 10−14 1.126 914 689 2× 10−30

20 9.582 354 555 4× 10−22 9.582 354 555 4× 10−22 5.245 978 020 5× 10−38

30 3.180 077 474 3× 10−30 3.180 077 475 2× 10−30 8.604 632 141 6× 10−40

Table A.5: Legendre coefficients an(t): computed values vs. exact values at t = 4000∆t.

n Computed Coefficient Exact Coefficient Absolute Error
0 8.337 769 687 5× 10−19 8.409 548 778 0× 10−19 7.177 909 047 1× 10−21

4 1.055 265 141 9× 10−19 1.055 265 141 9× 10−19 4.764 379 980 5× 10−31

6 1.074 084 593 2× 10−20 1.074 084 593 3× 10−20 4.916 063 384 9× 10−32

10 4.327 120 994 1× 10−23 4.327 120 994 1× 10−23 1.995 424 567 1× 10−34

20 1.975 070 480 3× 10−30 1.975 070 480 3× 10−30 9.138 274 310 6× 10−42

30 6.554 628 207 5× 10−39 6.554 628 207 6× 10−39 3.034 653 804 3× 10−50

Appendix B. Conditions in Theorem 3 are Sufficient Conditions:
An illustrative Example

In this appendix, we consider the function,

f(x) =
∞∑
n=1

Pn(x)

n
. (B.1)

We analyze some of its properties and calculate Fourier–Legendre coefficients
µk for f 2 (see Eq.(2.42)) to illustrate some of our results, and to demonstrate
that some of the hypotheses, though sufficient, are not necessary for our
results to hold.
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Figure B.6: Graph of f(x) =
∑1000

n=1
Pn(x)

n

The series in Eq.(B.2) is easily shown to converge in L2[−1, 1] by ex-

panding f in the orthonormal basis {
√
n+ 1

2
Pn(x)} and using Parseval’s

theorem. We note that since Pn(−1) = (−1)n, the series defining f con-
verges conditionally at x = −1, and since Pn(1) = 1 for all n, it diverges at
x = 1.

For later purposes, we let,

g(x) =
∞∑
n=1

|Pn(x)|
n

, (B.2)

and observe that the sum for g diverges at x = ±1. According to Bernstein’s
inequality (see, e.g. [27]),

|Pn(x)| ≤
√

2

πn

1

(1− x2) 1
4

(B.3)

for x ∈ [−1, 1] and n ≥ 1. It follows that the series in Eq(B.2) converges
absolutely in (−1, 1) and,

|f(x)| ≤ g(x) ≤ K

(1− x2) 1
4

(B.4)

f 2(x) ≤ g2(x) ≤ K2

(1− x2) 1
2

, (B.5)
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for some constant K. Thus, f(x), g(x), f 2(x), and g2(x) are integrable on
[−1, 1].
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Figure B.7: Graph of g(x) =
∑1000

n=1
|Pn(x)|

n

Observe next that f is unbounded, and therefore cannot satisfy the hy-
potheses of Theorem 3. Indeed, either f is not absolutely continuous on
[−1, 1) in which case the hypotheses are clearly not satisfied, or f is abso-
lutely continuous on [−1, 1), but its derivative must be an unbounded func-
tion by the Fundamental Theorem of Calculus. Therefore, f ′ cannot have
bounded variation. We consider next whether f 2 nevertheless satisfies the
conclusion of Theorem 3.

To calculate µk for the function f 2 from the formula in Eq.(2.42), we let
αk = βk = 1/k and use Eq.(2.15) to find that,

k+m∑
`=m

αk+2m−`β`Am,k+2m,` =
k+m∑
`=m

Am,k+2m,`

`(k + 2m− `)
=

4k + 2

m(k + 2m)(2k + 2m+ 1)
,

(B.6)
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for any nonnegative integer k. Using Mathematica, we then calculate,

µk =
∞∑

m=0

k+m∑
`=m

αk+2m−`β`Am,k+2m,`

=
∞∑

m=1

4k + 2

m(k + 2m)(2k + 2m+ 1)
+

k−1∑
`=1

A0,k,`

`(k − `)
(B.7)

=
(4k + 2)H k

2
− 2kHk+ 1

2

k(k + 1)
+

k−1∑
`=1

A0,k,`

`(k − `)
,

where we take the finite sum on ` to be zero for k ≤ 1. In the last line of
Eq.(B.7), the nth Harmonic number, Hn, is given by,

Hn =
n∑

k=1

1

k
=

∫ 1

0

1− xn

1− x
dx, (B.8)

when n is a positive integer, and Hn is defined by the integral expression
when n is real. Eq.(B.7) allows us to make exact calculations, for example,

µ0 =
1

6

(
−24 + π2 + 6 log(16)

)
(B.9)

µ1 = 6

(
5

9
− log(4)

3

)
(B.10)

µ2 =
13

45
+

4 log(2)

3
(B.11)

µ3 =
641

315
− 4 log(2)

3
(B.12)

µ10 =
139252469

426786360
+

4 log(2)

11
. (B.13)

These values may compared with direct calculations via,

µk =
2k + 1

2

∫ 1

−1
f 2(x)Pk(x)dx =

2k + 1

2

∫ 1

−1

(
∞∑
n=1

Pn(x)

n

)2

Pk(x)dx

≈ 2k + 1

2

∫ 1

−1

(
N∑

n=1

Pn(x)

n

)2

Pk(x)dx (B.14)
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for large N , where the approximation is justified by the Lebesgue Dominated
Convergence Theorem with g2 as the integrable dominating function (see
Eq.(B.5).

The following table compares approximations for the first few values of µk

via the integral approximation of Eq.(B.14), with N = 500 (middle column),
to decimal approximations to the exact values of µk calculated from Eq.(B.7)
(right column). The estimates are close for higher values of k as well.

Table B.6: Comparison of integral estimates with exact (roundoff) values of µk

k µk ≈ 2k+1
2

∫ 1

−1

(∑500
n=1

Pn(x)
n

)2
Pk(x)dx µk =

∑∞
m=0

∑k+m
`=m αk+2m−`β`Am,k+2m,`

0 0.417522 0.417523
1 0.560742 0.560745
2 1.213080 1.213085
3 1.110717 1.110724

The figure below displays the graphs of f 2(x) ≈
(∑200

n=1
Pn(x)

n

)2
with∑40

k=0 µkPk(x), where µ0, µ1, . . . µ40 were computed using Eq(B.7).
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Figure B.8: Graph of
(∑200

n=1
Pn(x)

n

)2
(orange); and

∑40
k=0 µkPk(x) (blue) with µk com-

puted using Eq(B.7).

We see then that conclusion of Theorem 3 applies to our function f even
though its hypotheses are not met. We note, however, that the hypotheses
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to all of our theorems are easily satisfied by solutions to the class of partial
differential equations with polynomial nonlinearities considered here, and in
other contexts of practical interest.
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