Homework for Section 3.1

Problem 1

Exercise 1.1: Students use a protractor to measure angles to justify these facts.

Exercise 1.2: a) The activity used to justify the fact that the sum of the measures of the three angles of a triangle is 180° is the same activity described on page 37 of our textbook. Students copy a triangle, cut off the corners, and arrange the angles to form a straight angle.

b) "The angles opposite equal sides are equal."

Exercise 1.3: Answers vary. These exercises could be followed in class under teacher supervision.

Problem 2

b) At least 12 different symbols were used for angles.

Problem 3

prob. 35:

$$x + 90 + 200 = 360$$
 (\angle s at a point)
 $x + 290 = 360$
 $\therefore x = 70$

prob. 36: Let $x = \angle UTR$, $y = \angle Q$, $z = \angle PRQ$, and $w = \angle TRS$.

prob. 37: Let $o = \angle CDE$, $p = \angle CED$, and $q = \angle CEA$.

Problem 4

- a) True, by (\angle sum of rt. Δ)
- b) False. The angle sum in a triangle is 180°, so the sum of any two angles in a triangle must be less than 180°.
- c) True, by (∠s on a line)

Problem 5

b)

$$x + 35 + 105 = 180$$
 (∠ sum of Δ)
∴ $x = 40$

d)

$$x + 58 = 32 + 90$$
 (ext. ∠ of Δ)
∴ $x = 64$

e)

$$x + 90 = 135$$
 (ext. \angle of Δ)
 $\therefore x = 45$

g)

$$y = 56$$
 (vert. $\angle s$)

$$x + 68 + 56 = 180$$
 (\angle sum of Δ)
 $x + 124 = 180$
 $\therefore x = 56$

j)

$$y + 60 = 180$$
 (\(\triangle s\) on a line)
 $y = 120$

$$x + 120 = 90 + 60 \text{ (ext. } \angle \text{ of } \Delta)$$

 $x + 120 = 150$

$$\therefore x = 30$$

Problem 6

b)

$$3x = x + 58$$
 (ext. \angle of Δ)

$$2x = 58$$

$$\therefore x = 29$$

c)

$$a = 180 - 2x \ (\angle s \text{ on a line})$$

$$4x = x + 180 - 2x \text{ (ext. } \angle \text{ of } \Delta)$$

$$5x = 180$$

$$x = 36$$

f)

 $_4x^{\circ}$

$$c = 180 - 3x \ (\angle s \text{ on a line})$$

$$4x = 2x + 180 - 3x \text{ (ext. } \angle \text{ of } \Delta)$$

$$5x = 180$$

$$\therefore x = 36$$

g)

m =
$$180 - 3x$$
 (∠s on a line)
 $3x = x + 180 - 3x$ (ext. ∠ of Δ)
 $5x = 180$
∴ $x = 36$