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An “FKG equality” with applications to random environments
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Abstract

We consider a sequence of independent random variables, X1; X2; X3; : : : ; taking values in {1; 2; : : : ; m}. We introduce a
�-algebra of “nonpivotal” events and prove the following 0–1 Law: P(A) = 0 or 1 if and only if A is nonpivotal. All tail
events are nonpivotal. The proof is based on an “FKG equality” which provides exact error terms to the FKG inequality.
We give some applications for independent random variables in a random environment in the sense that the probabilities
of particular outcomes are random. c© 2000 Elsevier Science B.V. All rights reserved
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The FKG inequality has resulted in great advances in probabilty theory, especially in statistical mechanics,
percolation theory, and reliability theory. With appropriate restrictions on the probability measure P, the FKG
inequality says that the correlation between increasing events, A and B, is always nonnegative, i.e.,

P(AB)− P(A)P(B)¿0:
This inequality was �rst established by Harris (1960) in the case of a product measure P and subsequently
generalized by Fortuin et al. (1971), and many others. Considering the importance of the FKG inequality, it
is natural to investigate the existence of a more detailed relationship between P(AB) and P(A)P(B) of the
form

P(AB) = P(A)P(B) + error terms;

where the error terms are nonnegative in the case of increasing events A and B, and arise in a natural way
related to the structure of the underlying probability space in general. In this paper we carry out this project
for the case of a product measure P associated with �nitely-valued random variables. We give an expansion
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formula for P(AB) − P(A)P(B) in terms of the probabilities of “pivotal events” determined by A and B.
Precise de�nitions are given below. Our expansion formula can be viewed as an “FKG equality”.
The idea for pivotal events �rst appeared in Russo (1981) and it plays a prominent role in percolation

theory. Our expansion connects this idea of “pivotal event” with the FKG inequality. Our second theorem
provides an application of our FKG expansion formula to obtain a zero–one law for product measures. It
says that an event A is “nonpivotal” if and only if P(A) = 0 or 1. We then apply this new zero–one law to
get results for random variables in random environments. An application to Bayesian statistics of our �nal
corollary is also discussed in the context of a simple model for human sex ratios.
Let S = {1; 2; : : : ; m} and �= {1; 2; 3; : : :}. Let X1; X2; X3; : : : be independent random variables with P(Xi =

�) = pi(�)¿ 0 so that
∑m

�=1 pi(�) = 1 for all i∈�. Let 
 = S�.
For x = (x1; x2; : : :)∈
; b∈� and �∈ S, de�ne x�b ∈
 by

x�bi =

{
xi for i 6= b;
� for i = b:

Let F denote the �-algebra of subsets of 
 generated by {Xi: i∈�}, where Xi(x) = xi. For A∈F , de�ne
Ab(�; �) = {x∈
: x�b ∈A and x�b 6∈A}:

We describe Ab(�; �) as the event that b is �� pivotal for A. Note that Ab(�; �) does not depend on xb, i.e.,
Ab(�; �)∈ �(Xi: i 6= b), the �-algebra generated by all Xi except for i= b. The indicator function for Ab(�; �)
satis�es

1Ab(�; �)(x) = 1A(x
�b)1Ac (x�b); (1)

where Ac denotes the complement of A. The notion of “pivotal events” when m=2 has appeared in percolation
theory, as for example in Russo (1981) and Yang and Zhang (1992).
Consider a duplicate system. Let 
2 = 
 × 
 and P2 = P × P, where P is the probability measure on 


generated by the random variables {Xi}. De�ne a projection mapping
�k : 
 × 
→ 


for each k = 1; 2; 3; : : : by

�k(x; y) = (y1; y2; : : : yk−1; xk ; xk+1; : : :):

Let �k(A) = �−1
k (A) = {(x; y)∈
 × 
: (y1; y2; : : : ; yk−1; xk ; xk+1; : : :)∈A}.

Lemma 1. Let A; B∈F . Then limn→∞ P2(�1(A)�n(B)) = P(A)P(B).

Proof. For any �¿ 0, there exists k and Bk ∈ �(X1; : : : ; Xk) such that P(B�Bk)¡�. This implies |P(B) −
P(Bk)|¡�. Then

|P2(�1(A)�n(B))− P(A)P(B)|6 |P2(�1(A)�n(B))− P2(�1(A)�n(Bk))|
+ |P2(�1(A)�n(Bk))− P(A)P(Bk)|+ |P(A)P(Bk)− P(A)P(B)|: (2)

The second term on the right-hand side of (2) equals zero if n¿k+1. The third term is bounded by P(A)�6�.
The �rst term equals
|E2(1�1(A)1�n(B))−E2(1�1(A)1�n(Bk ))|6E2|1�n(B)−1�n(Bk )|=P(B�Bk)¡� because P2(�n(C))=P(C) for any

C ∈F .



W.-S. Yang, D. Klein / Statistics & Probability Letters 46 (2000) 203–209 205

Theorem 1. For any A; B∈F;
(a) P2(�1(A)�k(B)) = P2(�1(A)�r(B))

+
r−1∑
b= k

∑
16�; �6m
� 6=�

pb(�)pb(�) [P2(�1(Ab(�; �))�b(Bb(�; �)))

−P2(�1(Ab(�; �))�b(Bb(�; �)))] for all r ¿k:

(b) P2(�1(A)�k(B)) = P(A)P(B) +
∞∑
b= k

∑
16�; �6m
� 6=�

pb(�)pb(�)[P2(�1(Ab(�; �))�b(Bb(�; �)))

−P2(�1(Ab(�; �))�b(Bb(�; �)))]:

(c) In particular,

P(AB) = P(A)P(B)

+
∞∑
b= 1

∑
16�; �6m
� 6=�

pb(�)pb(�) [P2(�1(Ab(�; �))�b(Bb(�; �)))− P2(�1(Ab(�; �))�b(Bb(�; �)))]:

Remark 1. If A or B is in the �-algebra, �-(X1; X2; : : : ; Xn) for some n, then the sums in parts (b) and (c) of
Theorem 1 involve only �nitely many terms; the upper limit ∞ may be replaced by n.

Proof. Part (b) follows from Lemma 1 and part a by letting r→∞. Part (c) follows from part (b) by
choosing k = 1. To prove part (a), write

P2(�1(A)�k(B))− P2(�1(A)�r(B)) =
r−1∑
b= k

[P2(�1(A)�b(B))− P2(�1(A)�b+1(B))]

=
1
2

r−1∑
b= k

[E2(1A′1B′) + E2(1A′′1B′′)− E2(1A′1B′′)− E2(1A′′1B′)]; (3)

where A′ = �1(A); B′ = �b(B); A′′ = {(x; y): (x1; x2; : : : ; xb−1; yb; xb+1; : : :)∈A}, and B′′ = �b+1(B) = {(x; y):
(y1; y2; : : : ; yb; xb+1; xb+2; : : :)∈B}. The last equality follows from the symmetry of xb and yb. Thus,

E2(1A′′1B′′) = E2(1A′1B′) = P2(�1(A)�b(B))

and

E2(1A′′1B′) = E2(1A′1B′′) = P2(�1(A)�b+1(B)):

The right-hand side of (3) equals

1
2

r−1∑
b= k

E2[(1A′ − 1A′′) (1B′ − 1B′′)]: (4)

To evaluate (4), we consider the following four disjoint sets:

Cij = {1A′ − 1A′′ = i and 1B′ − 1B′′ = j};
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where i and j =±1. Then (4) may be rewritten as
1
2

r−1∑
b= k

[P2(C11) + P2(C−1−1)− P2(C1−1)− P2(C−11)]: (5)

Let

C��ij = Cij ∩ {(x; y): xb = �; yb = �}:
Then,

Cij =
⋃

16�; �6m
� 6=�

C��ij ;

is a disjoint union. Observe that (x; y)∈C��11 if and only if [x∈Ab(�; �) and xb = �; yb = �] and
[(y1; y2; : : : ; yb−1; xb; xb+1; : : :)∈Bb(�; �) and xb = �; yb = �]. In other words,

C��11 = �1(Ab(�; �)) ∩ �b(Bb(�; �)) ∩ {xb = �; yb = �}:
Thus,

P2(C11) =
∑

16�; �6m
� 6=�

pb(�)pb(�)P2(�1(Ab(�; �))�b(Bb(�; �)));

where we have used the fact, for example, that �1(Ab(�; �)) ∩ �b(Bb(�; �)) does not depend on xb and yb.
The same argument shows that

P2(C��−1−1) = pb(�)pb(�)P
2(�1(Ab(�; �))�b(Bb(�; �))):

Summing on � and � yields P2(C−1−1) = P2(C11). A similar argument shows that

P2(C−11) = P2(C1−1) =
∑

16�; �6m
� 6=�

pb(�)pb(�)P2(�1(Ab(�; �))�b(Bb(�; �))):

Substituting these last expressions into (5) yields the desired result.

Remark 2. Statement (c) is what we refer to as an expansion of correlations. Note that if A is an increasing
event, then Ab(�; �) = H when �¿� Therefore (c) immediately implies the following FKG inequality for
�nitely-valued, independent random variables.

Corollary 1. Let A; B∈F . If A and B are increasing events; then P(AB)¿P(A)P(B).

Statement (c) of Theorem 1 also gives a characterization for A and B to be independent, viz., A and B∈F
are independent if and only if

∞∑
b=1

∑
16�; �6m
� 6=�

pb(�)pb(�) [P2(�1(Ab(�; �))�b(Bb(�; �)))− P2(�1(Ab(�; �))�b(Bb(�; �)))] = 0:

De�nition. An event A∈F is said to be nonpivotal if P(Ab(�; �)) = 0 for all b∈� and all �; �∈ S. Let U
be the class of all nonpivotal events.

Lemma 2. U is a �-algebra and the tail �eld T ⊂U .
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Proof. Since 
b and Hb, are both empty, 
 and H are elements of U . Let b be �xed. We write x� for x�b
and x� for x�b. By (1) A∈U if and only if for P-a.e. x,

1Ab(�; �)(x) = 1A(x
�)1Ac (x�) = 0: (6)

Now suppose A; B∈U . Then
1(A∪B)b(�; �)(x) = 1A∪B(x

�)1(A∪B)c (x�)

= [1A(x�) + 1B(x�)− 1A(x�)1B(x�)]1Ac (x�)1Bc (x�) = 0
P-a.s., by (6). Therefore A; B∈U implies A∪B∈U . Since (Ac)b(�; �)=(A)b(�; �), we have Ac ∈U if and only
if A∈U . Therefore U is an algebra. It now su�ces to show that U is a monotone class. Let An ∈U; An⊂An+1.
Then

1
(
∞∪
n= 1

An)b(�; �)
(x) = 1∞∪

n= 1
An
(x�)1∞∩

n= 1
Acn
(x�)

= lim
N→∞

[1 N∪
n= 1

An
(x�)1 N∩

n= 1
Acn
(x�)]

= lim
N→∞

1
(
N∪
n= 1

An)b(�; �)
(x) = 0;

P-a.e., where we have used the result that U is an algebra. By the Monotone Class Theorem, U is a �-algebra.
Let A∈T . Then A does not depend on xb for any b∈�. Therefore Ab(�; �) = I for all �; �. Hence

T ⊂U .

Theorem 2. A∈U if and only if P(A) = 0 or 1.

Proof. Assume that A∈U . Then P2(�1(Ab(�; �))�b(Bb(�; �)))6P2(�1(Ab(�; �)))=P(Ab(�; �))=0: By The-
orem 1(c), with B= A; P(A) = P(A)2.
Conversely, assume P(A) = 0 or 1. If P(A) = 1, then P(Ac) = 0, and if Ac ∈U , then A∈U by Lemma 2.

It therefore su�ces to consider only the case P(A) = 0. By de�nition, Ab(�; �) ∩ {xb = �}⊂A. Therefore,
P(Ab(�; �)) = P(Ab(�; �) ∩ {xb = �}) + P(Ab(�; �) ∩ {xb 6= �})

= P(Ab(�; �) ∩ {xb 6= �}) = P(Ab(�; �))P({xb 6= �}):
The last equality follows because Ab(�; �) does not depend on xb. Since P({xb = �})¿ 0,

P(Ab(�; �)) = 0:

Thus, A∈U .

We next consider a sequence of independent random variables X1; X2; X3; : : : , where {P(Xi = �)}= {pi(�)}
is also a sequence of independent random variables. Let �i be a probability measure on the portion Q of
the hyperplane in Rm determined by

∑m
�=1 pi(�) = 1 with each pi(�)¿ 0. De�ne I = Q� and let �(dp) =∏

i∈� �(dpi) where pi = (pi(1); : : : ; pi(m)). For each �xed p= (pi: i∈�)∈ I , let Pp be the product measure
on 
 for the independent random variables X1; X2; X3; : : : satisfying {Pp(Xi = �)}= pi(�).
Let 
̃=
× I and let P̃ be the probability measure on 
̃ de�ned by P̃(d(x; p)) = �(dp) Pp(dx). Note that

under P̃; {Xi} is a sequence of independent random variables with P̃(Xi = �) =
∫
pi(�) d�i, and Theorem 2

applies to any event Ã⊆ 
̃ with Ã∈ �(Xi; i∈�).
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Corollary 2. Let A⊆
 and A∈ �(Xi; i∈�). If for � almost every p; Pp(A)=0 or 1; then either Pp(A)=0
for � almost every p; or Pp(A) = 1 for � almost every p.

Proof. If for � almost every p; Pp(A) = 0 or 1, then for all b; Pp(Ab(�; �)) = 0, by Theorem 2. For any set
B∈ �(Xi; i∈�), de�ne B̃= {(x; p): x∈B}. Let

�p=
(∫

p1 d�1;
∫
p2 d�2;

∫
p3 d�3; : : :

)
:

Then

P �p(Ab(�; �)) = P̃(Ãb(�; �)) =
∫
d�(p)Pp(Ab(�; �)) = 0:

From Theorem 2, it follows that P �p(A) = P̃(Ã) = 0 or 1.
If P̃(Ã) =

∫
d�(p)Pp(A) = 0, then Pp(A) = 0 for � almost every p. Similarly, if P̃(Ã) = 1, then Pp(A) = 1

for � almost every p.

Consider a function f which is �-(X1; X2; : : :) measurable.
Let Varp(f) = Ep(f2)− (Ep(f))2 where Ep denotes expectation with respect to Pp. It is easily shown that

Var(f) = E(Varp(f)) + Var(Ep(f)). Therefore, 06E(Varp(f))6Var(f).

Corollary 3. With the notation above; E(Varp(f)) = 0 if and only if Var(f) = 0.

Proof. If E(Varp(f)) =
∫
d�(p)Varp(f) = 0, then Varp(f) = 0 for � almost every p. This implies that

f(x) = c(p), a constant for � almost every p. Therefore, Pp{x: f(x)¿�} = 0 or 1 for Pp almost every x
and all real �. As in the proof of Corollary 2, it follows that P �p{x: f(x)¿�}= 0 or 1. Thus, f(x) equals a
constant c = E �p(f(x)) almost surely, P �p. Since

∫
d�(p)Ep(|f(x)− c|2) = 0; Var(f) = 0. The other direction

is clear.

Corollary 4. Let Sn = X1 + · · ·+ Xn. If for � almost every p; limn→∞ Sn=n= c(p), a constant Pp-a.e.; then
limn→∞ Sn=n is constant P̃ almost everywhere.

Proof. Let f(x) = limn→∞ Sn=n. By assumption, for � almost every p;f(x) = c(p), a constant depending on
p, for Pp almost every x. By Corollary 3, f(x) is constant P̃ almost everywhere.

Remark 3. It is possible to prove Corollary 4 using conditioning arguments and Kolmogorov’s criterion for the
convergence of averaged sums of independent random variables with appropriate restrictions on the variances.

We give an application of Corollary 4 relating to human sex ratios at birth, and Bayesian statistics. It is
fairly well established that the ratio of males to all infants at birth is approximately 0.51. This ratio appears
to be stable with respect to locality, ethnicity, and time for su�ciently large populations (US Census Bureau,
1998; US National Center for Health Statistics, 1998). In spite of the global stability of this ratio, there is
evidence that the probability p for a male infant varies among individual couples. Evidence exists (James,
1990) that p may range as widely as 0.31–0.83.
How might this phenomenon be explained? Let us assume a population of n births and let Xi be a random

variable which takes the value 1 if the ith birth is male and 0 if it is female. We will assume that the
collection {Xi} is independent. As above, let {P(Xi = 1)} = {pi} also be a collection of random variables.
Assume the pi’s are equal to the common random variable P, whose prior distribution we denote by �(p).
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Conditioning on the event {P = p}, for a �xed p, and letting n go to in�nity gives almost surely,
X1 + · · ·+ Xn

n
→ p

and, in general, without conditioning,

X1 + · · ·+ Xn
n

→ P:

But assuming the validity of the demographic and medical references cited above, we are forced to conclude
that this approach does not provide a good model for sex ratios, in the sense that large sample means do not
approximate the limiting ratio (unless P were constant, which is not supported by the evidence).
A better model results from the assumption that p1; p2; p3; : : : are i.i.d. random variables with distribution

�(p). In this case, intuitively, the sample mean of the collection {Xi} should tend to p̂, the mean of �(p),
for almost every given p1; p2; p3; : : : . By Corollary 4 this indeed follows; the sample means approximate for
almost all pi’s the limiting global constant ratio of males to all infants. Thus our Corollary 4 provides an
explanation for the individual variability of the probabilities for gender as well as the global stability of the
sex ratio.
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