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We find exact Fermi coordinates for timelike geodesic observers for a class of
space-times that includes anti-de Sitter space-time, de Sitter space-time, the con-
stant density interior Schwarzschild space-time with positive, zero, and negative
cosmological constant, and the Einstein static universe. Maximal charts for Fermi
coordinates are discussed. © 2010 American Institute of Physics.
�doi:10.1063/1.3298684�

I. INTRODUCTION

The effects of a gravitational field are most naturally analyzed by using a system of locally
inertial coordinates. For an observer following a timelike path, Fermi–Walker coordinates provide
such a system. A Fermi–Walker coordinate frame is nonrotating in the sense of Newtonian me-
chanics and is realized physically as a system of gyroscopes.1–4 Applications of these coordinate
systems are extensive and include the study of tidal dynamics, gravitational waves, relativistic
statistical mechanics, and quantum gravity.5–12 In the case that the path of the observer is geodesic,
Fermi–Walker coordinates are commonly referred to as Fermi or Fermi normal coordinates. The
metric in that case is Minkowskian to first order near the path, with second order corrections
involving only the curvature tensor.13

Under general conditions, a timelike path has a neighborhood on which a Fermi–Walker
coordinate system can be defined14 �p. 200�. In addition, general formulas in the form of Taylor
expansions for coordinate transformations to and from Fermi–Walker coordinates, valid in some
neighborhood of a given timelike path in general space-times, were given in Ref. 15. However, to
the best of our knowledge, rigorous results for the radius of a tubular neighborhood of a timelike
path for the domain of Fermi coordinates are not available. In addition to potential applications, it
is therefore revealing to find examples where exact coordinate transformations to and from Fermi
coordinates can be calculated in order to determine the maximum extent of coordinate charts for
those coordinate systems.

In this paper, we find exact transformations to and from Fermi coordinates for a class of
space-times. Our starting point is a generic metric given by Eq. �2� below. In Sec. II, Theorems 1
and 2 give explicit charts with Fermi coordinates for metrics of the form of Eq. �2�. We use
sectional curvature of appropriate two-dimensional submanifolds to define Jacobi fields that mea-
sure the separation of �Fermi� coordinate, spacelike geodesics. Our examples, described in Sec. III,
include the metrics for anti-de Sitter space-time �AdS4�, de Sitter space-time �dS4�, the interior
constant density Schwarzschild space-time with positive, negative, or zero cosmological constant,
and the Einstein static universe. We also discuss the breakdown of Fermi coordinates at the
horizon in dS4. Concluding remarks are given in Sec. IV.
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II. FERMI COORDINATES AND CURVATURE FOR A CLASS OF METRICS

In a space-time M, let ���� be a timelike geodesic parametrized by proper time � with unit
tangent vector e0���. A Fermi normal coordinate system along � is determined by an orthonormal
tetrad of vectors, e0���, e1���, e2���, e3��� parallel along �. Fermi coordinates x0, x1, x2, x3 relative
to this tetrad are defined by

x0�exp������ jej����� = � ,

xk�exp������ jej����� = �k, �1�

where here and below, Greek indices run over 0,1,2,3 and Latin over 1,2,3. The exponential map,
expp�v��, denotes the evaluation at affine parameter 1 of the geodesic starting at the point p in the
space-time, with initial derivative v� , and it is assumed that the � j are sufficiently small so that the
exponential maps in Eq. �1� are defined.

Consider a line element of the form

ds2 = − �1 − f�x,y,z��dt2 + dx2 + dy2 + dz2 + ��1 − kr2�−1 − 1�dr2, �2�

where r2=x2+y2+z2, k is a constant, and f�x ,y ,z� is a smooth function, which together with its
first partial derivatives vanishes at x=y=z=0. When f�x ,y ,z��0=k, Eq. �2� is the Minkowski
metric. Although not essential, we assume for convenience that 1− f�x ,y ,z� does not vanish when
1−kr2�0, and that this last expression determines the range of spatial coordinates �x ,y ,z� for the
chart on which the metric is described by Eq. �2�.

Since all first partial derivatives of the metric elements determined by Eq. �2� vanish on the
timelike path ��t�= �t ,0 ,0 ,0�, it immediately follows that the connection coefficients also vanish
on ��t�, and that ��t� is a geodesic. Moreover, t=� is proper time, and the following orthonormal
tetrad is parallel along ��t�,

�

�t
= e0��� = �1,0,0,0� ,

�

�x
= e1��� = �0,1,0,0� ,

�

�y
= e2��� = �0,0,1,0� ,

�

�z
= e3��� = �0,0,0,1� . �3�

We construct Fermi coordinates for ��t�= �t ,0 ,0 ,0�, beginning with the inverse transformation,
from Fermi coordinates �x0 ,x1 ,x2 ,x3� to Cartesian coordinates �t ,x ,y ,z�, given by the following
theorem.

In what follows, it is convenient to define a��	k	�0.
Theorem 1:

(a) When k�0, the transformation from Fermi coordinates along ��t� to the coordinates
�t ,x ,y ,z� is given by

t = x0, �4�
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x = x1
 sin��a�
�a

� , �5�

y = x2
 sin��a�
�a

� , �6�

z = x3
 sin��a�
�a

� . �7�

(b) When k�0, the transformation from Fermi coordinates along ��t� to the coordinates
�t ,x ,y ,z� is given by

t = x0, �8�

x = x1
 sinh��a�
�a

� , �9�

y = x2
 sinh��a�
�a

� , �10�

z = x3
 sinh��a�
�a

� , �11�

where �2= �x1�2+ �x2�2+ �x3�2.

Proof: It follows from Eq. �1� that a necessary and sufficient condition for �x0 ,x1 ,x2 ,x3� to be
Fermi coordinates relative to a tetrad e0���, e1���, e2���, e3��� along a geodesic � is that in these
coordinates,

exp�����sajej���� = ��,sa1,sa2,sa3� , �12�

where s measures proper distance and ��a1�2+ �a2�2+ �a3�2=1. Thus, it suffices in our case to
prove that Xt�s���t ,sa1 ,sa2 ,sa3� is geodesic in the coordinates �x0 ,x1 ,x2 ,x3� given by Eqs.
�4�–�7� for k�0 and �8�–�11� for k�0. This is readily verified by using these equations to
transform the metric of Eq. �2�, yielding the results of Corollary 1 below, from which the connec-
tion coefficients are determined. It then follows by direct calculation that

�ij
� �t,x1,x2,x3�xixj = 0, �13�

which is equivalent to

d2X�

ds2 + �	

� dX	

ds

dX


ds
= �ij

� �t,sa1,sa2,sa3�aiaj = 0. �14�

Thus, Xt�s���t ,sa1 ,sa2 ,sa3� is geodesic for all choices of �a1 ,a2 ,a3�. �

The following two corollaries follow from Theorem 1 and direct calculation.
Corollary 1: The metric in Fermi coordinates for the observer ��t�,

(a) when k�0 is given by

g00 = − �1 − f
x1� sin��a�
�a


,x2� sin��a�
�a


,x3� sin��a�
�a


�
 , �15�

g0i = 0, �16�
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gij =
xixj

�2 +
sin2�a��

a2�2 
�ij −
xixj

�2 � . �17�

(b) when k�0, is given by,

g00 = − �1 − f
x1� sinh��a�
�a


,x2� sinh��a�
�a


,x3� sinh��a�
�a


�
 , �18�

g0i = 0, �19�

gij =
xixj

�2 +
sinh2�a��

a2�2 
�ij −
xixj

�2 � . �20�

Corollary 2: Under the change in spatial coordinates, x1=� sin � cos 
, x2=� sin � sin 
, x3

=� cos �, the Fermi metric given by Corollary 1,

(a) for k�0 becomes

ds2 = g00dt2 + d�2 +
sin2�a��

a2 �d�2 + sin2 �d
2� , �21�

(b) for k�0 becomes

ds2 = g00dt2 + d�2 +
sinh2�a��

a2 �d�2 + sin2 �d
2� , �22�

where g00 is given by Eq. (15) for part (a), and (18) for part (b).

Theorem 2:

(a) When k�0, the transformation from the coordinates �t ,x ,y ,z� to Fermi coordinates along
��t� is given by

x0 = t , �23�

x1 = x
 sin−1�ra�
ra

� , �24�

x2 = y
 sin−1�ra�
ra

� , �25�

x3 = z
 sin−1�ra�
ra

� . �26�

(b) When k�0, the transformation from the coordinates �t ,x ,y ,z� to Fermi coordinates along
��t� is given by

x0 = t , �27�

x1 = x
 sinh−1�ra�
ra

� , �28�

x2 = y
 sinh−1�ra�
ra

� , �29�
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x3 = z
 sinh−1�ra�
ra

� , �30�

where, as above, r2=x2+y2+z2.

Proof: To prove part �a�, observe that squaring and adding Eqs. �5�–�7�, gives

r2 =
sin2��a�

a2 . �31�

Solving for � in the above equation, and then for x, y, and z in Eqs. �5�–�7� yields Eqs. �24�–�26�.
The proof of part �b� using

r2 =
sinh2��a�

a2 �32�

is similar. �

Remark 1: The independence from the function f�x ,y ,z� of the coordinate transformations
appearing in Theorems 1 and 2 is a consequence of Eq. (13) and the assumption that f�x ,y ,z� and
its first partial derivatives vanish on �.

Remark 2: Under the assumptions made in the paragraph below Eq. (2), it follows from Eqs.
(31) and (32) that for k�0, the domain of the spatial Fermi coordinates may be chosen to include
any open set in which 0���� /2a, and for k�0, 0����.

The following corollary will be used to identify a Jacobi field for the congruence of spatial
geodesics orthogonal to the Fermi observer’s world line.

Corollary 3: Let M be a space-time with metric given by Eq. (21) or (22). Let N be a
two-dimensional submanifold of M generated by the Fermi coordinates t and � with the angular
coordinates held fixed so that the induced metric on N is given by

ds2 = g00dt2 + d�2. �33�

Then the Gaussian curvature K of N is given by

K =
− 1

�− g00

�2

��2
�− g00. �34�

Proof: The result follows easily from Proposition 44 �p. 81� of Ref. 14 and direct calculation.
�

Remark 3: In the case that g00 is a function of � only, it is easy to verify that N [with the
induced metric, Eq. (33)] is totally geodesic in M, i.e., the shape tensor vanishes. Thus, the
intrinsic geometry of N coincides with its extrinsic geometry as a submanifold of M. In particular,
the sectional curvature of N in M is the Gaussian curvature K.

We assume now that g00 is a function of � only, i.e.,

g00 = g00��� . �35�

The vector field � /�t is a variation vector field for the geodesic variation in spacelike geodesics of
the form, Xt���= �t ,��, parametrized in N by t. Therefore, the Jacobi equation,

��/����/����/�t� = R��/�t���/�����/��� , �36�

is satisfied, where � is the Levi–Civita connection �on either N or M� and R is the Riemann
curvature operator. In light of Remark 3, the right side of Eq. �36� may be expressed in terms of
the Gaussian curvature K, yielding
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��/����/����/�t� = − K � /�t . �37�

The unit vector T= �1 /�−g00��� /�t� is orthogonal to � /�� and thus parallel along the spacelike
geodesic Xt���= �t ,�� �with t fixed�. It follows that

��/����/����/�t� = ��/����/����− g00T� = 
 �2

��2
�− g00�T . �38�

Equation �37� then becomes


 �2

��2
�− g00 + K�− g00�T = 0, �39�

which is equivalent to Eq. �34�. Thus, y= �t2− t1��−g00 is a measure of separation of the spacelike
geodesics Xt1

���= �t1 ,�� and Xt2
���= �t2 ,�� at proper distance � and is a solution of the initial value

problem,

�2y

��2 + K���y = 0,

y��0� = �t2 − t1�
− g00� �0�
�− g00�0�

= 0,

y�0� = �t2 − t1��− g00�0� = t2 − t1, �40�

where, in the initial data, we have used the assumptions on g00 that immediately follow Eq. �2�,
and for convenience, we assume that t2� t1.

The following lemma shows that when the Gaussian curvature on N is nonpositive, there is a
natural timelike separation of the spacelike geodesics that define the Fermi space coordinate,
which never becomes null.

Lemma 1: Let K����0 be continuous and suppose that y is a solution to the initial value
problem, Eqs. (40). Then y has no positive roots.

Proof: Suppose to the contrary that �0 is the least positive root of y. Then y���0��0. Since by
assumption, y��0�=0, y���� must be a decreasing function on some open subinterval of �0,�0�. On
that subinterval, y�����0, which contradicts the assumption on K. �

III. EXAMPLES

Using the results of Sec. II, we find in this section exact expressions for the metrics in Fermi
coordinates along particular timelike geodesics in AdS4, dS4, the interior constant density
Schwarzschild space-time with positive, zero, and negative cosmological constant, and the Ein-
stein static universe. We also discuss the range of Fermi coordinates together with the Gaussian
curvatures of the associated submanifolds �i.e., N� described in Sec. II.

Example 1: AdS4 and dS4 metrics in Fermi coordinates.
In static coordinates of dS4, or the analog for AdS4, the metric is

ds2 = − 
1 −
�r2

3
�dt2 + r2�d�2 + sin2 �d
2� + 
1 −

�r2

3
�−1

dr2, �41�

where the cosmological constant � is positive in the case of dS4 and negative for AdS4. In the case
of dS4, Eq. �41� is singular at the cosmological horizon where r=�3 /�. The horizon divides
space-time into four regions as may be seen from the Penrose diagram.16 In one of these regions
the timelike Killing vector � /�t is future directed, 0�r��3 /�, and an observer at r=0 is sur-
rounded by the cosmological horizon at r=�3 /�. For the case of dS4, we consider the Fermi
observer at r=0 in this causal region.
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By contrast, when ��0 �for AdS4�, the range of r is unrestricted, i.e., 0�r��. In either
case, Eq. �41� may be rewritten as

ds2 = − dt2 + r2�d�2 + sin2 �d
2� + dr2 +
�r2

3
dt2 + �
1 −

�r2

3
�−1

− 1
dr2. �42�

The first line of Eq. �42� is the Minkowski metric in spherical coordinates. Changing to Cartesian
space coordinates x, y, z, and identifying r2=x2+y2+z2, Eq. �42� becomes

ds2 = − 
1 −
�r2

3
�dt2 + dx2 + dy2 + dz2 + �
1 −

�r2

3
�−1

− 1
dr2, �43�

which has the form of Eq. �2� with f�x ,y ,z�=�r2 /3, k=� /3.
Using Eq. �32�, we find that the Fermi metric for the observer ��t�= �t ,0 ,0 ,0� in AdS4 is

ds2 = − cosh2�a��dt2 + gijdxidxj , �44�

where a=�	k	=�	�	 /3 and the spatial metric coefficients gij are given by Eq. �20�. Fermi coordi-
nates �x0 ,x1 ,x2 ,x3� are global on the covering space for AdS4, and consistent with Remark 2, Eq.
�44� is valid on the entire space-time. The associated polar metric given by Corollary 2, although
heretofore not associated with Fermi coordinates, is independently well known and extant in the
literature,

ds2 = − cosh2�a��dt2 + d�2 +
sinh2�a��

a2 �d�2 + sin2 �d
2� . �45�

The Fermi metric for the observer ��t�= �t ,0 ,0 ,0� in static coordinates in dS4 is analogous. Using
Eq. �31� for ��0,

ds2 = − cos2�a��dt2 + gijdxidxj , �46�

where a=�k=�� /3 and the spatial metric coefficients gij are given by Eq. �17�. Consistent with
Remark 2, Fermi coordinates �x0 ,x1 ,x2 ,x3� cover the region of dS4 satisfying �
=��x1�2+ �x2�2+ �x3�2�� /2a, the same region covered by static coordinates, up to the cosmologi-
cal horizon. The associated polar metric given by Corollary 2 is

ds2 = − cos2�a��dt2 + d�2 +
sin2�a��

a2 �d�2 + sin2 �d
2� . �47�

Remark 4: We note that Eqs. (46) and (47) for dS4 are not new. Chicone and Mashhoon,
starting with a different coordinate system for the de Sitter universe, previously derived Eqs. (46)
and (47) in Ref. 5, and observed that Eq. (47) appears in de Sitter’s original 1917 investigations.
Exact Fermi coordinates for Gödel space-time are also given in Ref. 5.

With the notation of Corollary 3, a short calculation shows that the Gaussian curvature K of
the submanifold spanned by the Fermi coordinates t, � with the angular coordinates held fixed is
given by

K =
�

3
, �48�

so that K is positive on the submanifold N of dS4 and negative on the corresponding submanifold
of AdS4.

Equations �40� apply to these examples, but it is instructive to analyze directly the way in
which the Fermi coordinate system breaks down at the horizon of dS4, where �=� /2a. Consider
two spacelike geodesics with the same fixed angular coordinates, orthogonal to the Fermi observ-
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er’s worldline. Without loss of generality we take the angular coordinates to be fixed at 
=0 and
�=� /2 and the Fermi time coordinates to be t1 and t2 with t1� t2. The two spacelike geodesics are
then given by

Xi��� = �ti,�,�/2,0�, i = 1,2. �49�

When �=0, X1 and X2 lie on the timelike geodesic path of the Fermi observer. For 0��0

�� /2a, the two space-time points X1��0� and X2��0� are the same proper distance �0 from the
Fermi observer’s path and are connected to each other by the timelike path,

��0
�t� = �t,�0,�/2,0� for t1 � t � t2. �50�

The observer following the path ��0
�t� starts at X1��0�, waits for the fixed Fermi coordinate time

interval, t2− t1 �without changing Fermi space coordinates�, and then arrives at the space-time
point X2��0�.

However, the proper time along ��0
�t� is less than the Fermi time interval by a factor of

cos�a�0�, which decreases to zero as �0→� /2a. Expressed another way, the tangent vector � /�t of
��0

�t� becomes null at the horizon, �=� /2a. Since the metric is Lorentzian, this alone is not
enough to conclude that the two spacelike geodesics intersect at �=� /2a. This is because of the
possibility that that ��0

�t� becomes a lightlike path, but does not degenerate to a single space-time
point. However, the point p of intersection can be identified via a different coordinate system, such
as Kruskal coordinates, used for other purposes in Ref. 16. Thus, the Fermi coordinate patch
cannot include points in the horizon or beyond.

Example 2: Fermi coordinates for the Einstein static universe.
The metric for the Einstein static universe may be written �cf. Ref. 17� as

ds2 = − dt2 + r2�d�2 + sin2 �d
2� + 
1 −
r2

R2�−1

dr2, �51�

where R is a constant that depends on energy density and the cosmological constant. Topologi-
cally, the space-time is R�SR

3 , where R is the radius of the 3-sphere SR
3 . The same calculation

leading to Eq. �43� shows that this metric may be rewritten as

ds2 = − dt2 + dx2 + dy2 + dz2 + �
1 −
r2

R2�−1

− 1
dr2, �52�

which has the form of Eq. �2� with f�x ,y ,z��0 and k=R−2 �and hence a=R−1�. Thus, the Fermi
metric for the observer ��t�= �t ,0 ,0 ,0� is

ds2 = − dt2 + gijdxidxj , �53�

where the spatial metric coefficients gij are given by Eq. �17�. The associated polar metric given
by Corollary 2 is

ds2 = − dt2 + d�2 + R2 sin2
 �

R
��d�2 + sin2 �d
2� , �54�

a known form of the metric.18 It follows trivially from Eq. �34� that the curvature K=0. Consistent
with Remark 2, if the range of r in Eq. �51� is 0�r�R, then the corresponding range of the
proper distance � is given by 0����R /2 in Eqs. �53� and �54�. However, as expected for the
case that K�0, Fermi coordinates may be extended beyond this range to cover the entire space-
time, with the exception of the pole opposite to the origin or coordinates. Thus, we may take the
range of � to be given by 0����R.

Example 3: Fermi coordinates for the interior constant density Schwarzschild space-time with
cosmological constant.

The metric for a constant density fluid may be written as
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ds2 = − A�r�dt̄2 + B�r�dr2 + r2�d�2 + sin2 �d
2� , �55�

where M is the mass of the spherical fluid, � is the cosmological constant, R is the radial
coordinate for the radius of the fluid, and

A�r� = � �3 − R0
2��

2
�1 −

R2

R0
2 −

�1 − R0
2��

2
�1 −

r2

R0
2
2

,

B�r� = 
1 −
r2

R0
2�−1

. �56�

Here,

R0
2 =

3R3

6M + �R3 . �57�

We assume that A�r�, B�r�, and R0 are all positive for 0�r�R so that the metric is well defined.
In order to find the metric form of Eq. �55� in Fermi coordinates, we first make a change of
variable, t=�A�0�t̄, with the space coordinates held fixed. Equation �55� then becomes

ds2 = − �1 − f�x,y,z��dt2 + B�r�dr2 + r2�d�2 + sin2 �d
2� , �58�

where

f�x,y,z� = 1 −
A�r�
A�0�

. �59�

The same calculation leading to Eq. �43� shows that this metric may be rewritten as

ds2 = − �1 − f�x,y,z��dt2 + dx2 + dy2 + dz2 + �B�r� − 1�dr2, �60�

which has the form of Eq. �2� with k=R0
−2�0. Thus, the Fermi metric for the observer ��t�

= �t ,0 ,0 ,0� is

ds2 = −
A�r����

A�0�
dt2 + gijdxidxj , �61�

where the spatial metric coefficients gij are given by Eq. �17� with a=1 /R0, and where r���2 is
given by Eq. �31�. The interval of values for � corresponding to 0�r�R is 0��
�R0 sin−1�R /R0�. The associated polar metric given by Corollary 2 is

ds2 = −
A�r����

A�0�
dt2 + d�2 +

sin2�a��
a2 �d�2 + sin2 �d
2� . �62�

The Gaussian curvature of the submanifold N generated by the Fermi coordinates t, �, given by
Eq. �34� is

K = −
1 − R0

2�

2R0
2�A�r����

cos�a�� . �63�

It is clear that K�0, and by Lemma 1, orthogonal spacelike geodesics with different Fermi time
coordinates remain temporally separated for ��� /2a. The restriction of � to smaller values,
noted above, is a requirement of Buchdahl-type inequalities.19,20
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IV. CONCLUDING REMARKS

Using the results of Sec. I, we have found Fermi coordinates in Cartesian and polar forms, for
natural observers in AdS4, dS4, the Einstein static universe, and the interior Schwarzschild solu-
tion with cosmological constant. A Jacobi field measuring the separation of coordinate spacelike
geodesics was described in terms of Gaussian curvature �or sectional curvature� of two-
dimensional submanifolds defined in terms of Fermi time and distance.

A breakdown of Fermi coordinates occurs when two or more spacelike geodesics, orthogonal
to the Fermi observer’s worldline ����, and originating from that worldline at two different proper
times, intersect at some space-time point. This occurs for dS4 at the horizon for the Fermi ob-
server. In the other examples considered here, the charts for Fermi coordinates are global. In the
case of the Einstein static universe, Fermi coordinates extend beyond the range of the coordinates
used to define the metric given by Eq. �51�. We note that it is not difficult to construct additional
examples of space-times with exact transformation formulas to Fermi coordinates �using Theo-
rems 1 and 2� by combining these examples so as to obtain Fermi coordinates for Schwarzschild-
�anti� de Sitter space with interior constant density fluid. The Fermi observer in those cases
remains for all proper times at the center of the fluid.
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