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Abstract. Uniqueness of Gibbs states and decay properties of averaged, two
point correlation functions are proved for many-body potentials in continuum
statistical mechanical models via Dobrushin uniqueness techniques.

Introduction

Gross [6], using Dobrushin uniqueness techniques [1], has given decay rates for
two point correlation functions in classical lattice models at high temperature or
low activity. This paper extends those techniques to the continuum case and gives
sufficient conditions on physically reasonable continuum potentials for the
analogous results to hold along with uniqueness of Gibbs states. The models
studied here are based on the same measurable space used by Preston [12] and
Ruelle [14] in their studies of Gibbs states. Our results rest on the assumption that
the set of Gibbs states for the models we consider is non-empty at high
temperature. This has been shown to be true in the case of pair potentials by
Ruelle [14].

Section 2 of the paper extends the results of Gross [6] to the continuum case
with necessary added hypotheses. Section 3 gives conditions on potentials for
these hypotheses to be satisfied.

Section 1. Notations and Definitions

Let A be a bounded Borel set in lRd. We take (X(Λ), BΛ) to denote the measurable
space of configurations of particles in A described in Preston [12], and XN(Λ)
denotes the configurations of cardinality N in Λ. Let Ω be the set of locally finite
subsets of lRd, representing configurations of particles in IRd. We will let ΩF C Ω
denote the subsets of finite cardinality in Ω and |s| denote the cardinality of seΩF. S
is the σ-algebra on Ω generated by sets of the form {seΩ:\snB\ = m}, where B runs
over bounded Borel sets of lRd and m runs over the set of non-negative integers.
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The measurable space (Ω, S) has a natural product space structure. For each
aeZd, let

dai-^rί<ai + iί=l2,...,d}. (1.1)

The cells {Λa} partition Rd. Let α 1 ? α 2 , α 3 , . . . be an enumeration of Έd and to
simplify notation let

Λi = Λaι. (1.2)

It is easy to verify (see Preston [12], Ruelle [14]) that (Ω,S) is isomorphic in a
natural way to

BΛ). (1.3)
i= 1

We will identify these two measurable spaces throughout.

Definition 1.1. For any configuration seΩ and any set /lClRd, we let sΛ = snΛ, and
we write s = sΛvs, where s = s\sΛ = sRdχΛ. We also denote sa = sΛa.

Note that if we express s = sav s, then the symbol " v " may be interpreted as
"union" or, with the product structure of Ω, as "Cartisean product".

We will consider many-body interactions F:ΩF->( — oo, oo] of the form

v(χ)= ί Σ ΦN(y) (i.4)
JV=2 yCx

\y\=N

for some potentials φN. We will assume throughout that Fis ^-measurable, stable,
and translation invariant.

Definition 1.2. For any xeX(Λ), seΩ such that snΛ = ΰ and bounded Borel set
ΛDΛ,

VΛ(x\snΛ)= Σ X ^(y) . (1,5)
iV=2 yCxvs

vnxΦ 0

We define the sets R.%, R^, R^, and RΛ in complete analogy to Preston [12,
p. 97], along with the map VΛ(x\s):J?°->(— oo, oo] given by

Definition 1.3. For seΩ such that snΛ = 0,

VΛ(x\s)=lim VΛ(x\snλ). (1.6)

Definition 1.4. For n=l ,2 ,3 , . . . , let Λc be the projection of mi-dimensional
Lebesque measure onto XN(Λ), so that dnx assigns total mass \Λ\n to XN{Λ), where
\Λ\ is the Lebesque measure of yl. The measure d°x assigns mass 1 toX0(/l). Define
the measure vΛ(dx) on X(Λ) by

oo n

vΛ(dx)= Σ ~jdnx, where z is chemical activity. (1.7)
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Recall from Definition 1.1 that seΩ can be written as s = sΛvs. For any
xeX(Λ) we can form the configuration xvs. This is just the configuration
obtained from s by changing the coordinates of s in A to x.

Definition 1.5. Corresponding to a potential Fand each seRΛ, we define a measure
μA( \s)onX(Λ)by

^ ) - g V n " ^ ' (L8)

where β is inverse temperature and ZΛ(s) makes μΛ( (5) a probability measure.
We note that 1 ̂ Zn{s)< 00.

Definition 1.6. For a bounded Borel set τlClRd and a bounded S-measurable real-
valued function / on Ω define

f(xvs)μΛ(dx\s) if

j otherw.se.

We also let τα denote τΛa.

Definition 1.7. A probability measure σ on (£2, S) is a Gibbs state for the interaction
V if and only if

σ(τΛf) = σ(f) (1.10)

for every S-measurable bounded function / on Ω, and every bounded Borel set

We introduce next an S-measurable set UcΩ, a vector space of functions F(U)
on (7, and a linear map T:F(U)-+F(U), defined in analogy with Gross [6].

00

Definition 1.8. Let U= f] RΛ., where A{ is the cell defined by (1.1) and (1.2).
i 1
f]

i = 1
We point out that σ(U) = l for any Gibbs state σ, since l=σ(l) = σ(τΛ.l)

Definition 1.9. A function /:t/->lR is a cylinder function on U if there exists a
bounded set £ClRd such that f(s) = f{snB) for all se U.

Definition 1.10. The space F(L0 is the completion in the infinity norm (H^) of
{/:t/->ΊR|/is an .S-measurable cylinder function and |/loo<oo}.

We use S to denote both the σ-algebra on Ω and the induced σ-algebra in
UCΩ.

We point out that the operators τΛ as defined above act only on functions on
Ω. However, with a slight modification τΛ can be defined on F(U). Thus to every
feF(U) we associate the function gf on Ω defined as follows,

jf(s) if seU
gf(s)=\θ if , e f l \ l 7 . ( U 1 )

The function τΛgf is well defined and for feF{U), we define

τΛf(s) = τΛgf(s) for set/ . (1.12)
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Only those potentials Ffor which τΛ :F(U)-*F(U) for every bounded Borel set
ylClRd will be considered from this point on. Conditions guaranteeing this
property will be given later.

To simplify notation, let τ ^ τ ^ . , z = l,2,3,.... As in Gross [6,7]

TJ=\im τnτn+1 ...τn+ f
p-* oo

exists for all feF(U). We let T= Tv Note that ITJ^ = 1 for all n.
In what follows we will have need of a metric ρ on X(Λa) for each aeZd.
Let sa and ta be two non-empty configurations in Λa. Order the points in each

configuration so that sa = (x1, ...,xw) and ta = (y1, . . . ,/"), xι,yίeΛa. Now define a
metric ρ1 on X(Λa) by

) = O, (1.13)

( M = n, (1.14)

) = ρί(t,s)=

min £ djgίx1', y)q{i), if m = n,

min
(1.15)

Remark l.ί. The triangle inequality holds for dimensions 1, 2, 3, and 4 with our
present definition of ρv In the case of higher dimensions d and/or cells Λa with
sides of length Aφl, we can modify the definition of ρ1 to obtain a metric as
follows. Replace "n" in (1.14) by "Crc" and " w - n " in (1.15) by "C(m- n)", where C
is any constant with C ̂  λ |/d/2.

Definition 1.11. Let ρ = ρx +ρ2? where ρ 2 is the discrete metric on X(Λa).
We now use the metric ρ to define norms on F(U). For an 5-measurable, real

valued function f on U and aeΈd, define

δJJ) = sup\^f f^:s,teU, sb = tb for all beZd except when fe = α}.(1.16)

Let 3?(y) denote the set of real S-measurable functions / with δa(f)<co for
each aeZd. This set JS?([/) is a linear space with semi-norms δa(f\ the intersection
of whose kernels, is the set of constant functions on U. The quotient space, 5£(U)
modulo the constant functions, is a linear space with induced semi-norms which
we also call δa(f), aeZd.

Let μa be a real signed measure on X(Λa) such that

j
X(Λ

\ife&(U), then

ί | / ( x v s ) l k l ( ^ ί \f(xvs)-f(m\μa\(dx) + 1/(0)1 IIμaIIvar

ύδJJ) J ρ(

<oo,

where ||μ f l | |var is the total variation of μa. Thus j f(xvs)μa(dx) is well defined.
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Let ^a{U) be the subspace of J?(U) consisting of functions which depend only
on configurations in Λa. If μa[X(Λa)~]=0, then μa is a linear functional on JS?β(l/)
modulo the constant functions. We let | |μj f l be the dual space norm of μa, that is,

llμj"= sup \μjj)\.

Observe that | |μjα<oo because

[ f(x)μa{dx)Z J f(x)-f(0)μa(dx)
Λa) X(Λa)

X(Λa)

(1.17)

J
We see from this computation that

\\μa\\aύ J
X(Λa)

(1.18)

for a real signed measure μa on Z(v4fl) with total mass zero.

Definition 1.12. For a potential Tζ define

where |s) = j

>teU a n d s = ί except atα

is given by (23.2).

Let d{-, -) be a semi-metric on Zd. We end this section with the following
notation.

Definition 1.13.
fo, and βa>a = 0 for all α,

) = {/eF((7):||/||α<oo for every aeZd}.

Remark 1.2. With the translation invariance of the potential V, it is easy to check

Section 2. Theorems on Decay

In this section we outline the continuum extension of Gross' Theorems 1 and 2 in
[6].

With the definitions just given, it is easily checked that
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holds for feF(U). From this Gross' Lemma 3.1 in [6] and his Corollary 3.2 can be
expressed, for the continuum case as

Corollary 2.1. / / α < l , then for allfeL(U) and all aeZd, | |7JΠ|β^α||/Hβ.
The proof of Corollary 3.3 in [6] does not hold under the present circum-

stances. An alternative proof adapted from unpublished work of Gross is given
here.

Lemma 2.1. For every geF(U) and every s, te U,

Proof. For every ε^O there exists a cylinder function gN such that \gN — g\O0<ε and
such that gN(s) depends only on the coordinates of 5 in the cubes Λv ...,ΛN, for

N

every sell. Define A — (J Λk and sf = sΛ v tRd/Λ. Then

gN(s') = gN(s) so that \g(s)-g(sf)\S\g(s)

and hence \g(s) — g{sf)\^2ε. Thus

Σδk(g)ρ(sf

k,tk),
fc=l

where the last inequality follows from the triangle inequality and the definition of
δk(g). But now since s'k = sk for k=ί,...,N we can write

\g(s)-g(t)\S2ε+ £ δk(g)ρ(sk,tk)

Since this inequality holds for all ε>0, we get

This completes the proof.

Theorem 2.1. For a given potential V, suppose that α< 1. Then there is at most one
probability measure σ on (Ω, S) such that:

fc> 0)] = M for some positive real number M

and all integers k §: 1, (2.2)
σ(τkf) = σ(f)for βM bounded S-measurable functions f

on Ω and all integers /c^ 1. (2.3)

Furthermore, if such a probability measure σ exists, then

σ ( / ) . (2.4)
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Proof. The semi-metric d( , ) plays no role in the proof of this theorem, since if
α < 1 for any semi-metric d( , ) not identically zero, then α < 1 for the semi-metric
identically equal to zero. Without loss of generality, then, we will take d( , •) = 0 in
this proof. In this case | |/ | |α has no dependence on aeZd and we will write
11/11 = Σ δb(f) F r o m Corollary 2.1 we have,

beZd

l i m | | T " / | | = 0 , for feL(U). (2.5)

Now let σ be a probability measure on Ω with the property (2.3). Then
σ(τkf) = σ(f) for feL(U)cF(U). Since Tf is well defined in this case, it follows that

σ(Tf) = σ(f) and σ(Tnf) = σ(f) for n= 1,2,3,.... We can therefore write

σ(f) = σ(TJ) = σlΓf- (Tnf) (0)] + (Γf) (0).

By Lemma 2.1

Σ
fc=l

By (2.2) we can write

It follows from (2.5) and (2.6) that lim (Tn/)(0) exists and equals σ(f) for any
n —> oo

feL(U). Now L(U) contains all bounded cylinder functions on U. Since
σ(Ω\U) = 0, a standard argument from measure theory shows that σ is uniquely
determined on (Ω, S). This completes the proof.

We now state the following modified lemma and theorems in analogy to [6].

Lemma 2.2. 7/ f f f ρ(x,y)μk(dy\s)ί [ί
ιμk(dy\s)SC for some real number C and

X(Λk) [X(Λk)

every seU and every integer k^. 1, then

\T(fg)- Γ(/)Γ(g)L 5ΞC Σ UTn+1f)δn(Tn+ίg) (2.6)
n = 1

forallf,geL(U).

Theorem 2.2. Let σ be a probability measure on Ω such that o{τkf) = σ(f) for every
bounded S-measurable function f on Ω and every integer /c^l. Assume that the
following conditions hold:

ί f ί ρ(x,y)μk(dy\s)]2μk(dxmC
X(Λk) [X(Λk) \

for some real number C, all fe^l, and all seU, (2.7)
σEί?(Sfc5 0)] ύM for some real number M and all k^. 1, (2.8)

α < l . (2.9)

Then σ is unique and

for all a,beZd andfgeL(U).
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Definition 2.1. Let g be a real valued function on I/. We define ga{s) = g(s{a))9 where

Theorem 2.3. Assume that the semi-metric d( ,-) is translation invariant on Zd. If
α(α + l ) < l , with the same conditions as in Theorem 2.2, then for any functions
fgeL(U) and any celt,

Σ kί/^-^/W^Jk^^^CII/IIJI^Hoίl-^-Hl-α-α2)-1, (2.10)
aeTLd

where the subscript 0 on \\g\\0 refers to the origin in TLd.

The proofs of Lemma 2.2, Theorem 2.2 and Theorem 2.3 are similar to the
proofs of the corresponding results in [6] with straightforward modifications
which follow from the definitions given in the previous section.

Section 3. Bounds

In this section we describe a class of potentials whose Gibbs states satisfy the
hypotheses of the theorems of the preceding section in the case of high temperature
or low activity.

Much of what follows is based upon inequality (1.18), which for a given
potential Fcan be expressed as

\s)-μb( \t)\\bZ J ρ(x,&)
X(Λb)

exp(-βVb(x\s)) cxp(-βVb(x\t))

Zb{s) Zb(t)
vb(dx), (3.1)

where we have abbreviated and will continue to abreviate Vb(x\s) for VΛh(x\s\ vb for
vΛb, and Zb(s) for ZΛb.

We begin by listing two conditions to which we will refer several times later.

Condition 3.1. There exist r o ^ 0 , a positive decreasing function ψ(r) on (r0, oo), and
constants KN which depend on N9 such that :

, where A = {aeZd:dE(Λb,Λa)>r0},
b aeA

b)φN(x1,...,xNMKNψ{r) for r= max ldjx?,x*β>ro,

c) \(φN(x\...,xN)-φN(y\...,yN)\<KNψ(r)Qi(x,y), far

r = min {max \_dE{x\ xJ)], max [dE(y\ y7)]} > r0, where
\ Uj i,j J

x = (x1,...,x2V), y = (y\...,yN).

Before stating Condition 3.2 we make the following definition.
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Definition 3.1.

Zb(λ,s,i)

and

Zb(λ,s,t)= j Qxp(-β[λVb(x\s) + ϊ
X(Λb)

When s,teU and beZd are fixed, we will write

Condition 3.2. For k>0 given, there exists a function M(z,β) decreasing in each
argument z and β such that

J \x\kdμs^zM{z,β) for all O ^ ^ l ,
X(Λb)

a,beZd, and s, te U which differ only on Λa

Remark 3.1. It is easy to show that if there exists a B^O such that Vb(x\s)^ —B\x\
for every se U, xeX(Λb\ and beΈd, then Condition 3.2 is satisfied, for k = 2 with
M(z,β) = ze2βB + eβB. Thus, any positive potential satisfies Condition 3.2 (with

Theorem 3.1. Suppose that a potential V satisfies part a) and b) ofCondiction 3.1 and
the following three conditions:

φNo is hard core for some N0^2, (3.2)

φN(x1,..., xN) = 0 whenever max dE(x\ xj) > Ro
ij

for some given Ro > 0, for N ^ 3, (3.3)

-co. (3.4)

Then V satisfies Condition 3.2, with k — 2.

Proof We show that the hypothesis of Remark 3.1 is satisfied. Let Cn denote the
cube of side 2n whose center is beΈd. By (3.3) there exists a positive integer n such
that

Vb(x\s)=Vb(x\snCn)+ Σ Σ ΦiiM, (3.5)
ΛkcCn xfex

sjeΛk

where Cc

n denotes the complement in IRd of Cn, and the sum ^ is taken in
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lexicographic order with respect to keΈd. We can write

\x\ + \snCn\

Vb(x\snCn)=V(x)+ Σ Σ ΦN(y) (3-6)
N=2 yCxvs

yccn

\y\=N
ynsnx Φ 0

for xeX(Λb). Recall from Sect. 1 that we are assuming that Fis stable. Thus

VM^-BJxl (3.7)

for some Bί ^ 0 and all xeΩF. By the definition of U and since φNo is hard core,
\snCn\ is bounded for all seU. It follows that there exists an integer K>0 such
that if the double sum, DS, on the right side of (3.6) is finite, then |x v (snCn)\ < K.
Thus by (3.4) there exists B2>0 such that D S > -B2 for all seU and xeX(Λb).
Combining this with (3.6) and (3.7) gives

V^snC^-B^-B,. (3.8)

Now by (3.2) and the definition of (7, there exists M > 0 such that \snΛk\<M
for all fe^ 1 and 56 U. Thus going back to (3.5), we can write

Σ Σ Φ2(x\ή^-\x\M Σ K2ψlΛb,ΛJ]9
ΛkCCZ x{ex ΛkCCn

sJeΛk

by parts a) and b) of Condition 3.1. Combining this with (3.8) and (3.5) gives

Vb(xm-B3\x\-Bί

for some J33>0. Hence there exists a B>0 such that Vb(x\s)^ —B\x\ for all seU
and xeX(Λb). The conclusion now follows from Remark 3.1. This completes the
proof.

The next two lemmas deal with the hypotheses (2.7) and (2.8) for Theorems 2.2
and 2.3.

Lemma 3.1. Let V satisfy Condition 3.2. with fc= 1 and let σ be a Gibbs state for V.
Then

for all SE U and fc^ 1. Hence if z and β are bounded above by some constant K>0,
then there exists a positive number M such that for all fe^l,

Proof By Condition 3.2 and since

X(Λk)

Thus,

β). (3.9)
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Since σ is a Gibbs state, we have σ(τk/) = σ(/) for all bounded S-measurable
functions / A straightforward application of the monotone convergence theorem
shows that

Now combining this with (3.9) gives the desired conclusion. This completes the
proof.

Lemma 3.2. Let K>0 be given and suppose that Vsatisfies Condition 3.2 with k= 1,
and σ is a Gibbs state for V. Ifz, β<K, then there exists a constant C such that for all
fc^l and seU,

j [ J ρ(x9y)μk{dy\s)2μk(dx\sUC. (3.10)
X(Λk) [X(Λk)

Proof By the triangle inequality for the metric ρ( , •),

Hence

by Condition 3.2. Thus [ j ρ(x, y)μk(dx\s)}2 is bounded by a quadratic polynomial
J

J ρ(x,y)μk(dym2\x\+ j 2 | / X p ( ~ y | g ) ) vjdy)
X(Λk) X{Λk)

 Z α k W

in |x| whose coefficients are decreasing functions of z and β. Since z,β<K,a second
application Condition 3.2 now yields (3.10) for some constant C. This completes
the proof.

In Sect. 1 we restricted our attention to those potentials for which
τΛ:F(U)->F(U), for every bounded Borel set ΛcΉtd. We now give conditions on
the potential V so that this is true.

Theorem 3.2. If V has finite range, then τΛ:F(U)->F(U)for every bounded Borel set

Proof. Let feF(U) and let {fn} be a sequence of cylinder functions in JF((7)
converging uniformly to / Let Cm be the hypercube of side 2m centered at the
origin in lRd. We will construct a sequence {gn} of cylinder functions in F(U)
converging to τΛf thus showing that τΛfeF(U). Define

9«(s)= J Λfrvs) v^dx)

and

gn\s) = J j ( x v s ) ————— v^αx).
X(/l) ^ y l ( S n ^ n )

Clearly gn is an ^-measurable cylinder function in F(U). By the triangle inequality,

exp(-βVΛ(x\s)) exp(-βVΛ(x\snCn))ZΛ(s) ZΛ(snCn)
£ I/loo sup f

seϋ γ(A\
( > " " (3.11)



238 D. Klein

But since Fhas finite range, there exists a positive integer n0 such that for n^n0,

VΛ(x\s) = VΛ(x\snCn) for all xeX(Λ)

and seU. Thus for n^n0 (3.11) becomes

and since /„-•/, we have that gn-*τΛf. This completes the proof.
The proof of the following lemma is based on the proof of the lemma given in

Simon [16].

Lemma 3.3. Let /lClRd be any bounded Borel set and letfeF(U). If s, te U and

{xeX(Λ): VΛ(x\s) <π} = {xeX(Λ): VΛ(x\t) < oo},

then

exp(-βVΛ(x\s)) exp(-βVΛ(x\ΐ)) _
ί /(xvS)

ZΛ(s) ZΛ(t)

^\f\Jsup{\VΛ(x\s)-VΛ(x\t)\:xeX(Λ)nU}. (3.12)

Theorem 3.3. Let V satisfy the following conditions :
a) φN(xί,...,xN) = 0 whenever msLxdE(x\xj)>R0, for some given R and all

ίj

b) V satisfies parts a) and b) of Condition 3.1,
c) φNo is hard-core for some No ̂  2.
Then τΛ:F(U)^F(U)for all bounded Borel sets ΛcW1.

Proof. The proof is identical to the proof of Theorem 3.2 up to inequality (3.11).
We proceed from there.

By the definition of R^ we can choose n so large that

{xeX(Λ):VΛ(x\snCn)<oo} = {xeX(Λ):VΛ{x\s)<oo}.

We can thus apply Lemma 3.3 to get

\^Λf-9nL^β\fL sup{|^(x|snCJ- VΛ{x\s)\ :xeX(Λ)nU,se U} + I/-/.L .

(3.13)

Now for n sufficiently large, we can write

\VΛ(x\s)-VΛ(x\snCn)\= Σ Σ Σ 02(*W>
ΛkCCn x*ex sJesnΛu

where Λk, as usual, refers to the cells with side of length one pardoning lRd, and Cc

n

denotes the complement in lRd of Cn. By Condition 3.1, for n sufficiently large,

\VA(x\s)-VΛ(x\snCM Σ Σ Σ K2xpidE{AAk)-\.
ΛkC Cn xιex s >esnΛk
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Now by the definition of U, and since φNo is hard-core, there is an upper bound on
the cardinality of xCΛ and snΛkCΛk because A and Λk are bounded sets. Thus
there is some constant K > 0 such that

\VΛ(x\s)-VΛ(x\snCn)\^K £
ΛkcCΪ

But by Condition 3.1 and the boundedness of A,
ΛkcC°

approaches zero as n goes to infinity, independent of x and s in I/. Hence by (3.13)
and since \f—/J^ converges to zero as n approaches infinity, we have

and hence τΛgeF(U). This completes the proof.
The remaining theorems in this section give bounds on α.
We state without proof the following easy lemma.

Lemma 3.4. Let Vsatisfy Condition 3.2 with k=lor2. IfAa and Ab are distinct, and
s and t are any two configurations in U which differ only on Aφ then

J
XUb)

exp(- βVb(x\s)) exp(-βVb(x\ή)

Zb(s) Zb(t)
vb(dx)^4zM(z,β). (3.14)

The proof of the next lemma is similar to the proof of Lemma 3.3.

Lemma 3.5. Let s and t be any two configurations in U. If {xe X(Ab): Vb(x\s)< oc}
= {xeX(Λb):Vb(x\ΐ)<ao}, then

X(Λb)
Zb(t)

vb(dx)

f ρ(xMVb(x\s)-Vb(x\t)\dμλdλ. (3.15)
0 X(Λb)

In the case that V is a pair potential, there exists an even function

φ:lRd^(— oo, + oo] such that V(x)= £ φ{x1 — ^) for xeΩF. We use this notation

in the following lemma.

Lemma 3.6. If Vis a pair potential which satisfies Conditions 3.ί and 3.2 with fc = 2,
and ifdE(Aa, Ab) = r>r0 and s and t are any two configurations in U which differ only
on Aa, then

ρa^4βzM(z,β)ψ(r). (3.16)

Proof Let sa and ta have coordinates in lRd given by sα = (51,s2, ...,s") and
ta = (t1t2,...,tm). Assume that m^n and that the coordinates of sa and ta are
ordered so that

ΣdE(s\ti) + m-n = ρ1(sa,ta). (3.17)
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Let the coordinates of xeX(Λb) be given by x = (x1,x2, ...,xk). By the de-
finitions of T ,̂(x|s) and T ,̂(x|ί) and since s = t except on Λa, we have

\vb(x\s)-vb(x\ή\s Σ Σ \Φ(^-ή-ΦW-ήi
ί = l 7 = 1

k m

+ Σ Σ \Φ(χι-tj)\
i=lj=n+l

n

^kψ(r) Σ dE(sJ, tj) + kψ(r)(m-ή), (3.18)

where in the third line, we have used Condition 3.1. By (3.17) we can write

\Vb(x\s)- Vb{x\t)\ SMvMeiis* U (3-19)

Now combining (3.19) with (3.15) we get

cxp(-βVb(x\s)) exV(-βVb(x\ΐ))
ί

X(Λb)
Zb(s) Zb(t)

vAdx)

^Iβψiήρ^tj] j ρ(x,0)\x\dμλdλ. (3.20)
0 X(Ab)

Since ρ(x,0) = |x| + l if xΦ0, ρ(x,0)\x\ = \x\2+ \x\^2\x\2. Thus by Condition 3.2,
with k = 2

j ρ(x, I

and combining this with (3.1) gives us

ρatb£4βzM(z,β)φ(r).

This completes the proof.

Theorem 3.4. Let K>0 and η>0 be given. If V is a pair potential and satisfies
Conditions 3.1 and 3.2 with k = 2, and if z,β<K, then there exists Ck>0 such that if
z<Ck, then oc<η for β or z sufficiently small.

Proof. From the definition of α it follows that

a S sup Σ eiU> b)βa, b + sup Σ ^ X t. (3-21)
b aeA ° aeAc

= {aeZd:dE(Λa,Λb)>r0} and Ac is the complement in TLά of A By (3.16) the
first sum in (3.21) is bounded by

4βzM(z, β) sup Σ ^ b)ΨίdE(Λa, Ahy]. (3.22)
b aeA

By Condition 3.1 this can be made arbitrarily small by choosing z or β sufficiently
small.
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By (3.1) and (3.14) and since ρ(sa,ta)^ί for sfl + ία, the second sum in (3.21) is
less than η for z less than some constant Ck. Thus by choosing z<Ck and z or β
sufficiently small, a<η. This completes the proof.

For the remaining results in this section, V need not be a pair potential.

Theorem 3.5. Let V be finite ranged and satisfy Condition 3.2 with k= 1, and letη>0
be given. There exists z0 > 0 such that for z<zo,a<η. The number z0 depends on the
range of V.

Proof By (3.1) and (3.14) ρabS4zM(zJ) for all a,beZd. But for any given
ρaίb = 0 for all but finitely many beZd, because Fhas finite range. Thus α is a finite
sum of terms of the form ed(<a'b)ρa b and each of these terms is bounded by
4zed{a'b)M{z,β). Hence by choosing z less than some z0 we can make a<η. This
completes the proof.

Lemma 3.7. Let Vsatisfy Conditions 3Λ and 3.2 with fc= 1, and let s and t be any two
configurations in U which differ only on Λa. If dE(Λa, Λb) > r0 and φNo is hard-core for
some No ^ 2, then

i , (3.23)

where N1 is an integer which depends only on φNo.

Proof Let sa and ta have coordinates in lRd given by sa = (s1, ...,sn) and
ta = (t1, ..., tm). Assume that m ̂  n and that the coordinates of sa and ta are ordered
so that

tdE(s\ti) + m-n = Ql(sa,ta). (3.24)
i = l

In what follows we will require xeXk(Λb)nU. Let the coordinates of x be given
by x = (xί, ...,xk). By hypothesis s and t differ only in Λa. This allows us to write
Vb(x\s)—Vb(x\t) in an explicit form. To simplify notation, we let min denote
min{|x|, JV— 1} in the following equation and throughout the rest of this proof.

|x| +n min

vb(x\s)-vb(x\t)= Σ ΣΣΣΦN(^-,χip,sjp+1,...,sjN)
N = 2 p=l Ip Jn

-φN(xii,...,xip,tjp + i,...,tJN)

+ XΣ Σ ΣΣΦN(^-^iP,tjp+ι,-,tjN), (3.25)
N = 2 p = 1 Ip J'm

where ^ denotes a sum over all subsets {iv...,ip}, with cardinality p, of the

integers 1,..., |x|, Σ denotes a sum over all subsets {jp+1, .-.JN}, with cardinality
j

N — p, of the integers 1, ...,n, and ^ denotes a sum over all subsets {jp+ί,... J N }
J'm
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with cardinality N — poϊ the integers 1, ...,m, such that jk>n for at least one k
between p + 1 and N. By Condition 3.1

|JC| + n min

\vb(x\s)-vb(x\ή\ϊ Σ Σ ΣΣW)[^ t .> ί M.) + " + ^ t i » ) ]

| x | + m min

+ Σ Σ ΣΣ^wVW, (3.26)
J V = 2 J ? = l Ip J'm

where r = dE(Λa, Λb). Let us examine the expression

+ I , t i + 1 ) + - +dE(sjN,tJNK (3.27)

in (3.26). For each k=l,...,n, the term dE(sk,tk) occurs times in
\p J\N-p-l

(3.27). Thus we can replace (3.27) by

-P-lidEM- (3 28)

We can also bound the expression

in (3.26) by M)( ™ \κΉ\p{r). Combining this with (3.26) and (3.28) gives
\p J\N-pJ

l + w min /i ι\ / γ

Σ * Σ L
Γ « l l ^ l + w min

I Vb(x\s)- Vb(x\ή\ ϊ ψ(r) Σ dE(sk, tk)\Σ *N Σ
ίk=l ]N=2 p = l

(3-29)

The coefficient m — n is zero when m = π and at least one otherwise, so that
inequality in (3.29) is maintained. Now let

|x| + n min /ι ι\ / i

δHMH Σ ^ Σ 7 L /
and

| x |+m m

δ%D= Σ κ»
N=2 p=

Recall that x, s,teU and that Λa, Λb are bounded subsets of Rd. By the definitions
of U and R^ and since φNo is hard-core for some No^2, it follows that each of |x|,
\sb\, and |ίb | is bounded by some positive integer M. From this it follows that for
some positive integer Nv

(3.30)
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Combining (3.30) with (3.24) and (3.29) gives

\Vb{x\s)- Vb(x\t)\ίNιΨ(r)Qi(Sa,0, (3.31)

ίoτ all xeX(Λb)nU.
Now since d(Λα, Λb) > r0 and s and ί are identical except on Λα, we can apply

Lemma 3.5. Thus combining (3.31) with (3.15) gives

exp(- βVb(x\s)) exp(-βVb(x)ή)

Zb(s) Zb(t)

ta) I j ρ{x, 0)dμλdλ.

ί

0 X{Λb)

Since ρ(x, 0) ̂  2|x| we can apply Condition 3.2 to get

^ exp(-βVb(x\s)) exp(-βVb(x\ή)

vb(dx)

ί i
X(Λb)

vb(dx) ^ 4NJzM(z, β)ρi(sα, tα)ψ(r).
Zb(s) Zb(t)

Combining this with (3.1) gives

Qa S4N1βzA

This completes the proof.

Corollary 3.1. With the same conditions as in Lemma 3.7, except that V does not
satisfy part c) of Condition 3.1 we have

ρa>b^4N1βzM(z,β)ψ(r), (3.32)

where N1 is a positive integer which depends only on φNo.

Proof. The proof begins exactly as in the proof of Lemma 3.7 up to (3.26). Now
replace (3.26) with

\vb(x\s)-vb(x\m Σ ΣΣΣ2**v(r)+ Σ Σ
N=2 p=l Ip Jn N = 2 p=l Ip J'm

Noting the remarks preceding (3.30) that \x\, \sb\, and \tb\ are bounded by some
integer K, we can conclude that |Fb(x|S)- Vb(x\t)\^Nίψ(r) for all xeX(Λb)nU and
some positive integer N1. The argument now proceeds as in the final paragraph of
the proof of Lemma 3.7. This completes the proof.

Remark 3.2. We note in comparing Lemma 3.7 with Corollary 3.1 that N1 is
generally larger than Nv

We conclude this section with a theorem for many-body potentials whose
proof is exactly analogous to the proof of Theorem 3.4.

Theorem 3.6. Suppose that V satisfies Condition 3.2 with k = l and parts a) and b) of
Condition 3. /, and that φNo is hard-core for some No ^ 2. Let K>0 and η>0be given.
Ifz,β<K then there exists Ck>0 such that if z<Ck, then a<ηfor β or z sufficiently
small.
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Section 4. Summary

In Sect. 3 we found conditions on a potential Vso that: a) τΛ:F(U)-+F{U), b) any
Gibbs state for V (if one exists) satisfies (2.8), and c) V satisfies (2.7) and (2.9), for
high temperature or low activity. Let H denote the set of all stable, ^-measurable,
translation-invariant potentials which satisfy a), b), and c) above. The results of
Sect. 2 give:

Theorem 4.1. Let d(-, ) be a translation invariant semi-metric on ZdClRd, and let
K1 > 0 be given. If VeH and a Gibbs state σ exists for V when z,β<Kv then there
exists K2>0 such that if z<K2 and z or β is sufficiently small, the following
conditions hold:

σ is unique, (4.1)

\σ(fg)-σ(f)σ(g)\SCe-d^\\fUg\\b(ί-^r2(ί-^r1 (4.2)

for some constant C, all a,beΈd, and all f,geL(U),

Σ |σ</ββ)-σ(/)σ(srJeΛtβ c ) ^C| |/ | | c | | f l f | | 0 ( l-α)- 1 ( l-α-α 2 )- 1 (4.3)
d

for the same constant C as in (4.2), all ceTLd, and fgeL(U).

Remark 4.Ϊ. We have not shown the existence of the Gibbs state σ. Ruelle [14] (see
also Preston [12]) has proven existence for a wide class of pair potentials, though
we know of no such result for many-body potentials.

Remark 4.2. The restriction that /, geL(U) can be somewhat relaxes. For example,
let Na(s) = \snAa\ for any aeTLd and se U. The function Na(s) gives the number of
particles in the configuration s which lie in the cube Aa. Since Na is unbounded,
NaφL(U). However, we can apply (4.2) and (4.3) in this case in the following
manner. Let

fa( Λ _ ίN°(s) if \snAa\ S n
\n otherwise.

It is not hard to check that f^L(U) and that | |/n

f l | | f l^l for n^l. Then by the
monotone convergence theorem we have from (4.2),

\σ(NaNb)-σ(Na)σ{Nb)\ ^ Cβ"d ( α 'b )(l - α)" \1 - α 2 ) " 1 .

With 0 referring to the origin in Έd, the monotone convergence theorem together
with Fatou's lemma and (4.3) give

\σ(NcN°a)-σ(Nc)σ(N°a)\ed{a>c)^C(l-α)"\1 - α - α
2 ) " 1

In a similar fashion we can apply (4.2) and (4.3) to functions of the type
NΛ(s) = \sr\Λ\, where A is a bounded Borel set in Rd. For a clear discussion of the
physical significance of the averaged correlations σ(NΛNΛ) — σ(NΛ)σ(NΛ) and how
they are related to the more standard "non-averaged" correlation functions, we
refer the reader to Minlos [11].
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Remark 4.3. Comparing results of Sect. 3 yields the following sufficient condition
for VeH. A stable, translation invariant, S-measurable potential Fis an element of
H if each of the following conditions holds:

a) V satisfies Condition 3.2 with k = 2 and parts a) and b) of Condition 3.1 given
in Sect. 3.

b) Either V has finite range or V satisfies all of the following:

1) φjqix1, ...,xN) = 0 whenever maxdE(x\xj)>R0for some given R0>0 and all

2) φNo is hard-core for some No ^ 2.

We make a final observation about the above remark. The condition that φNo

is hard-core for some JV0 ^ 2 can be considered in the following way. The main
technical problem in establishing conditions for VeH has been in dealing with the
low probability event that some huge number of particles cluster in some small
region of space. The methods of proof in this paper do not seem to allow for
exploitation of the small probability of this event. However, in dealing with a
potential V of the form M

Hχ)= Σ Σ ΦN(y)9
N=2 ycx

\y\=N

where M is finite, we can add to V the N0-body potential defined by

{ oo if max dE(x\ xj) < Ro

0 otherLe, ( 4 4 )

where Ro is very small and No is large. This has the effect of assigning zero
probability to the event that No or more particles accumulate in a spherical region
of space of diameter Ro. Thus, for example, in dealing with a non-hard-core pair
potential V, we could add φNo to F a s defined in (4.4) with JV0 = 102 3 and R0 = l
angstrom. In this fashion the physically unreasonable event that 102 3 or more
particles accumulate in such a small region of space is assigned zero probability,
even though any smaller number of particles has some non-zero probability of
clustering in any region of space. We could, in this manner, apply the results of this
paper to a pair potential VφH, but satisfying Condition 3.2 and parts a) and b) of
Condition 3.1. The potential V modified as above is then an element of H. (We
point out, however, that some non-hard-core pair potentials are elements of H
without such modifications.)

A drawback to this approach is that the larger the number ΛΓ0, for a fixed value
of Ro, the smaller the values of z and β must be (with the present techniques
employed in this paper) to guarantee uniqueness of the Gibbs state, and the decay
of correlations. This problem should be somewhat mitigated if, in all of the
preceding analysis, Zd is replaced by λZd for some small λ>0, and the function ψ(r)
of Condition 3.1 is required to fall of very rapidly (depending on No and JR0) as r
approaches infinity.
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