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Abstract.  We prove some  inequalities for two-point correlations of Ising antiferromagnets and
derive inequalities relating correlations of ferromagnets to correlations of antiferromagnets whose
interactions and field strengths have equal magnitudes. The proofs are based on the method of duplicate spin
variables introduced by J. Percus and used by several authors (Refs. 3-8) to derive correlation inequalities for
Ising ferromagnets.

1. Introduction

Correlation inequalities have played an important role in statistical mechanics,

especially as applied to ferromagnetic Hamiltonians.  It is the purpose of this note to apply

 known techniques to obtain some correlation inequalities for antiferromagnets.

Let H1(σ) be a ferromagnetic Hamiltonian for finite volume Λ in Zd given by
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 and H(x) a corresponding antiferromagnetic Hamiltonian for Λ given by
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where the first sums in (1.1) and (1.2) are over all distinct pairs (i,j) in Λ, { x
j
} and { σ

j
}

represent boundary configurations, and Kij = (-1)|i|+|j| Jij.  Here |i| = | (i1, i2,...,id) | =

|i1|+ ...+|id| and xi, σi = ±1, and Jij ≤ 0.  We will consider (1.2) with the change of variable

xi = (-1)|i| si and denote the resulting Hamiltonian by H2(s) so that
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where ki = (-1)|i| h. We will denote expectations with respect to the finite volume Gibbs

states corresponding to (1.1) and (1.3) by 〈 . 〉F and 〈 . 〉A  respectively; boundary

configurations will always be assumed fixed.

In Section 2 of this paper we derive Lebowitz-type inequalities3 which allow the

comparison of correlations corresponding to Hamiltonians (1.1) and (1.3).  When h=0

(1.1) and (1.3) are equal and have equal correlation functions.  When h≠0 H1(σ) has a

unique phase for all temperatures, which implies decay properties of truncated correlation

functions for H1(σ).  Our inequalities are valid for all h, even though h≠0 includes both

single and multiple phase regions for H(x) (see, for example, Ref. 1).

In Section 3 we prove some monotonicity properties for two-point correlations

corresponding to (1.3).  The method of proof is based on the techniques used by Messager

and Miracle-Sole4 to derive, among other things, monotonicity  properties for correlations

corresponding to nearest neighbor ferromagnetic interactions.  We make some

modifications of their methods to accommodate nonnearest neighbor interactions and

nonpositive external fields {ki}.  We allow our Hamiltonians to have infinite range, but our

inequalities are weaker than those of Ref. 4 for the ferromagnetic case.  We note that

Hegerfeldt2 generalized some of the monotonicity results in Ref. 4 for ferromagnetic

correlations, but the methods of Ref. 2 do not seem to extend readily to antiferromagnetic

interactions.



3

2. Comparison of Correlations

Let two Ising spin Hamiltonians Ha(σ) and Hb(s) for volume Λ in Zd be given by
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where Jij ≤ 0 and σi, si = ±1 for all i, j ∈ Zd.  The external field variables hi and ki are of the
form
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where { σ
j
} and { s

j
} may be interpreted as fixed boundary configurations.  Correlation

functions, for a finite set B in Zd, with respect to the finite volume Gibbs measures for (2.1)

and (2.2) will be denoted by 〈∏i∈B σi 〉 ≡ 〈σB〉 and 〈 ∏i∈B si 〉 ≡ 〈sB〉 respectively.

Let
                 Hi = hi + ki     and     Ki = hi - ki .                           (2.5)

Define spin variables qi and ti taking values -1,0,+1 by

               ti = 1/2 (σi + si)  and   qi = 1/2 (σi - si).                      (2.6)

Let 〈〈 · 〉〉 denote expectations with respect to the product measure

µ(σ,s) = 1
Z a(Λ)

1
Z

b
(Λ)

exp{ − β[H a(σ) + H
b
(s)]} (2.7)
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where Za(Λ) and Zb(Λ) are the partition functions for Ha(σ) and Hb(Λ) respectively.  For

finite sets A, B in Zd, let tA = ∏i∈A ti   and  sB = ∏i∈B qi.  The following theorem, though

not stated in this generality, was proved by Lebowitz in Ref. 3 (see also Percus5 and

Sylvester7).

Theorem 2.1  If Hi , Ki ≥ 0 for all i ∈ Λ, then for any two subsets A, B in Λ,

a) 〈〈 tA 〉〉, 〈〈 qA 〉〉 ≥ 0

b) 〈〈 tA tB 〉〉 ≥ 〈〈 tA 〉〉 〈〈 tB 〉〉 

c) 〈〈 qA qB 〉〉 ≥ 〈〈 qA 〉〉 〈〈 qB 〉〉

d) 〈〈 qA 〉〉 〈〈 tB 〉〉  ≥ 〈〈 qA tB 〉〉 .

Remark 2.1  By symmetry, it may be assumed that Hi , Ki ≤ 0, in which case inequalities a)

- d) are modified by replacing each qi  by -qi and each ti by -ti .

Corollary 2.1  With the same assumptions as in Theorem 2.1,

a) 〈〈 tA 〉〉 decreases and 〈〈 qA 〉〉 increases as each Ki increases

b) 〈〈 tA 〉〉 increases and 〈〈 qA 〉〉 decreases as each Hi increases.

proof .  This follows by differentiating 〈〈 tA 〉〉 and 〈〈 qA 〉〉 by Hi or Ki and applying b), c),

or d) of Theorem 2.1.

A substantial generalization of part a) of the following Corollary was proved by

Lebowitz in Ref. 8 (see also Griffiths9).

Corollary 2.2  If Hi , Ki ≥ 0 for all i ∈ Λ, then for any subset B in Λ, and any i, j ∈ Λ,

a) 〈 σB 〉 ≥ | 〈 sB 〉 |

b) 〈 σi σj 〉 - 〈 σi 〉 〈 σj〉 ≤ 〈 si sj 〉  〈 si 〉 〈 si 〉
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proof. The following identities, where σi and si may be complex numbers are well known

and easily verified (see for example Ref. 2):
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where |A| denotes the cardinality of A.  Identifying σi and si as Ising spin variables yields,
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Taking 〈〈·〉〉  expectations of (2.10) and (2.11) yields part a) of the corollary.  The proof of

part b) follows directly from part d) of Theorem 2.1 with A = {i} and B = {j}.  This

completes the proof.

We now consider the special case for the Hamiltonians (2.1) and (2.2) where in

equation (2.3), h'i ≡ h for all i and some constant h, and in equation (2.4) k'i = (-1)|i| h. With

these identifications Ha(σ) equals H1(σ), given by equation  (1.1), and Hb(s) equals H2(s),
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given by equation (1.3).  The following corollary is now an immediate consequence of

Corollary 2.2.

Corollary 2.3  Let h ≥ 0. Αssume that for all i∈Λ

1) h ≥ 1/2 ∑j∉Λ Jij ( σ
j
+ s

j
 )

2) ∑j∉Λ Jij ( σ
j
− s

j
) ≤ 0.

 Τhen for any subset B of Λ, and any i,j ∈ Λ, the following inequalities for the correlations

of the Hamiltonians given by (1.1) and (1.3) hold:

a) 〈 ∏i∈B σi 〉F ≥ | 〈 ∏i∈B si 〉Α |

b) 〈 σi σj 〉F - 〈 σi 〉F 〈 σj 〉F ≤ 〈 si sj 〉A -〈 si 〉A 〈 sj 〉A  .

Remark 2.2  An analogous statement may be made for h  ≤ 0 (see Remark 2.1).

Remark 2.3  The hypotheses to Corollary 2.3 are satisfied, for example, if σ
j
 ≡ +1 for all  j

∉ Λ. In this case s
j  for j ∉ Λ may be chosen arbitrarily. It is also easily shown that if

H1(σ) and H2 (s) both have empty or both have periodic boundary conditions, then a) and

b) of Corollary 2.3 hold.

3. Monotonicity Properties for Antiferromagnets

In this section we prove some monotonicity properties for two point correlations for

antiferromagnets.  Denote by H(s) the Hamiltonian,

H(s) = ∑Λ Jij si sj - ∑i∈Λ ki si               (3.1)

where here and below ∑Λ means sum over all distinct pairs (i,j) in the subset Λ in Zd.  We

also assume that Jij ≤ 0 and that Jij is a function of || i - j ||, the Euclidean norm of i - j.  The

external field ki is given by
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for some boundary configuration { s
j
}, where k'i = (-1)|i| h for some h ≥ 0, so that H(s) is

equal to the antiferromagnetic Hamiltonian (1.3).  In this section, denote by 〈  〉 or 〈  〉Λ

expectations with respect to the finite volume Gibbs state determined by (3.1).

Theorem 3.1 Let ϕ: Zd → Zd by ϕ(i1,..., id) = (-(i1+2), i2,..., id).  Let Λ be a rectangle in Zd

invariant under ϕ and let the boundary configuration { s
j
}be invariant under ϕ.  Suppose

also that  |Jij | ≥ 1/2 | Jiϕ(j) | . Then for any i,j ∈ Λ with i1, j1 ≥ 0,

 

〈 si sj 〉 ≥ 〈 si sϕ(j) 〉 (3.3)

Remark 3.1  It is also possible to consider periodic boundary conditions.  If 0∈Λ  (3.3)

and the symmetry of the finite volume Gibbs State imply

s
0
s

j
≥ s

0
s

( j
1

+ 2,j
2
,… ,j

d
) , (3.4)

for j1 ≥  0, where s0 is the spin at the origin of Zd.  

proof.  Let
Λ+ = {i∈ Λ : i1 > -1}

Λ0 = {i∈ Λ : i1 = -1}

Λ− = {i∈ Λ : i1 < -1}.

Then Λ = Λ+ ∪ Λ0 ∪ Λ- and ϕ(Λ+) = Λ− , ϕ(Λ-) = Λ+ , and ϕ(Λ0) = Λ0.  Denote ϕ(i )by i~.

With this notation we can write,
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           ∑Λ Jij si sj = ∑Λ+ Jij (si sj + si~ sj~ ) +∑i∈Λo ∑j∈Λ+ Jij (si sj + si~ sj~)

                  + 1/2 ∑Λo Jij ( si sj + si~ sj~) + 1/2 ∑Λ+ Jij~ ( si sj~ + si~ sj)

                  + 1/2 ∑i∈Λ+ Jii~ (si si~ + si si~).                (3.5)

The last two terms on the right side of (3.5) may be rewritten as,

1/2 ∑Λ+ Jij~ (si + si~)(sj + sj~) - 1/2 ∑Λ+ Jij~ (si sj + si~ sj~)

+ 1/2 ∑i∈Λ+ Jii~ (si + si~)2 - ∑i∈Λ+ Jii~ .

Let
ti = 1/2 (si + si~)  and  qi = 1/2 (si - si~)                            (3.6)

so that

si sj + si~ sj~ = 2(ti tj + qi qj). (3.7)

Combining (3.5) - (3.7) and observing that qi = 0 if i∈Λ0 gives,

∑Λ Jij si sj = ∑Λ+(2Jij - Jij~) qi qj + ∑Λ+ 2(Jij + Jij~) ti tj

        + 2 ∑i∈Λo ∑j∈Λ+ Jij ti tj + ∑Λo Jij ti tj

               + 2 ∑Λ+ Jii~ti2 - ∑Λ+ Jii~ .           (3.8)

Now define Hi = ki + ki~ and Ki = ki - ki~ so that

ki si + ki~ si~ = Hi ti + Ki qi .           (3.9)

From the definition of ϕ and ki and the invariance of the boundary conditions {sj} under ϕ,

it follows that Ki = 0 for all i∈ Λ.  Thus to within an additive constant,

H(s) = H1(q) + H2(t), where

H1(q) = ∑Λ+ Nij qi qj

H2(t) = ∑Λ+∪Λο Mij ti tj + 2 ∑i∈Λ+ Jii~ ti2 + ∑i∈Λ+ Hi ti + 1/2 ∑i∈Λo Hi ti     (3.10)

and Nij and Mij are nonpositive.
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From the definitions of qi and ti it follows that ti = 0 iff qi = ± 1 and qi = 0 iff

ti = ±1.  Also if i∈ Λ0, then ti = ± 1.  For any functions φ(q) and ψ(t),

φ(q)ψ(t) = 1
Z Λ(s)

φ(q)ψ(t)exp { − β[H
1
(q) + H

2
(t)]} (3.11)

( q , t )

∑

where the sum in (3.11) is over all pairs q = {qi}i∈Λ+ and t = {ti}i∈Λ+ ∪ Λo       such that

ti = ±1 if i∈ Λ0, and qi = 0 iff ti = ± 1 otherwise.  Equation (3.11) may be rewritten as,

φ(q)ψ(t) = 1
Z Λ(s)

Λ
0
⊂ A ⊂Λ

0
Λ +∪

∑
t

∑ φ(q)χ
A
(q)ψ(t) χ

A
c(t)exp { − β[H

1
(q) + H

2
(t)]} (3.12)

q
∑

where the sums on q and t now include the values ±1 for qi and ti , but not zero,

Ac = (Λ+ ∪ Λ0) \ A, and

χ
A
(q) =

1, when q
i
= 0 if f i ∈ A

0, otherwise .



For any A ⊂ Λ
0

Λ +∪ , let

P(A) =
χ

A
c(t) exp [ − βH

2
(t)] χ

A
(q) exp[ − βH

1
(q)]

q
∑

t
∑

Z Λ (s) (3.13)

≡
Z

A
(t)Z

A
c(q)

Z Λ (s)

where ZAc(q) and ZA(t) are the usual Ising partition functions respectively for H1(q) and

H2(t) with qi , ti = ± 1.  Then (3.12) may be rewritten as

〈φ (q)ψ(t)〉 = P(A) 〈φ(q )χ
A
(q) 〉

A
c
,q
〈ψ(t )χ

A
c (t) 〉

A , t
(3.14)

Λ
0
⊂ A⊂ Λ

0
Λ +∪

∑
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where 〈φ(q)χΑ(q)〉Αc,q = ZAc(q)-1 ∑q χA(q) φ(q) exp[-βH1(q)] and 〈 ψ(t)χΑc (t)〉A,t has an

analogous expression.  Let ψ(t) ≡ 1 and φ(q) = qi qj .  Then

 
〈qiq j 〉 = P(A)〈qiq jχA(q)〉

A c , q
≥ 0 (3.15)

A
∑

since by Griffith's inequality each term in the sum is nonnegative.  Thus

〈si sj〉 + 〈si~ sj~〉 ≥ 〈si~ sj〉 + 〈si sj~〉 (3.16)

and the conclusion of the theorem now follows from the invariance of Λ and the boundary

conditions under the reflection ϕ.  This completes the proof.

The following corollary, establishing a version of the Percus inequality or first Lebowitz

inequality, follows immediately from the arguments leading up to equation (3.14).

Corollary 3.1 With the hypotheses and notation of Theorem 3.1,

〈∏i∈A (si - sφ(i)〉 ≥ 0 (3.17)

for any A in Λ+.

Theorem 3.2 Let Ψ: Zd → Zd by Ψ(i1,...,id) = (-(i1+1), i2,...,id).  Let a rectangle Λ in Zd and

a boundary condition { s
j
}j∈Λc be invariant under Ψ. Then for any i,j ∈ Λ with

i1,j1 ≥ 0

〈si sj 〉 ≥ - 〈si sΨ (j)〉. (3.18)

The proof of Theorem 3.2 is similar to and simpler than the proof of Theorem 3.1.  In this

case Λ+ = {i∈Λ: i ≥ 0}, Λ- ={i∈Λ: i ≤ -1}, and Λ0 is empty.  With analogous notation as in
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the proof of Theorem 3.1, Hi ≡ 0 and it follows that 〈∏i∈A ti 〉 ≥ 0 for any subset A of Λ+.

The case in which Jij is nonzero only for || i - j || = 1 was essentially contained in the proof

of an analogous theorem (Theorem 1) of Messager and Miracle-Sole4 for Ising

ferromagnets.

Corollary 3.2 If Jij satisfies the conditions of Theorem 3.1, then

1) 〈s
0
s

j
〉 ∞

± ≥ 〈s
0
s

(j
1
+ 2,j

2
,...,j

d
)
〉 ∞

±

2) 〈s
0
s

j
〉 ∞

± ≥ − 〈s
0
s

( j
1

+1,j
2

,...,j
d
)
〉 ∞

±

for any j with j1 ≥ 0, where 〈s
0
s

j
〉 ∞

± = lim
Λ↑ Z

d

〈s
0
s

j
〉 Λ

with boundary conditions s
j
≡ +1 or s

j
≡

-1 for all j∈Λc and the limit may be taken along any  sequence Λn increasing to Zd.

proof. Let ρj = 1/2 (sj + 1).  Then ρ0ρj is an increasing function in the sense used in the

FKG inequalities.  Since 4ρ0ρj = [s0sj + s0 + sj + 1] and s0 and sj are also increasing, it

follows that lim 〈s0 sj 〉Λ exists along any sequence Λn increasing to Zd.  Let Λn be as in

Theorem 3.1 and let Λ~ n  be the reflection of Λn across the hyperplane j1 = 0.  Then

〈s
0
s φ ( j )

〉 Λ
n

= 〈s
0
s

( j
1

+ 2,j
2
,...,j

d
)
〉

Λ~
n

Inequality 1) now follows by applying Theorem 3.1 and taking limits.  The proof of 2) is

similar.

Remark 3.2 We note that other axes and reflections may be used in Theorems 3.1 and 3.2;

the crucial point is that Hi or Ki or both (as in the case of ferromagnetic interactions) must

be nonnegative (see  (3.9)).
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