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Abstract. We prove some inequalities for two-point correlations of Ising antiferromagnets and
derive inequalities relating correlations of ferromagnets to correlations of antiferromagnets whose
interactions and field strengths have equal magnitudes. The proofs are based on the method of duplicate spin
variables introduced by J. Percus and used by several authors (Refs. 3-8) to derive correlation inequalities for
Ising ferromagnets.

1. Introduction

Correlation inequalities have played an important role in statistical mechanics,
especialy as applied to ferromagnetic Hamiltonians. It isthe purpose of this note to apply

known techniques to obtain some correlation inequalities for antiferromagnets.

Let Hy(s) be aferromagnetic Hamiltonian for finite volume L in Zd given by

H(s)= & Jss +aJss -hds, (11
e e
jTL

and H(x) a corresponding antiferromagnetic Hamiltonian for L given by

Hx)= a Kijxixj+éK”xi7<].- héxi (1.2)
(i.p)iL iTL iTL
jiTL
where the first sumsin (1.1) and (1.2) are over dl distinct pairs(i,j) inL, { 7<j} and{s J.}
represent boundary configurations, and Kij = (-1l 3. Hereli| = | (i1, i2,...id) | =
lia|+-+[id and xj, sj = £1, and J;j; £ 0. Wewill consider (1.2) with the change of variable

xi = (-1l s; and denote the resulting Hamiltonian by Ho(s) so that



H.(s) = é J;ss + é_ J;s;s; - é_ ks, (2.3
(i) L imL imL
jiTL

wherek; = (-1)lil h. We will denote expectations with respect to the finite volume Gibbs
states corresponding to (1.1) and (1.3) by & fi- and &- fin respectively; boundary

configurations will aways be assumed fixed.

In Section 2 of this paper we derive Lebowitz-type inequalities3 which alow the
comparison of correlations corresponding to Hamiltonians (1.1) and (1.3). When h=0

(1.1) and (1.3) are equal and have equal correlation functions. When ht 0 H1(s) hasa

unique phase for all temperatures, which implies decay properties of truncated correlation

functions for Hi(s). Our inequalitiesare valid for al h, even though h* 0 includes both

single and multiple phase regions for H(x) (see, for example, Ref. 1).

In Section 3 we prove some monotonicity properties for two-point correlations
corresponding to (1.3). The method of proof is based on the techniques used by Messager
and Miracle-Sole# to derive, among other things, monotonicity propertiesfor correlations
corresponding to nearest neighbor ferromagnetic interactions. We make some
modifications of their methods to accommodate nonnearest neighbor interactions and
nonpositive external fields{k;}. We alow our Hamiltonians to have infinite range, but our
inequalities are weaker than those of Ref. 4 for the ferromagnetic case. We note that
Hegerfeldt2 generalized some of the monotonicity resultsin Ref. 4 for ferromagnetic
correlations, but the methods of Ref. 2 do not seem to extend readily to antiferromagnetic

interactions.



2. Comparison of Correlations

L et two Ising spin Hamiltonians H(s) and Hy(s) for volume L in Z9be given by

Huas)= 4 J;ss.-ahs, (2.1)
@t
[¢} [¢]

H((= a J;s;s; - aks, (2.2)
()i L iTL

where Jj £ O and sj, § = +1 for all i,jT zd Theexternal field variables hj and k; are of the
form

h=r-aJs, (2.3)

jiL

k=k- Q435 (2.4)

i i i
where{ s j} and { §j} may be interpreted as fixed boundary configurations. Correlation

functions, for afinite set B in Zd, with respect to the finite volume Gibbs measures for (2.1)
and (2.2) will be denoted by & g sj i° &pfiand 40ij g s [i° &gfirespectively.

Let
Hi=hi+kij and Kj=hj-kj. (2.5
Define spin variables g and t; taking values-1,0,+1 by

t=12(si+s) and g =12(sj-S). (2.6)

Let & - Mdenote expectations with respect to the product measure

M(5.9) = 7Ty 7 () &PL- bIH(5) + Ol (27)



where Z4(L) and Zp(L) are the partition functions for Hys) and Hp(L ) respectively. For
finitesats A, BinZd letta = Oji ati and sg = Oji g gj. The following theorem, though
not stated in this generality, was proved by Lebowitz in Ref. 3 (see also Percus® and
Sylvester’).

Theorem 2.1 If Hj ,Kj3 Oforalil L,thenforany twosubsetsA, BinlL,
a) &tp Maaga M3 0
b) &t tg M3 &ta Maatg M
C) &da gg M® &Aga Maagp M

d) &ga Matg M 3&aqga tg M.

Remark 2.1 By symmetry, it may be assumed that H; , K £ 0, in which case inequalities @)
- d) are modified by replacing each g; by -g; and each tj by -t; .

Corollary 2.1 With the same assumptions asin Theorem 2.1,

a) &itp Mdecreases and &gp Mincreases as each K increases
b) &ta Mincreases and &qa fMdecreases as each H; increases.

proof . Thisfollows by differentiating &ta fMand &ga ffiby H; or K; and applying b), ¢),

or d) of Theorem 2.1.

A substantia generalization of part @) of the following Corollary was proved by

L ebowitz in Ref. 8 (see also Griffiths).

Corollary 2.2 If Hj, Kj3 Ofordlil L,thenforanysubsetBinL,andanyi,ji L,
a)asg s | asg |

b) asj sj ii- asj Nasji£ as; 5 i~ & Nas



proof. Thefollowing identities, where s; and 5 may be complex numbers are well known

and easily verified (see for example Ref. 2):

Os +0s=2""8 O .-s)D (s,+s) (2.8)
it A i A BIA ilB i A\B

|Bleven
Os - Osi =23 O -s) O +s) (2.9)
it A it A BIA ilB il A\B

|Blodd

where |A| denotes the cardinality of A. Identifying sj and § aslsing spin variablesyields,

~ ~ o)
OS i Osi =2 a PN (2.10)
i A i A Bl A
|Blodd
and
Os. +0s=2 & azt., (2.11)
i A i A BI A

|Bleven

Taking &M expectations of (2.10) and (2.11) yields part a) of the corollary. The proof of

part b) follows directly from part d) of Theorem 2.1 with A ={i} and B ={j}. This

completes the proof.

We now consider the specia case for the Hamiltonians (2.1) and (2.2) wherein
equation (2.3), hij © hfor al i and some constant h, and in equation (2.4) k' = (-1)lil h. With

these identifications Hy(s) equals H1(s), given by equation (1.1), and Hp(Ss) equals Ho(S),



given by equation (1.3). The following corollary is now an immediate consequence of

Corollary 2.2.

Corollary 2.3 Leth3 0. Assumethat for dl il L

1) h3 124 L Jj (§j +5, )

2)&jiL % (s,-5)E0.
Then for any subset B of L, andanyi,jT L, thefollowing inequalitiesfor the correlations
of the Hamiltonians given by (1.1) and (1.3) hold:

a) a0ii gsifir |&0ii gsi i |

b) asj s i¥ - asj fr asj fF £ as; 5 M -asj M asj M .

Remark 2.2 An anaogous statement may be madefor h £ O (see Remark 2.1).

Remark 2.3 The hypothesesto Corollary 2.3 are satisfied, for example, if S, ° +1foral j
I L.Inthiscase’s, forj1 L may bechosen arbitrarily. Itisalso easily shown that if

H1(s) and H> (s) both have empty or both have periodic boundary conditions, then a) and

b) of Corollary 2.3 hold.

3. Monotonicity Propertiesfor Antiferromagnets
In this section we prove some monotonicity properties for two point correlations for

antiferromagnets. Denote by H(s) the Hamiltonian,
H(s)=aL Jjsis-aitLkis (3.1
where here and below & | means sum over all distinct pairs (i,j) inthe subset L in Zd. We

also assumethat Jjj £ 0 and that Jj isafunction of ||i - j ||, the Euclidean normof i - j. The

external field k; isgiven by



k=K-QJs (3.2)
i i ij =

i L

for some boundary configuration { s}, wherek'j = (-Dlil h for someh3 0, sothat H(S) is
equal to the antiferromagnetic Hamiltonian (1.3). In this section, denote by & fior a fi

expectations with respect to the finite volume Gibbs state determined by (3.1).

Theorem 3.1Letj : Zd® zdpy | (i1,..., ig) = (-(11+2), i2,..., id). LetL bearectanglein zd
invariant under j and let the boundary configuration { éj}beinvariant under j . Suppose

alsothat |3j | Y2]|Jj (). Thenfor anyijl Lwithiy,j13 0,

as; s i as s (j) i (3.3

Remark 3.1 It isalso possible to consider periodic boundary conditions. If O L (3.3)

and the symmetry of the finite volume Gibbs State imply
<Sosj> 3 <SOS(J' 120 Y ) , (34)

forj13 0, wheresyisthe spin at the origin of Zd

proof. Let
Ly={il L:ip>-1}

Lo={il L:ip=-1}
L. ={il L:ip<-1}.

ThenL =L+ E LgE L.andj (L+)=L. ,j (L) =L+,andj (Lg) = Lo. Denotej (i )by i~.

With this notation we can write,



Ldjsis=aL+Jij(SS+Si~5~) +aii Lodji L+ Jij (S § + Si~S-)
+ Y2810 (siS+Si~5-) + V2aL+ Jij~ (S S~ + Si- )
+1/2 &if L+ Jii~ (S Si~ *+ S Siv). (3.5)
Thelast two terms on the right side of (3.5) may be rewritten as,
V2ay+ Jj~ (s +S)(§ + §-) - V2&L+ Jj~ (S § + Si~§-)
+ U2 &if L+ Jii~ (S + 8i-)2- &if L+ Jii~ -

Let
i =12(s +s~) and ¢ = V2(s; - si-) (3.6)

so that
Si § * Si~ S~ = 2(t tj + i ). (37
Combining (3.5) - (3.7) and observing that g; = 0if il L g gives,
aL Jjsig=aL+(2%j - Jj~) gi g + &+ 2(Jj + Jj) ti g
+2ai7 Lodji L+ Jijtiti+&Lodijtif

+ 281+ Ji-ti2- &L+ Jii~. (3.8

Now define H; = k; + kj~ and K = kj - kj~ so that

Kis +Kki~si-=Hjt +Kjq. (3.9

From the definition of j and kj and the invariance of the boundary conditions{s} underj ,

it followsthat Ki = Ofor al il L. Thusto within an additive constant,
H(s) = HY(q) + HZ(t), where

Hi(g) =&+ Njjgi g

H2(t) =& +ELo Mijti i+ 2 &7 L+ Jii~ti2+ &if L+ Hiti + V2 &i7 LoHi ti  (3.10)

and Njj and Mj; are nonpositive.



From the definitions of g; and t; it followsthat t; = 0 iff g =+ 1 and g = O iff

ti=+1. Alsoifil Lo, thentj =+ 1. For any functionsf (q) andy (t),

1

(f @)y (1) = 7 A @y Bexp{ - bIH(a) + H (O]} (311

(a.t)

wherethesumin (3.11) isover al pairsq={qj}ii L+ andt = {t;}ij L+ & Lo Such that

ti=+1ifil Lo, andq = 0iff tj =+ 1 otherwise. Equation (3.11) may be rewritten as,

f@y®)=51g88 & _ f@c,@y®c, Oep{- bH(@ +H O] (312

L -
LiaiL EL,

where the sums on g and t now include the values £1 for g; and t; , but not zero,

AC=(L+E Lg)\A, and

311 when g, =0 iff il A
“10, otherwise .

c,(a)

Forany Al L EL,, e

ac (1) expl- bH (D] A c (@) expl - bH'(Q)]
Z,©®

P(A) = (3.13)

Z (02 (o)
0

(0]

where Zac(q) and Za(t) are the usual 1sing partition functions respectively for H1(q) and
H2(t) with ¢ , tj = + 1. Then (3.12) may be rewritten as

&@y(i= & _ PAE(@)c, @A, (C)c O (314

LiaL EL,



where & (g)ca (Q)facq= Zac(a) L & qca(g) f(g) exp[-bHY(g)] and &y (t)cac (1) ¢ hasan
analogous expression. Lety (t)° landf(q) =g gy . Then
&40, fi=Q P(A)agq;cA(a)fi,. 2 O (3.15)
A
since by Griffith'sinequality each term in the sum is nonnegative. Thus
& s+ &~ 5-N° &5~ gfi+ &5 5~ (3.16)

and the conclusion of the theorem now follows from the invariance of L and the boundary

conditions under thereflectionj . This completes the proof.

Thefollowing corollary, establishing aversion of the Percus inequality or first Lebowitz
inequality, follows immediately from the arguments leading up to equation (3.14).

Corollary 3.1 With the hypotheses and notation of Theorem 3.1,

&Oif A (s - st (i)fi* 0 (3.17)

forany AinL.

Theorem 3.2LetY:Zd® zdpy Y (iy,...id) = (-(i1+1), i2,...id). LetarectangleL inZdand

aboundary condition { S }ji Lc beinvariant under Y . Then for any i j T L with
i1j13 O

& 5 fi® - & sy ()i (3.18)

The proof of Theorem 3.2 is similar to and ssmpler than the proof of Theorem 3.1. Inthis

caseL+={iT L:i3 O},L.={il L:i £-1},andLgisempty. With analogous notation asin

10



the proof of Theorem 3.1, H; © 0 and it follows that &ij At A3 Ofor any subset A of L ..
The case in which J;j isnonzero only for || i - j || = 1 was essentially contained in the proof

of an analogous theorem (Theorem 1) of Messager and Miracle-Sole? for Ising

ferromagnets.

Corollary 3.2 If J;j satisfies the conditions of Theorem 3.1, then

~t

7 ~t 3 A
1) asOSj n¥ asOS(j l+2,j e j d)n¥

z ~t 3 _ A4 ~t
2) 8,5,y BeS( i ,...i )N

for any j withj; 3 0, where ésosjﬁ; = lim ésosj A, with boundary conditionséj °+lors°
L- Zd

-1forall jl L¢and thelimit may be taken along any sequenceL, increasingto Zd

proof. Letrj=1/2 (s + 1). Thenr orjisanincreasing function in the sense used in the
FKG inequalities. Since4r orj =[spsj + sp + §j + 1] and sp and § are also increasing, it
followsthat lim asp s i exists along any sequence L increasingto Zd. LetLpbeasin

Theorem3.1and let L, bethereflection of L  across the hyperplanej; = 0. Then

BoSt ()M, = BoSq 2 i )1,

Inequaity 1) now follows by applying Theorem 3.1 and taking limits. The proof of 2) is

smilar.

Remark 3.2 We note that other axes and reflections may be used in Theorems 3.1 and 3.2;

the crucial point isthat Hj or K; or both (asin the case of ferromagnetic interactions) must

be nonnegative (see (3.9)).
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