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Abstract

Let f(n) be the maximum number of unit distances determined by the vertices of a convex
n-gon. Erdős and Moser conjectured that this function is linear. Supporting this conjecture
we prove that fsym (n) ∼ 2n where fsym (n) is the restriction of f (n) to centrally symmetric
convex n-gons. We also present two applications of this result. Given a strictly convex domain
K with smooth boundary, if fK (n) denotes the maximum number of unit segments spanned by
n points in the boundary of K, then fK (n) = O (n) whenever K is centrally symmetric or has
width > 1.

1 Introduction

For every finite set of points P in the plane, f (P ) denotes the number of unit segments with
endpoints in P . We say that P is in convex position if P is the vertex set of a strictly convex
polygon (no three points are on a line).

More than forty years ago, Erdős and Moser ([7], see also [8], [5], and [10]) initiated the study
of the function

f (n) = max {f (P ) : |P | = n, P in convex position} .
They proved with a construction that f (n) ≥ b5/3 (n− 1)c and conjectured that f (n) was linearly
bounded above. The best known upper bound, f (n) ≤ O (n logn), was first proved by Füredi [9],
and very recently by Brass et al. [2], and Brass and Pach [3] using different techniques. The lower
bound was improved to 2n−7 by Edelsbrunner and Hajnal [4], and motivated by this construction,
Erdős and Fishburn [6] conjectured that f (n) < 2n.

Our main objective is to prove that f (n) restricted to centrally symmetric sets is asymptotically
2n. This supports both the Erdős-Moser and the Erdős-Fishburn conjectures. In fact, we prove
that the function

fsym (n) = max {f (P ) : |P | = n, P in convex position and centrally symmetric}

(which only makes sense for even values of n) satisfies

Theorem 1 For every even n ≥ 2

2n−Θ ¡√n¢ ≤ fsym(n) ≤ 2n− 3.
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None of the two constructions mentioned above giving lower bounds for f (n), can be extended
to a centrally symmetric set. Actually the natural example consisting of the symmetrization of
rotated copies of a regular triangle sharing a vertex, only gives (3/2)n ≤ fsym (n). Even with this
in mind, and due in part to the proof of Theorem 1, we conjecture that fsym (n) ≥ 2n−O (1).

The proof of the upper bound in Theorem 1 can be extended to a more general result stated
below as Theorem 2. We first need to define a family of functions. Let K denote a strictly convex
domain in the plane (i.e., a bounded subset of the plane such that if x and y are boundary points of
K then the open segment xy is contained in the interior of K) with smooth boundary ∂K. Define

fK (n) = max {f (P ) : |P | = n and P ⊂ ∂K} ,

i.e., fK (n) is the maximum number of unit distances determined by n boundary points of K.

Theorem 2 If K is centrally symmetric then fK(n) ≤ 2n− 3 for every n ≥ 2.

We go one step further in this direction by considering a different family of setsK. The following
is also an application of Theorem 1.

Theorem 3 If K has width greater than one then there is c > 0 such that fK(n) ≤ cn.

It may be possible to prove the Erdős-Moser conjecture by showing fK (n) ≤ cn for a large
class of convex sets K and a universal constant c. Unfortunately, for these purposes, in Theorem
3 c→∞ when the width approaches one.

From now on given any points x, y in the plane, H+(x, y) and H−(x, y) will denote the upper
and lower half-planes determined by the oriented line −→xy (we include the line xy in both halfplanes).

2 Proofs of the theorems

Proof of Theorem 1. We first prove the upper bound. Let P denote a convex centrally symmetric
polygon with n vertices, and let pq be a diameter of P . Note that if kp− qk < 1 then f (P ) = 0.
We claim that

if kp− qk ≥ 1 then f (P ) ≤ 4 + f (P\ {p, q}) (1)

which by induction implies f (P ) ≤ 4 + 2 (n− 2)− 3 = 2n− 3.
To verify (1) it is enough to show that at most one point in P ∩H+ (p, q) is at distance one from

p. Assume that the origin o is the center of symmetry of P . Observe that q = −p, otherwise one of
the diagonals of the parallelogram pq (−p) (−q) would be longer than the diameter pq. Moreover,
since P is centrally symmetric, P must be contained in the closed disk D determined by the circle
through p and q centered at o. Let C be the unit circle with center at p, and u = C ∩pq. Note that
if p1, p2 ∈ P ∩C ∩H+ (p, q) and kp1 − uk > kp2 − uk then ]pp1p2 < π/2 since 4pp1p2 is isosceles,
but ]pp1q ≥ π/2 since p1 ∈ D. Therefore p2 would be in the interior of 4pqp1 contradicting the
convexity of P (when kp− qk = 1 the only possibility is p1 = p2 = q).

To prove the lower bound we construct a centrally symmetric convex polygon P with n = k2+k
vertices and at least 2n− 3k unit distances among them.

We start with k points in a circle of radius 1/2. Even though we look at these points as vectors,
for simplicity we write their polar coordinates to describe them. Given a fixed θ ∈ (0,π) let

pj =

µ
1

2
, θj

¶
where θ1 = 0 and θj = 7

j−kθ for 2 ≤ j ≤ k.
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Now, for every pair (i, j) with 1 ≤ i < j ≤ k, there is a unique point pi,j in H+ (−p1, p1) obtained
as the intersection of the unit circles with centers −pi and −pj (see Figure 1a). Suppose that
(ri,j , θi,j) are the polar coordinates of pi,j . By construction we have that θi,j = (θi + θj) /2, and
after some direct calculations

ri,j =
1

2

µq
3 + cos2 ((θj − θi) /2)− cos ((θj − θi) /2)

¶
.

Let P =
S
1≤i<j≤k {pi,j ,−pi,j} ∪

S
1≤i≤k {pi,−pi}. Clearly P is centrally symmetric and |P | =

2
³¡k
2

¢
+ k

´
= n. Also, each point pi,j is at distance one from −pi and −pj which together with the

symmetric analogues gives 4
¡
k
2

¢
unit distances. If we add the k unit distances given by the pairs

(pi,−pi), we get f(P ) ≥ 4
¡k
2

¢
+ k = 2n − 3k ≥ 2n − 3√n. Finally we argue that P is in convex

position.

Figure 1: Constructions for the lower bound of Theorem 1.

According to the angles θi,j we know that the points

p1, p1,2, p2, p1,3, p2,3, p3, . . . , pk−1, p1,k, p2,k, p3,k, . . . , pk−1,k, pk,−p1
are in H+(−p1, p1), and they appear in this order. So by symmetry we just need to show that
these n/2 + 1 points are in convex position and ]p1,2p1o,]o(−p1)pk < π/2. Observe that the
points p1,j , p2,j , . . . , pj−1,j , pj are contained in an arc of circle with center at −pj , and thus they
are in convex position. Also ]o(−p1)pk = ](−p1)pko < π/2 and for all 2 ≤ j ≤ k, ]opjpj−1,j =
](−pj)pjpj−1,j < π/2, ]p2,jp1,jo < ]p2,jp1,j (−pj) < π/2 (here p2,2 = p2).

So it is enough to prove that ]op1,jpj−1 < ]p1,jpj−1o < π/2 for 2 ≤ j ≤ k. The first inequality
is given by kp1,jk > kpj−1k, and the second is equivalent to showing that h−pj−1, p1,j − pj−1i > 0,
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where h , i denotes the standard inner product. When j = 2 we have ]p1,2p1o = ]p1,2p1 (−p1) <
π/2, and for j ≥ 3

h−pj−1, p1,j − pj−1i = hpj−1, pj−1i− hpj−1, p1,ji
= kpj−1k2 − kpj−1k kp1,jk cos (θ1,j − θj−1)
= 1

4 − 1
2r1,j cos (θj/2− θj−1)

= 1
4

µ
1− cos (θj/2− θj−1)

µq
3 + cos2 (θj/2)− cos (θj/2)

¶¶
,

by construction θj = 7θj−1, thus

h−pj−1, p1,j − pj−1i = 1
4

µ
1− cos ¡52θj−1¢µq3 + cos2 ¡72θj−1¢− cos ¡72θj−1¢¶¶ .

To complete the proof note that the function g(x) = 1− cos (2.5x)
³p

3 + cos2 (3.5x)− cos (3.5x)
´

is positive in the interval (0,π/7) and θj−1 ≤ θk−1 = θ/7 < π/7. ¤

Remark. We can reduce the error for the lower bound by adding some points to our original
construction (see Figure 1b). Given p ∈ P let C (p) be the unit circle centered at p and

h (p) =

½
C (p) ∩C (−p1) ∩H+ (−p1, p1) if p ∈ H+ (−p1, p1) \ {−p1}
C (p) ∩C (pk) ∩H+ (−p1, p1) otherwise.

Let P 0 = P ∪ Sp∈P {−h (p) , h (p)}. For θ small enough, it can be verified that P 0 is in convex
position. Also |P 0| = 3 |P |− 2 = 3k2 + 3k− 2 = n0 and f (P 0) ≥ f (P ) + 2 (2 |P |− 2) ≥ 2n0 − 3k ≥
2n0 −√3n0.

Finally, by deleting an appropriate number of points from P 0, one can show that for an arbitrary
even n ≥ 2, fsym (n) ≥ 2n− 3−√3n.

Proof of Theorem 2. Consider any n-point subset P of ∂K. Let P 0 be the symmetric of P
in ∂K. The previous proof guarantees that each of the endpoints of the diameter of P ∪ P 0 is at
distance one of at most two other elements in P ∪ P 0. Moreover, one of these points is in P . The
rest follows by induction. ¤

Proof of Theorem 3. The directed closed segment xy is a chord of K in direction α if x, y ∈ ∂K
and the argument of the vector y− x is α. For each α ∈ [0, 2π) we say that xy is the α-directional
diameter of K, or simply the α-diameter, if xy is the longest chord of K in direction α (this is well
defined because K is strictly convex). We also denote by aα, bα the endpoints of the unique unit
chord of K in direction α with the property that any chord parallel to aαbα contained inH− (aα, bα)
has length less than one. We call aαbα the α-unit chord of K. We need the next lemma for the
proof of the theorem.

Lemma 1 Any two directional diameters of K intersect in their interior.

Proof. Let xy and zw be the α- and β-diameters of K and suppose that they do not intersect.
Then the quadrilateral with vertices x, y, z, w is convex and xy, zw are opposite sides (see Figure
2). Assume that xyzw is the order of the vertices in the quadrilateral. Since the internal angles
add up to 2π then we can assume that ]yxw+]zyx ≥ π. Since K is strictly convex then there is
a chord parallel to xy in H+(x, y) with length greater than xy which contradicts the fact that xy
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Figure 2: The chord uv is larger than the chord xy.

is the α-diameter. Finally note that even if x = w (or z = y), we can replace the line xw (or zy)
by the tangent line to K at x (or at y) and the argument still follows (here we use the smoothness
assumption). ¤

The last lemma, together with the continuity of ∂K, guarantees that for any boundary point
x of K there exists a unique directional diameter with x as one of its endpoints. It also shows
that both the left and right endpoints of the α-diameter (as functions of α) move continuously
counterclockwise in ∂K. For each α-unit chord look at the two directional diameters having aα or
bα as one of their endpoints, and let cα be their point of intersection. Let θ (α) = π − ∠bαcαaα
(see Figure 3). Since K has width greater than one then θ is a strictly positive function. Hence,

Figure 3: Definition of θ (α).

by continuity of θ on the compact set [0, 2π] we have m = min {θ (α) : α ∈ [0, 2π]} > 0.
Let P be an n-point subset of ∂K. Define

U = {α ∈ [0, 2π) : aα, bα ∈ P}

and for every β ∈ [0,π)

N (β) = |{α ∈ U : the α-unit chord does not cross the β-diameter}| .
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Observe that
N (β) =

X
α∈U

χβ (α)

where

χβ (α) =

½
1 if the α-unit chord does not intersect the β-diameter
0 otherwise.

So Z π

0
N (β) dβ =

Z π

0

X
α∈U

χβ (α) dβ =
X
α∈U

Z π

0
χβ (α) dβ,

but for fixed α, if bα is an endpoint of the δ-diameter then χβ (α) = 1 if and only if β ∈ [δ, δ + θ (α)],
i.e.,

R π
0 χβ (α) dβ = θ (α). Therefore

mf (P ) = m |U | ≤
X
α∈U

θ (α) =

Z π

0
N (β) dβ.

Now, as an application of Theorem 1 we claim that

N(β) < 2n for all β ∈ [0,π) (2)

and so Z π

0
N (β) dβ ≤ 2πn.

Thus f (P ) ≤ ¡2πm ¢n for all n-point subsets of ∂K. Hence fK (n) ≤ ¡2πm ¢n.
To prove (2) let xy be the β-diameter. First suppose that |{x, y} ∩ P | ≤ 1, let P1 = P∩H+(x, y),

P2 = P ∩H−(x, y), and P 01, P 02 be the sets obtained from P1 and P2 by symmetrization with respect
to the midpoint of xy. Since xy is a directional diameter then the sets P1 ∪ P 01 and P2 ∪ P 02 are in
convex position, so according to Theorem 1, for i = 1, 2

2f(Pi) = f(Pi) + f(P
0
i ) ≤ f

¡
Pi ∪ P 0i

¢ ≤ 2 ¯̄Pi ∪ P 0i ¯̄− 3 = 4 |Pi|− 3,
therefore

N(β) = f(P1) + f(P2) ≤ 2 (|P1|+ |P2|)− 3 ≤ 2n− 1 < 2n.
If x, y ∈ P then |Pi ∪ P 0i | = 2 |Pi|− 2 in the above analysis, so even though |P1|+ |P2| = n+ 2 the
conclusion still holds. ¤

Corollary 1 Let K be a strictly convex domain with C2 boundary. If the curvature of K is less
than 2 at each point of ∂K then fK (n) ≤ cn for some positive constant c that only depends on K.

Proof. By Blaschke’s Rolling Theorem [1] if the curvature of K is less than 2 at each point
of ∂K then a circle of radius 1/2 can freely roll inside K, and therefore the width of K is greater
than one. ¤
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