The unit distance problem for centrally symmetric convex polygons Bernardo M. Ábrego Department of Mathematics California State University, Northridge Silvia Fernández-Merchant Department of Mathematics California State University, Northridge January 2002 #### Abstract Let f(n) be the maximum number of unit distances determined by the vertices of a convex n-gon. Erdős and Moser conjectured that this function is linear. Supporting this conjecture we prove that $f^{sym}(n) \sim 2n$ where $f^{sym}(n)$ is the restriction of f(n) to centrally symmetric convex n-gons. We also present two applications of this result. Given a strictly convex domain K with smooth boundary, if $f_K(n)$ denotes the maximum number of unit segments spanned by n points in the boundary of K, then $f_K(n) = O(n)$ whenever K is centrally symmetric or has width > 1. #### 1 Introduction For every finite set of points P in the plane, f(P) denotes the number of unit segments with endpoints in P. We say that P is in *convex position* if P is the vertex set of a strictly convex polygon (no three points are on a line). More than forty years ago, Erdős and Moser ([7], see also [8], [5], and [10]) initiated the study of the function $$f(n) = \max \{f(P) : |P| = n, P \text{ in convex position}\}.$$ They proved with a construction that $f(n) \ge \lfloor 5/3(n-1) \rfloor$ and conjectured that f(n) was linearly bounded above. The best known upper bound, $f(n) \le O(n \log n)$, was first proved by Füredi [9], and very recently by Brass et al. [2], and Brass and Pach [3] using different techniques. The lower bound was improved to 2n-7 by Edelsbrunner and Hajnal [4], and motivated by this construction, Erdős and Fishburn [6] conjectured that f(n) < 2n. Our main objective is to prove that f(n) restricted to centrally symmetric sets is asymptotically 2n. This supports both the Erdős-Moser and the Erdős-Fishburn conjectures. In fact, we prove that the function $$f^{sym}(n) = \max\{f(P) : |P| = n, P \text{ in convex position and centrally symmetric}\}$$ (which only makes sense for even values of n) satisfies **Theorem 1** For every even $n \geq 2$ $$2n - \Theta\left(\sqrt{n}\right) \le f^{sym}(n) \le 2n - 3.$$ None of the two constructions mentioned above giving lower bounds for f(n), can be extended to a centrally symmetric set. Actually the natural example consisting of the symmetrization of rotated copies of a regular triangle sharing a vertex, only gives $(3/2) n \leq f^{sym}(n)$. Even with this in mind, and due in part to the proof of Theorem 1, we conjecture that $f^{sym}(n) \geq 2n - O(1)$. The proof of the upper bound in Theorem 1 can be extended to a more general result stated below as Theorem 2. We first need to define a family of functions. Let K denote a strictly convex domain in the plane (i.e., a bounded subset of the plane such that if x and y are boundary points of K then the open segment xy is contained in the interior of K) with smooth boundary ∂K . Define $$f_K(n) = \max\{f(P) : |P| = n \text{ and } P \subset \partial K\},$$ i.e., $f_K(n)$ is the maximum number of unit distances determined by n boundary points of K. **Theorem 2** If K is centrally symmetric then $f_K(n) \leq 2n - 3$ for every $n \geq 2$. We go one step further in this direction by considering a different family of sets K. The following is also an application of Theorem 1. **Theorem 3** If K has width greater than one then there is c > 0 such that $f_K(n) \le cn$. It may be possible to prove the Erdős-Moser conjecture by showing $f_K(n) \leq cn$ for a large class of convex sets K and a universal constant c. Unfortunately, for these purposes, in Theorem $3 \ c \to \infty$ when the width approaches one. From now on given any points x, y in the plane, $H^+(x, y)$ and $H^-(x, y)$ will denote the upper and lower half-planes determined by the oriented line \overline{xy} (we include the line xy in both halfplanes). #### 2 Proofs of the theorems **Proof of Theorem 1.** We first prove the upper bound. Let P denote a convex centrally symmetric polygon with n vertices, and let pq be a diameter of P. Note that if ||p-q|| < 1 then f(P) = 0. We claim that if $$||p-q|| \ge 1$$ then $f(P) \le 4 + f(P \setminus \{p,q\})$ (1) which by induction implies $f(P) \le 4 + 2(n-2) - 3 = 2n - 3$. To verify (1) it is enough to show that at most one point in $P \cap H^+$ (p,q) is at distance one from p. Assume that the origin o is the center of symmetry of P. Observe that q = -p, otherwise one of the diagonals of the parallelogram pq(-p)(-q) would be longer than the diameter pq. Moreover, since P is centrally symmetric, P must be contained in the closed disk D determined by the circle through p and q centered at o. Let C be the unit circle with center at p, and $u = C \cap pq$. Note that if $p_1, p_2 \in P \cap C \cap H^+$ (p,q) and $||p_1 - u|| > ||p_2 - u||$ then $\angle pp_1p_2 < \pi/2$ since $\triangle pp_1p_2$ is isosceles, but $\angle pp_1q \ge \pi/2$ since $p_1 \in D$. Therefore p_2 would be in the interior of $\triangle pqp_1$ contradicting the convexity of P (when ||p-q|| = 1 the only possibility is $p_1 = p_2 = q$). To prove the lower bound we construct a centrally symmetric convex polygon P with $n = k^2 + k$ vertices and at least 2n - 3k unit distances among them. We start with k points in a circle of radius 1/2. Even though we look at these points as vectors, for simplicity we write their polar coordinates to describe them. Given a fixed $\theta \in (0, \pi)$ let $$p_j = \left(\frac{1}{2}, \theta_j\right)$$ where $\theta_1 = 0$ and $\theta_j = 7^{j-k}\theta$ for $2 \le j \le k$. Now, for every pair (i, j) with $1 \le i < j \le k$, there is a unique point $p_{i,j}$ in $H^+(-p_1, p_1)$ obtained as the intersection of the unit circles with centers $-p_i$ and $-p_j$ (see Figure 1a). Suppose that $(r_{i,j}, \theta_{i,j})$ are the polar coordinates of $p_{i,j}$. By construction we have that $\theta_{i,j} = (\theta_i + \theta_j)/2$, and after some direct calculations $$r_{i,j} = \frac{1}{2} \left(\sqrt{3 + \cos^2 \left(\left(\theta_j - \theta_i \right) / 2 \right)} - \cos \left(\left(\theta_j - \theta_i \right) / 2 \right) \right).$$ Let $P = \bigcup_{1 \le i < j \le k} \{p_{i,j}, -p_{i,j}\} \cup \bigcup_{1 \le i \le k} \{p_i, -p_i\}$. Clearly P is centrally symmetric and $|P| = 2\left(\binom{k}{2} + k\right) = n$. Also, each point $p_{i,j}$ is at distance one from $-p_i$ and $-p_j$ which together with the symmetric analogues gives $4\binom{k}{2}$ unit distances. If we add the k unit distances given by the pairs $(p_i, -p_i)$, we get $f(P) \ge 4\binom{k}{2} + k = 2n - 3k \ge 2n - 3\sqrt{n}$. Finally we argue that P is in convex position. Figure 1: Constructions for the lower bound of Theorem 1. According to the angles $\theta_{i,j}$ we know that the points $$p_1, p_{1,2}, p_2, p_{1,3}, p_{2,3}, p_3, \dots, p_{k-1}, p_{1,k}, p_{2,k}, p_{3,k}, \dots, p_{k-1,k}, p_k, -p_1$$ are in $H^+(-p_1, p_1)$, and they appear in this order. So by symmetry we just need to show that these n/2+1 points are in convex position and $\angle p_{1,2}p_1o, \angle o(-p_1)p_k < \pi/2$. Observe that the points $p_{1,j}, p_{2,j}, \ldots, p_{j-1,j}, p_j$ are contained in an arc of circle with center at $-p_j$, and thus they are in convex position. Also $\angle o(-p_1)p_k = \angle (-p_1)p_ko < \pi/2$ and for all $2 \le j \le k$, $\angle op_j p_{j-1,j} = \angle (-p_j)p_j p_{j-1,j} < \pi/2$, $\angle p_{2,j}p_{1,j}o < \angle p_{2,j}p_{1,j}(-p_j) < \pi/2$ (here $p_{2,2} = p_2$). So it is enough to prove that $\angle op_{1,j}p_{j-1} < \angle p_{1,j}p_{j-1}o < \pi/2$ for $2 \le j \le k$. The first inequality is given by $||p_{1,j}|| > ||p_{j-1}||$, and the second is equivalent to showing that $\langle -p_{j-1}, p_{1,j} - p_{j-1} \rangle > 0$, where $\langle \underline{\ },\underline{\ }\rangle$ denotes the standard inner product. When j=2 we have $\angle p_{1,2}p_1o=\angle p_{1,2}p_1\left(-p_1\right)<\pi/2$, and for $j\geq 3$ $$\langle -p_{j-1}, p_{1,j} - p_{j-1} \rangle = \langle p_{j-1}, p_{j-1} \rangle - \langle p_{j-1}, p_{1,j} \rangle$$ $$= ||p_{j-1}||^2 - ||p_{j-1}|| ||p_{1,j}|| \cos(\theta_{1,j} - \theta_{j-1})$$ $$= \frac{1}{4} - \frac{1}{2} r_{1,j} \cos(\theta_j / 2 - \theta_{j-1})$$ $$= \frac{1}{4} \left(1 - \cos(\theta_j / 2 - \theta_{j-1}) \left(\sqrt{3 + \cos^2(\theta_j / 2)} - \cos(\theta_j / 2) \right) \right),$$ by construction $\theta_j = 7\theta_{j-1}$, thus $$\langle -p_{j-1}, p_{1,j} - p_{j-1} \rangle = \frac{1}{4} \left(1 - \cos\left(\frac{5}{2}\theta_{j-1}\right) \left(\sqrt{3 + \cos^2\left(\frac{7}{2}\theta_{j-1}\right)} - \cos\left(\frac{7}{2}\theta_{j-1}\right) \right) \right).$$ To complete the proof note that the function $g(x) = 1 - \cos(2.5x) \left(\sqrt{3 + \cos^2(3.5x)} - \cos(3.5x) \right)$ is positive in the interval $(0, \pi/7)$ and $\theta_{j-1} \le \theta_{k-1} = \theta/7 < \pi/7$. **Remark.** We can reduce the error for the lower bound by adding some points to our original construction (see Figure 1b). Given $p \in P$ let C(p) be the unit circle centered at p and $$h\left(p\right) = \left\{ \begin{array}{l} C\left(p\right) \cap C\left(-p_{1}\right) \cap H^{+}\left(-p_{1}, p_{1}\right) \text{ if } p \in H^{+}\left(-p_{1}, p_{1}\right) \setminus \{-p_{1}\} \\ C\left(p\right) \cap C\left(p_{k}\right) \cap H^{+}\left(-p_{1}, p_{1}\right) \text{ otherwise.} \end{array} \right.$$ Let $P' = P \cup \bigcup_{p \in P} \{-h(p), h(p)\}$. For θ small enough, it can be verified that P' is in convex position. Also $|P'| = 3|P| - 2 = 3k^2 + 3k - 2 = n'$ and $f(P') \ge f(P) + 2(2|P| - 2) \ge 2n' - 3k \ge 2n' - \sqrt{3n'}$. Finally, by deleting an appropriate number of points from P', one can show that for an arbitrary even $n \ge 2$, $f^{sym}(n) \ge 2n - 3 - \sqrt{3n}$. **Proof of Theorem 2.** Consider any n-point subset P of ∂K . Let P' be the symmetric of P in ∂K . The previous proof guarantees that each of the endpoints of the diameter of $P \cup P'$ is at distance one of at most two other elements in $P \cup P'$. Moreover, one of these points is in P. The rest follows by induction. **Proof of Theorem 3.** The directed closed segment xy is a chord of K in direction α if $x, y \in \partial K$ and the argument of the vector y - x is α . For each $\alpha \in [0, 2\pi)$ we say that xy is the α -directional diameter of K, or simply the α -diameter, if xy is the longest chord of K in direction α (this is well defined because K is strictly convex). We also denote by a_{α}, b_{α} the endpoints of the unique unit chord of K in direction α with the property that any chord parallel to $a_{\alpha}b_{\alpha}$ contained in $H^{-}(a_{\alpha},b_{\alpha})$ has length less than one. We call $a_{\alpha}b_{\alpha}$ the α -unit chord of K. We need the next lemma for the proof of the theorem. **Lemma 1** Any two directional diameters of K intersect in their interior. **Proof.** Let xy and zw be the α - and β -diameters of K and suppose that they do not intersect. Then the quadrilateral with vertices x, y, z, w is convex and xy, zw are opposite sides (see Figure 2). Assume that xyzw is the order of the vertices in the quadrilateral. Since the internal angles add up to 2π then we can assume that $\angle yxw + \angle zyx \ge \pi$. Since K is strictly convex then there is a chord parallel to xy in $H^+(x,y)$ with length greater than xy which contradicts the fact that xy Figure 2: The chord uv is larger than the chord xy. is the α -diameter. Finally note that even if x = w (or z = y), we can replace the line xw (or zy) by the tangent line to K at x (or at y) and the argument still follows (here we use the smoothness assumption). The last lemma, together with the continuity of ∂K , guarantees that for any boundary point x of K there exists a unique directional diameter with x as one of its endpoints. It also shows that both the left and right endpoints of the α -diameter (as functions of α) move continuously counterclockwise in ∂K . For each α -unit chord look at the two directional diameters having a_{α} or b_{α} as one of their endpoints, and let c_{α} be their point of intersection. Let $\theta(\alpha) = \pi - \angle b_{\alpha} c_{\alpha} a_{\alpha}$ (see Figure 3). Since K has width greater than one then θ is a strictly positive function. Hence, Figure 3: Definition of $\theta(\alpha)$. by continuity of θ on the compact set $[0, 2\pi]$ we have $m = \min \{\theta(\alpha) : \alpha \in [0, 2\pi]\} > 0$. Let P be an n-point subset of ∂K . Define $$U = \{ \alpha \in [0, 2\pi) : a_{\alpha}, b_{\alpha} \in P \}$$ and for every $\beta \in [0, \pi)$ $N(\beta) = |\{\alpha \in U : \text{the } \alpha\text{-unit chord does not cross the } \beta\text{-diameter}\}|$. Observe that $$N\left(\beta\right) = \sum_{\alpha \in U} \chi_{\beta}\left(\alpha\right)$$ where $\chi_{\beta}(\alpha) = \begin{cases} 1 \text{ if the } \alpha\text{-unit chord does not intersect the } \beta\text{-diameter} \\ 0 \text{ otherwise.} \end{cases}$ So $$\int_{0}^{\pi} N(\beta) d\beta = \int_{0}^{\pi} \sum_{\alpha \in U} \chi_{\beta}(\alpha) d\beta = \sum_{\alpha \in U} \int_{0}^{\pi} \chi_{\beta}(\alpha) d\beta,$$ but for fixed α , if b_{α} is an endpoint of the δ -diameter then $\chi_{\beta}(\alpha) = 1$ if and only if $\beta \in [\delta, \delta + \theta(\alpha)]$, i.e., $\int_0^{\pi} \chi_{\beta}(\alpha) d\beta = \theta(\alpha)$. Therefore $$mf(P) = m|U| \le \sum_{\alpha \in U} \theta(\alpha) = \int_{0}^{\pi} N(\beta) d\beta.$$ Now, as an application of Theorem 1 we claim that $$N(\beta) < 2n \text{ for all } \beta \in [0, \pi)$$ (2) and so $$\int_0^{\pi} N(\beta) \, d\beta \le 2\pi n.$$ Thus $f(P) \leq \left(\frac{2\pi}{m}\right)n$ for all *n*-point subsets of ∂K . Hence $f_K(n) \leq \left(\frac{2\pi}{m}\right)n$. To prove (2) let xy be the β -diameter. First suppose that $|\{x,y\} \cap P| \leq 1$, let $P_1 = P \cap H^+(x,y)$, $P_2 = P \cap H^-(x,y)$, and P'_1, P'_2 be the sets obtained from P_1 and P_2 by symmetrization with respect to the midpoint of xy. Since xy is a directional diameter then the sets $P_1 \cup P_1'$ and $P_2 \cup P_2'$ are in convex position, so according to Theorem 1, for i = 1, 2 $$2f(P_i) = f(P_i) + f(P_i') \le f(P_i \cup P_i') \le 2|P_i \cup P_i'| - 3 = 4|P_i| - 3,$$ therefore $$N(\beta) = f(P_1) + f(P_2) \le 2(|P_1| + |P_2|) - 3 \le 2n - 1 < 2n.$$ If $x, y \in P$ then $|P_i \cup P_i'| = 2|P_i| - 2$ in the above analysis, so even though $|P_1| + |P_2| = n + 2$ the conclusion still holds. Corollary 1 Let K be a strictly convex domain with C^2 boundary. If the curvature of K is less than 2 at each point of ∂K then $f_K(n) \leq cn$ for some positive constant c that only depends on K. **Proof.** By Blaschke's Rolling Theorem [1] if the curvature of K is less than 2 at each point of ∂K then a circle of radius 1/2 can freely roll inside K, and therefore the width of K is greater than one. ## Acknowledgments We are grateful to Farhad Shahrokhi and László Székely for their efforts in organizing the material of this volume and to the referees for their valuable comments. ### References - [1] W. Blaschke (1956), Kreis und Kugel, 2. Auflage, Berlin: Walter de Gruyter. - [2] P. Braß, Gy. Károlyi, P. Valtr (2001), An extremal theory of convex geometric graphs and related structures, manuscript. - [3] P. Braß, J. Pach (2001), The maximum number of times the same distance can occur among the vertices of a convex n-gon is $O(n \log n)$, J. Combinatorial Theory, Series A. 94, 178-179. - [4] H. Edelsbrunner and P. Hajnal (1991), A lower bound on the number of unit distances between the points of a convex polygon, *J. Combinatorial Theory*, Series A 56, 312-316. - [5] P. Erdős (1980), Some combinatorial problems in geometry, in *Geometry and Differential Geometry*, Lecture Notes in Mathematics, Vol. 792, Springer Verlag, NY, 46-53. - [6] P. Erdős and P. C. Fishburn (1995), Multiplicities of interpoint distances in finite planar sets, Discrete Applied Mathematics 60, 141-147. - [7] P. Erdős and L. Moser (1959), Problem 11, Canadian Mathematical Bulletin, 2, 43. - [8] P. Erdős and L. Moser (1970), An extremal problem in graph theory, Australian J. Mathematics 11, 42-47. - [9] Z. Füredi (1990), The maximum number of unit distances in a convex n-gon, J. Combinatorial Theory, Series A 55, 316-320. - [10] J. Pach and P. K. Agarwal (1995), Combinatorial geometry, Wiley-Interscience.