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Abstract

Given a finite set P ⊆ Rd, called a pattern, tP (n) denotes the maximum number
of translated copies of P determined by n points in Rd. We give the exact value of
tP (n) when P is a rational simplex, that is, the points of P are rationally affinely
independent. In this case, we prove that tP (n) = n −mr (n), where r is the rational
affine dimension of P , and mr (n) is the r-Kruskal-Macaulay function. We note that
almost all patterns in Rd are rational simplices. The function tP (n) is also determined
exactly when |P | ≤ 3 or when P has rational affine dimension one and n is large
enough. We establish the equivalence of finding tP (n) and the maximum number
sR (n) of scaled copies of a suitable pattern R ⊆ R+ determined by n positive reals.
As a consequence, we show that sAk (n) = n−Θ ¡n1−1/π(k)¢, where Ak = {1, 2, . . . , k}
is an arithmetic progression of size k, and π (k) is the number of primes less than or
equal to k.
AMS Subject Classification: 52C10 (Erdős Problems), 05C35 (Extremal Problems)
Keywords: pattern, geometric pattern, translates, translated copies, scaled copies,
Kruskal-Macaulay, rational dimension, rational simplex
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1 Introduction

Some of the most natural and important problems in Combinatorial Geometry are those
concerning repeated configurations and pattern recognition. A typical question in the area is
the following:

What is the maximum number of occurrences of a pattern among all subsets of
an n-point set in the d-dimensional space?

Here an occurrence is determined by a class of equivalence under a fixed group of geo-
metric transformations: translations, homotheties, congruences, similarities, and affinities.
Many of these problems were first asked by Erdős and Purdy [10], [11]. For instance, when
d = 2, the geometric group are congruences, and the pattern consists of the endpoints of a
unit segment; we obtain Erdős’ famous problem [9] (still wide open) about the maximum
number of unit segments that can be determined by a set of n points in the plane.
In general, determining the exact maxima for these problems is hard. The only non-trivial

instances where an exact formula is known are due to Brass [5] and van Wamelen [17], who
worked with unit segments (congruences) in R4; and to Swanepoel [16], who very recently
accomplished the impressive task of obtaining exact formulas for the maximum number of
unit segments determined by n points in R2d, for d ≥ 3, and for every n large enough. He
also found structural properties for the optimal sets in odd dimensions d.
In spite of this, there are very few known asymptotic formulae. In the best case, one

hopes to determine the order of magnitude for the corresponding maximum, and even this is
only known for few particular patterns and geometric transformations. Elekes and Erdős [8]
found the right order of magnitude for algebraic patterns in Rd under homotheties, and in
the plane under similarities. For arbitrary patterns, their upper bounds are almost matched
by their constructions. Continuing with similarities in the plane, Laczkovich and Rusza [13]
classified the patterns that can have a quadratic number of similar copies (the maximum
possible), and Ábrego, Elekes, and Fernández-Merchant [1] found structural properties on
those point-sets having a quadratic number of occurrences. The problem of similarities when
d ≥ 3 gets harder. Even for the simplest case of triangles in 3-space, we do not know the
right order of magnitude.
It is worth mentioning that the algorithmic aspect of these combinatorial questions is mo-

tivated by real-life necessities: finding patterns among the huge amounts of data obtained by
scanners, digital cameras, electron microscopes, telescopes, etc. The reader is encouraged to
see [4], [6], [7], and [15] for further references and the current status of both the combinatorial
and the algorithmic problems.
In this paper, we consider the problem of finding the maximum number of translated

copies of a pattern that can occur among n points in d-dimensional space. More precisely,
let P ⊆ Rd be a fixed finite subset of the d-dimensional real space. We refer to P as a
pattern. For any finite set X ⊆ Rd, let tP (X) be the number of translated copies, or simply
translates, of P contained in X. That is,

tP (X) =
¯̄©
P 0 ⊆ X : P 0 = v + P where v ∈ Rd

ª¯̄
.
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We want to determine the largest possible value of tP (X) among all n-point sets X ⊆ Rd.
We denote this by

tP (n) = max
©
tP (X) : X ⊆ Rd, |X| = n

ª
.

This problem was previously considered by Brass [4]. It was also presented as a proto-
type, by Pach and Sharir, for the many problems about repeated configurations and pattern
recognition treated in [15]. Brass defined the rational affine dimension, dimQ P , of a pattern
P ⊆ Rd as the dimension of the affine space generated by P . This is precisely the rational
linear dimension of the set generated by P + (−P ) = {p1 − p2 : p1, p2 ∈ P}, i.e., the size of
the smallest set B such that any element of P + (−P ) is a linear combination with rational
coefficients of elements of B. Note that the rational linear dimension of a set may be larger
than its rational affine dimension, but when P contains the origin the two dimensions coin-
cide. Brass found the asymptotic value of tP (n) in terms of the rational affine dimension r
of P . He proved that

tP (n) = n−Θ
¡
n1−1/r

¢
. (1)

Figure 1: Optimal set with n = 1716 points and the maximum number of translates of P ,
the regular heptagon.

Our main result gives the exact value of tP (n) when the pattern P is a rational simplex,
that is, |P | = dimQ P +1.We remark that almost all patterns P in Rd are rational simplices.
If we were to select a pattern at random (with a fixed number of points) from a compact
subset of Rd with positive finite measure, then the pattern would be a rational simplex with
probability one. Some interesting patterns are also rational simplices. For instance, a regular
polygon with prime number of sides (Figure 1), a regular pentagonal pyramid (Figure 2), or
the set {0, 1,√2,√3, e}.
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To present our explicit formula we need some definitions from finite set theory. Given
positive integers r and n, there is a unique way of writing n as

n =

µ
nr
r

¶
+

µ
nr−1
r − 1

¶
+ ...+

µ
n2
2

¶
+

µ
n1
1

¶
(2)

so that 0 ≤ n1 < n2 < · · · < nr−1 < nr are integers. Using this representation, called the
r-binomial representation of n, the r-Kruskal-Macaulay function, is defined as,

mr (n) =

µ
nr − 1
r − 1

¶
+

µ
nr−1 − 1
r − 2

¶
+ ...+

µ
n2 − 1
1

¶
+

µ
n1 − 1
0

¶
.

(See [3], [12] for details.) Our main result, proved in Section 2, states that

Theorem 1 If P is a rational simplex with dimQ (P ) = r, then

tP (n) = n−mr (n) .

Figure 2: Optimal set with n = 126 points and the maximum number of translates of P , the
pentagonal pyramid

Since any pattern P with rational affine dimension r contains an r-dimensional rational
simplex, then tP (n) ≤ n − mr (n) ≤ n − r

(r!)1/r
n1−1/r + O(n1−2/r). Brass also used the r-

dimensional rational simplex to find an upper bound for tP (n). Implicit in his proof [4] is
the bound tP (n) ≤ n−√π/(2Γ(r/2+1)1/r)n1−1/r, where Γ is Euler’s Gamma Function. Our
result improves this inequality and gives a tight lower bound for the leading coefficient of
the error term. As a way of comparing, when r →∞ Brass’ coefficient goes to zero, whereas
ours goes to e.
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We also consider the following problem about maximizing scaled copies of a pattern. Let
R be a fixed finite set of positive reals. Again, we refer to R as a (real) pattern. For any
finite set Y ⊆ R+, let sR (Y ) be the number of scaled copies of R contained in Y . That is,

sR (Y ) =
¯̄©
R0 ⊆ Y : R0 = λR for some λ ∈ R+ª¯̄ .

We want to determine the value of sR (n) = max {sR (Y ) : Y ⊆ R+, |Y | = n} .
The following result shows the equivalence of maximizing the number of scaled copies

of a real pattern and maximizing the number of translates of an equivalent pattern. Its
proof, included in Section 3, provides explicit ways of constructing a pattern P in Rd from
a pattern R of positive reals, and vice versa. Before stating the theorem we introduce some
terminology from abstract algebra. If R is a finite set in R+, we denote by hRi the smallest
multiplicative subgroup of R+ containing R. By construction hRi is a finitely generated free
abelian group. That is, there is a finite subset of hRi, called a basis, which satisfies that every
element of the group can be written in one and only one way as a finite product of integer
powers of the elements in the basis. In general, a free abelian group has many different bases,
but all bases have the same cardinality, and this cardinality is called the rank of the group.

Theorem 2 Let n ∈ N. For every pattern R ⊆ R+, there exists a pattern P ⊆ Zd, where d
is the rank of R, such that

sR (n) = tP (n) .

Reciprocally, for every dimension d and every pattern P ⊆ Rd, there is a pattern R ⊆ N
satisfying sR (n) = tP (n). Moreover, |R| = |P |, and if 1 ∈ R, or equivalently if 0 ∈ P , then
the rank of R and the rational affine dimension of P coincide.

Before proving this theorem, at the beginning of Section 3, we present some of its appli-
cations to the number of scaled copies of an arithmetic progression. Let Ak = {1, 2, 3, ..., k},
if k ≤ 4 we determine precisely sAk

(n) for every n. We also show that

Theorem 3 If k ∈ N, then sAk
(n) = n−Θ

¡
n1−1/π(k)

¢
where π (k) is the number of primes

not exceeding k.

In Section 4, we concentrate on the 1-(rational affine) dimensional patterns. We essen-
tially solve the problem. We give the exact value of tP (n) for n large enough and any pattern
P with |P | ≥ 3 by showing the following
Theorem 4 Let P = {0, a1, a2, · · · , ak+1} ⊆ Z with k ≥ 1, 0 < a1 < a2 < · · · < ak+1 = M ,
and such that gcd {ai}k+1i=1 = 1. Then

tP (n) = n−M for every n ≥M (M − k) .

We give the exact values of tP (n) for all n when |P | ≤ 3: tP (n) = n for |P | = 1 is trivial,
tP (n) = n− 1 if |P | = 2 is a consequence of Theorem 1, and for |P | = 3 we show
Theorem 5 Let P = {0, a, b} ⊆ Z with 0 < a < b and gcd (a, b) = 1. Then

tP (n) =

(
n−

lq
2n+ 1

4
− 1

2

m
if n ≤ ¡b

2

¢
n− b if n >

¡
b
2

¢
.
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Finally, in Section 5, we study 2-(rational affine) dimensional patterns with four points.
We determine t¤ (n) and tL(n) where ¤ represents the pattern in R2 consisting of the four
vertices of a square, and L = {(0, 0), (1, 0), (2, 0), (0, 1)}. We also present some conjectures
about the exact value of tP (n) for every set P with |P | = 4.
In this paper, we denote by N the set of positive integers and by N∗ = N∪ {0} the set of

non-negative integers.

2 Proof of Theorem 1: Translates of a rational simplex

2.1 Preliminaries and discretization

Let P be a finite set in Rd. By translating P if necessary, we can assume that 0 ∈ P . Let
hP i+ be the additive subgroup of Rd generated by P and {v1, v2, . . . , vr} a basis of hP i+.
Then hP i+ = {k1v1 + k2v2 + · · · + krvr : ki ∈ Z} and, since 0 ∈ P , r is the rational affine
dimension of P . Note that any translate v+P of P is contained in a single equivalence class
v + hP i+ ∈ Rd/ hP i+. The following lemma restricts the maximum for the function tP (n)
to hP i+.
Lemma 1 For any finite set P ⊆ Rd,

tP (n) = max
©
tP (X) : X ⊆ hP i+ , |X| = n

ª
.

Proof. Take X ⊆ Rd and assume that X ⊇ X1 ∪ X2, where X1 and X2 are contained in
different classes u1 + hP i+ and u2 + hP i+, respectively. For k ∈ Z large enough, the set
X 0
2 = (u1 − u2 + kv1)+X2 ⊆ u1+ hP i+ has no elements in common with X. Also X 0

2 has as
many translates of P as X2. Replacing X2 by X 0

2 in X, we obtain a set intersecting a fewer
number of equivalence classes in Rd/ hP i+ and with at least as many translates of P as X.
Now, if X is contained in a single class u1+ hP i+, consider the set (−u1)+X ⊆ hP i+. Since
this set contains as many translated copies of P as X, the identity is satisfied.

2.2 Reduction to the standard simplex and construction of Br(n)

Let Pr ⊆ Rr be the standard r-simplex consisting of 0 and the r standard basis vectors
e1, e2, . . . , er. If P is a rational simplex with dimQ (P ) = r, we can assume that P =
{0, v1, v2, ..., vr} by using a suitable translation. Under the linear transformation (from hP i+
to Zr) that sends vi to ei, translates of P correspond to translates of Pr. Thus, by Lemma
1, we have that

tP (n) = max
©
tP (X) : X ⊆ hP i+ , |X| = n

ª
(3)

= max {tPr (X) : X ⊆ Zr, |X| = n} .
We first construct an n-set Br(n) ⊆ Zr having at least n−mr(n) translates of Pr. Then by
(3), tP (n) ≥ n −mr (n). We construct Br(n) recursively as follows. For every n ∈ N, set
B1(n) = {1, 2, . . . , n}. For r ≥ 2, if n =

¡
nr
r

¢
for some nr ∈ Z, let

Br(
¡
nr
r

¢
) = {(x1, x2, . . . , xr) ∈ Zr : xi ≥ 0, xr ≥ 1,

and x1 + x2 + · · ·+ xr ≤ nr − r + 1}.
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Note that this set has exactly
¡
nr
r

¢
points. For all other values of n, consider the r-binomial

representation n =
¡
nr
r

¢
+
¡
nr−1
r−1
¢
+ ...+

¡
n2
2

¢
+
¡
n1
1

¢
and let n0 = n− ¡nr

r

¢
> 0. Define

Br(n) = Br(
¡
nr
r

¢
) ∪ (Br−1(n0) ∗ {0}) ,

whereBr−1(n0)∗{0} consists of the points inBr−1(n0) with an extra coordinate zero appended
to them (see Figure 3). Observe that Br(n) has exactly n points and, by construction, all
points x = (x1, x2, . . . , xr) satisfy that x1 + x2 + · · · + xr ≤ nr − r + 1. (This is clear
for x ∈ Br(

¡
nr
r

¢
), otherwise x ∈ Br−1(n0) ∗ {0} and thus (x1 + x2 + · · ·+ xr−1) + xr ≤

nr−1 − (r − 1) + 1 + 0 ≤ nr − r + 1 since nr−1 < nr.)

Figure 3: Construction of B3(n) with n =
¡
7
3

¢
+
¡
5
2

¢
+
¡
2
1

¢
= 47 points and n−m3(n) = 27

translates of P3.

2.3 The number of translates of the standard simplex in Br(n)

We prove that tPr(Br(n)) ≥ n−mr(n) by induction on r. If r = 1, then Br(n) = {1, 2, ..., n}
which clearly contains n− 1 copies of P1 = {0, 1}, that is, tPr(Br(n)) = n− 1 = n−m1(n).
Let r ≥ 2 and assume the result is true for r−1. We bound the number of points x in Br (n)
such that x+Pr ⊆ Br (n), observing that different points generate different translates of Pr.
We do this first for points in Br(

¡
nr
r

¢
), and then for points in Br−1(n0) ∗ {0}.

If x ∈ Br(
¡
nr
r

¢
) and x1 + x2 + · · · + xr ≤ nr − r, then x + ei ∈ Br(

¡
nr
r

¢
) for 1 ≤ i ≤ r.

Therefore x+ Pr ⊆ Br(
¡
nr
r

¢
) and thus tPr(Br(

¡
nr
r

¢
)) ≥ ¡nr

r

¢− ¡nr−1
r−1
¢
.

Now, suppose that x0+Pr−1 is a translate of Pr−1 in Br−1(n0) with x0 = (x1, x2, . . . , xr−1).
Then the point x0 ∗ {0} ∈ Br−1(n0) ∗ {0} ⊆ Br (n) , and we claim that x0 ∗ {0}+Pr ⊆ Br(n).
Indeed, for 1 ≤ i < r, we have that x0+ei ∈ Br−1(n0) and then x0∗{0}+ei = (x

0 + ei)∗{0} ∈
Br−1(n0)∗{0} ⊆ Br (n). In particular, x1+x2+· · ·+xr−1+1 ≤ nr−r+1 and thus x0∗{0}+er =
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(x1, x2, . . . , xr−1, 1) ∈ Br(
¡
nr
r

¢
) ⊆ Br (n). All this gives at least tPr−1 (n

0) translates x+Pr in
Br (n) with x ∈ Br−1(n0) ∗ {0}. Finally, by induction tPr−1 (n

0) ≥ n0 −mr−1(n0) and thus,

tPr(Br(n)) ≥ tPr(Br(
¡
nr
r

¢
)) + tPr−1 (n

0)

≥
µ
nr
r

¶
−
µ
nr − 1
r − 1

¶
+ n0 −mr−1(n0) = n−mr(n).

2.4 Bounding tP (n) above

To prove the reverse inequality, tP (n) ≤ n − mr (n), we use the following result from [2].
This inequality is tight for every r and infinitely many values of n. In [2] the authors use
this inequality to give a short proof of Macaulay’s Theorem, (see [12],[14]).

Lemma 2 If r ≥ 2 and 0 ≤ a < mr (n), then

mr−1 (a) +mr (n− a) ≥ mr (n) . (4)

Moreover, if n =
¡
N
r

¢
for some N ≥ r, then equality in (4) occurs only when a = 0.

Let X be an n-point set in Zr. A point x ∈ X is called a deficit point with respect
to Pr if x + Pr * X. Define dr(X) as the number of deficit points with respect to Pr

in the set X. Clearly tPr(X) = n − dr(X). We prove by induction, on r first and then
on n, that dr(X) ≥ mr(n) for all n-point set X ⊆ Zr. This, together with (3), gives
tP (n) = n−min {dr (X) : X ⊆ Zr, |X| = n} ≤ n−mr(n).
If r = 1, then clearly the largest point in X ⊆ Z is a deficit point, thus d1(X) ≥ 1 =

m1(n). Suppose r ≥ 2 and that the inequality holds for r − 1. If n ≤ r, then the result
is trivially true since dr(X) = n = mr (n). Assume n ≥ r + 1 and that the result holds
for values smaller than n. By using an appropriate translation, we can assume that the
r-coordinate of every point in X is greater than zero and that there are some points with
r-coordinate equal to one. For every i ≥ 1 let Li be the points in X with r-coordinate equal
to i. Let li = |Li| and note that l1 ≥ 1.
First assume that l1 ≥ mr(n). Observe that every non-deficit point x in Li is bijectively

associated to the point x + er ∈ Li+1. Then there are at least li − li+1 deficit points in Li.
Assuming that u is the largest subindex such that lu 6= 0, we get dr(X) ≥

Pu
i=1(li − li+1) =

l1 ≥ mr(n).
On the other hand, if l1 < mr(n) then, by Lemma 2, inequality (4) holds with a = l1.

This time note that every deficit point with respect to Pr−1 in Li is also a deficit point with
respect to Pr in X which means that dr(Li) ≥ dr−1(Li). Thus dr(X) ≥ dr−1(L1)+dr(X\L1).
By induction on r, dr−1(L1) ≥ mr−1(l1), and by induction on n, dr(X\L1) ≥ mr(n − l1).
These, together with (4), give dr(X) ≥ mr(n). ¥

Remark. The problem of classifying the n-sets X for which tPr(X) = tPr(n) is open. The
first difficulty would be to determine the pairs (a, n) for which we get identity in (4). However,
for n of a particular form we can determine uniqueness for the optimal sets constructed in
Section 2.2 (in particular the sets shown in Figures 1 and 2 are unique).
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Proposition 1 If n =
¡
N
r

¢
, then the set X = Br(n) is the unique n-set in Zr (modulo

translations) for which tPr(X) = tPr(n).

Proof. According to the proof of Theorem 1, dr(X) = mr(n). If l1 < mr(n) =
¡
N−1
r−1
¢
then

dr(X) ≥ dr−1(L1)+dr(X\L1) ≥ mr−1(l1)+mr(n− l1). Because l1 > 0 it follows, by Lemma
2, that (4) is strict. Thus,

mr(n) = dr(X) ≥ mr−1(l1) +mr(n− l1) > mr(n),

which is impossible. For the other case we must have l1 ≥ mr(n). Then mr(n) = dr(X) ≥
l1 ≥ mr(n), i.e., l1 = mr(n) =

¡
N−1
r−1
¢
. Further,

mr(n) = dr(X) ≥ dr−1(L1) + dr(X\L1) ≥ mr−1(l1) +mr(n− l1) ≥
≥ mr−1(

¡
N−1
r−1
¢
) +mr(

¡
N−1
r

¢
) =

¡
N−2
r−2
¢
+
¡
N−2
r−1
¢
=
¡
N−1
r−1
¢
= mr(n).

Thus equality must occur everywhere. Then L1 is an optimal set for Pr−1 with
¡
N−1
r−1
¢
points,

and X\L1 is an optimal set for Pr with
¡
N−1
r

¢
points. By induction, L1 and X\L1 are

translates of Br−1(l1) and Br(n− l1), the optimal sets constructed in Section 2.2. Moreover,
to have equality in dr(X) ≥ dr−1(L1) + dr(X\L1), we need that every non-deficit point in
L1 is exactly below, in the xr coordinate, a point from X\L1. This can only happen if L1 is
the bottom layer (in the xr coordinate) of Br(n).

3 Equivalence between translates and scaled copies

3.1 Applications of the equivalence

Before we present the proof of Theorem 2, we show some of its applications. In particular,
we bound the maximum number of scaled copies of an arithmetic progression. Recall that
Ak = {1, 2, 3, ..., k}. Clearly sA1 (n) = n. Under the equivalence given by Theorem 2, the real
patterns A2 and A3 correspond to the patterns P1 = {0, 1} and P2 = {(0, 0) , (1, 0) , (0, 1)},
respectively. Thus, by Theorem 1, sA2 (n) = tP1 (n) = n − m1 (n) = n − 1 and sA3 (n) =

tP2 (n) = n−m2 (n) = n−
lq

2n+ 1
4
− 1

2

m
(the last identity is an elementary calculation).

Similarly, A4 corresponds to the pattern L = {(0, 0) , (1, 0) , (2, 0), (0, 1)} and thus sA4 (n) =
tL (n) = n− d2√n− 1e by Theorem 6 (see Section 5). For larger arithmetic progressions we
do not have exact values of sAk

(n). Yet, we know its asymptotic behavior in terms of the
rank of hAki as a multiplicative subgroup of R+. For example, if k = 5 then A5 has rank 3
(it actually corresponds to the pattern {(0, 0, 0) , (1, 0, 0) , (2, 0, 0) , (0, 1, 0), (0, 0, 1)}). Then
by (1), sA5 (n) = n− Θ

¡
n2/3

¢
. In general, using the Fundamental Theorem of Arithmetic,

any element of Ak can be multiplicatively generated by the primes within Ak, and all these
primes are necessary to generate Ak. That is, the rank of Ak is equal to π (k), the number
of primes that are less than or equal to k. Thus by (1), sAk

(n) = n−Θ
¡
n1−1/π(k)

¢
, proving

Theorem 3.
The values of sR (n) can be determined for other patterns. For example, if R = {1, 2, 3, 6}

then R corresponds, under Theorem 2, to ¤ = {(0, 0) , (1, 0) , (1, 1) , (0, 1)}. By Theorem 6,
sR (n) = t¤ (n) = n − d2√n− 1e. Other patterns like R = {1,√2, π} correspond to the
same pattern P2 as A3 (above) and thus sR (n) = n−

lq
2n+ 1

4
− 1

2

m
.
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3.2 Proof of Theorem 2

Let R be a finite set in R+. By dilating R, we can assume that 1 ∈ R. Recall that hRi is the
multiplicative subgroup of R+ generated by R. Let {x1, x2, . . . , xq} be a basis of hRi. Then
q is the rank of hRi and hRi = {xk11 xk22 · · ·xkqq : ki ∈ Z}. Since any scaled copy λR of R is
contained in a single equivalence class λ hRi ∈ R+/ hRi, we can restrict the maximum for
the function sR (n) to hRi. The following lemma is the multiplicative analogue of Lemma 1.

Lemma 3 For any finite set R ⊆ R+,
sR(n) = max {sR (Y ) : Y ⊆ hRi , |Y | = n} .

Proof. Take Y ⊆ R+ and assume that Y ⊇ Y1 ∪ Y2 where Y1 and Y2 are contained
in the different classes λ1 hRi and λ2 hRi, respectively. For k ∈ Z large enough, the set
Y 0
2 = (λ1λ

−1
2 xk1)Y2 ⊆ λ1 hRi has no elements in common with Y , and Y 0

2 has as many scaled
copies of R as Y2. Replacing Y2 by Y 0

2 in Y gives a set intersecting a fewer number of
equivalence classes in R+/ hRi and with at least as many scaled copies of R as Y . Now, if
Y is contained in a single class λ1 hRi ∈ R+/ hRi, the set (λ−11 )Y ⊆ hRi contains as many
scaled copies of R as Y , proving the identity.

The function G : hRi → Zq given by G(xk11 x
k2
2 · · ·xkqq ) = (k1, k2, . . . , kq) is a group

isomorphism. Thus G (λR) = G (λ)+G (R) for any λ ∈ hRi, and v+G (R) = G (G−1 (v)R)
for any v ∈ Zq. That is, scaled copies of R in hRi ⊆ R+ uniquely correspond to translates
of G (R) in Zq ⊆ Rq under G. Hence,

Y ⊆ hRi implies |Y | = |G (Y )| and sR(Y ) = tG(R)(G(Y )). (5)

Let P be a finite set in Rd containing 0 and with rational affine dimension r. As-
sume {v1, v2, ..., vr} is a basis of hP i+ and consider any r distinct primes p1, p2, .., pr. Then
hp1, p2, ..., pri = {pk11 pk22 · · · pkrr : ki ∈ Z} is a multiplicative subgroup of R+ and the function
F : hP i+ → hp1, p2, ..., pri given by F (k1v1+ k2v2+ · · ·+ krvr) = pk11 p

k2
2 · · · pkrr is a group iso-

morphism. Thus F (v + P ) = F (v)F (P ) for any v ∈ hP i+, and λF (P ) = F (F−1 (λ) + P )
for any λ ∈ hp1, p2, ..., pri. That is, translates of P in hP i+ ⊆ Rd uniquely correspond to
scaled copies of F (P ) in hp1, p2, ..., pri ⊆ R+. Hence,

X ⊆ hP i+ implies |X| = |F (X)| and tP (X) = sF (P )(F (X)). (6)

By Lemma 3, (5), and Lemma 1 we have

sR(n) = max {sR (Y ) : Y ⊆ hRi , |Y | = n}
= max

©
tG(R) (G(Y )) : Y ⊆ hRi , |Y | = n

ª
= max

©
tG(R) (X) : X ⊆ G (hRi) , |X| = n

ª
= tG(R)(n).

To obtain the last identity, observe that hG(R)i+ ⊆ G (hRi) ⊆ Rq. Lemma 1 guarantees
that the maximum of tG(R)(X) over all X in a subset of Rq containing hG(R)i+ is exactly
tG(R)(n). Moreover, since G is an isomorphism and 1 ∈ R, then G(1) = 0 ∈ G(R) and
q = dimQG(R).
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Similarly, by Lemma 1, (6), and Lemma 3 together with hF (P )i ⊆ F (hP i+) ⊆ R+, we
have that

tP (n) = max
©
tP (X) : X ⊆ hP i+ , |X| = n

ª
= max

©
sF (P ) (F (X)) : X ⊆ hP i+ , |X| = n

ª
= max

©
sF (P ) (Y ) : Y ⊆ F

¡hP i+¢ , |Y | = n
ª
= sF (P )(n).

Since F is an isomorphism and 0 ∈ P , then F (0) = 1 ∈ F (P ) and r is the rank of P . Finally,
observe that for a suitable λ > 0, we can guarantee that λF (P ) ⊆ N, so we may assume
F (P ) ⊆ N. ¥

4 1-dimensional translated patterns

Let P ⊆ Rd be a pattern with dimQ (P ) = 1. Then all members of P are rational multiples
of a vector z ∈ Rd. Thus, using a suitable affine transformation, we can assume that P =
{0, a1, a2, ..., ak, ak+1} ⊆ Z with 0 < a1 < a2 < ... < ak < ak+1 = M and gcd {ai}k+1i=1 = 1.
Clearly, if |P | = 1, then tP (n) = n. If |P | = 2, then we can assume P = {0, 1}. By Theorem
1, tP (n) = n −m1 (n) = n − 1. Theorem 4 shows that tP (n) = n −M for |P | ≥ 3 and n
large enough, namely n ≥M (M − k).

4.1 Proof of Theorem 4

Let An = {1, 2, 3, ..., n}. If n ≥ M clearly x + P ⊆ An if and only if 1 ≤ x ≤ n−M. Thus
tP (n) ≥ tP (An) = n−M .
Now we prove tP (n) ≤ n − M for any n-set X and n ≥ M (M − k). We study

the subset of X consisting of the first points of translates of P . Specifically, let X0 =
{x ∈ X : x+ P ⊆ X}. Clearly |X0| = tP (X). We consider the residue classes of X0 modulo
M . For 1 ≤ i ≤ M , let Bi = {x ∈ X0 : x+ i ≡ 0 (modM)}, Ci = {x ∈ X\X0 : x + i ≡
0 (modM)}, and set xi = |Bi| , yi = |Ci|. Of course

MX
i=1

(xi + yi) = n and
MX
i=1

xi = tP (X). (7)

Now observe that if Bi 6= ∅ and mi = maxBi then mi +M ∈ Ci 6= ∅, i.e.,

yi = 0 implies xi = 0. (8)

By definition, if x ∈ Bi ⊆ X0 then x + aj + (i− aj) ≡ x + i ≡ 0 (modM) and x + aj ∈ X.
Thus Bi + aj ⊆ Bi−aj ∪ Ci−aj , that is, xi ≤ xi−aj + yi−aj . Replacing i by i+ aj, we get

xi+aj − xi ≤ yi for 0 ≤ i ≤M − 1 and 1 ≤ j ≤ k, (9)

where the indices are taken modM .
Let I = {i : yi = 0}. If I = ∅, then tP (X) =

PM
i=1 xi = n −PM

i=1 yi ≤ n − M by
(7). If I 6= ∅, we may assume, using a suitable translation of X, that yM = 0. Then
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by (8) xM = x0 = 0 and by (9) xaj = 0 for all j. Let A = (a1, a2, . . . , ak), for every
N = (n1, n2, . . . , nk) ∈ (N∗)k we define the dot product N · A =

Pk
j=1 njaj, and the norm

|N | =Pk
j=1 nj. We also define a partial order on the vectors in (N∗)k: If N,N 0 ∈ (N∗)k we

say that N 0 ≺ N if n0i ≤ ni for 1 ≤ i ≤ k and N 0 6= N . We claim the following,

Claim 1 For every 1 ≤ u < M there is a vector N = (n1, n2, . . . , nk) ∈ (N∗)k such that
N ·A ≡ u(modM) and N1 ·A 6≡ N2 ·A(modM) for every N1 ≺ N2 ¹ N .

Proof. First, since gcd {ai}k+1i=1 = 1, the set of vectorsN ∈ (N∗)k such thatN ·A ≡ u(modM)
is non-empty. Suppose N ∈ (N∗)k satisfies N ·A ≡ u(modM) and minimizes |N |. Clearly if
N1 ≺ N then |N1| < |N | and consequently N1 ·A 6≡ u(modM). This proves the result when
N2 = N . Similarly, if 0 ≺ N 0 ≺ N then N 0 · A 6≡ 0(modM). Otherwise |N − N 0| < |N |
and (N −N 0) ·A ≡ u(modM). Suppose N1 ≺ N2 ¹ N and N1 ·A ≡ N2 ·A(modM). Then
0 ≺ N2 −N1 ≺ N and (N2 −N1) ·A ≡ 0(modM) which contradicts the observation above.
This proves the claim.

Let N be a vector given by the claim. For every 1 ≤ t ≤ |N | we define v(t) ∈ (N∗)k as

v(t) = (n1, n2, . . . , nqt, rt, 0, . . . , 0),

where 0 ≤ qt ≤ k − 1 and 1 ≤ rt ≤ nqt+1 are the unique integers such that |v(t)| =
n1 + · · ·+ nqt + rt = t. By construction 0 ≺ v(1) ≺ v(2) ≺ · · · ≺ v(|N |) = N , and by Claim
1, all residues modM of v(t) · A, 1 ≤ t ≤ |N | are pairwise different. By (9) we have for
1 ≤ t ≤ |N |− 1,

xv(t+1)·A − xv(t)·A ≤ yv(t)·A.

Adding all these inequalities, and since xa1 = 0, we obtain

xu = xu − xa1 = xN ·A − xv(1)·A ≤
|N |−1X
t=1

yv(t)·A ≤
M−1X
j=0

yj = n− tP (X).

The last inequality follows from the fact that all the indices v(t) · A, 1 ≤ t ≤ |N | − 1
are pairwise different modM . If we now add all these inequalities for every u except u =
0, a1, . . . , ak (xu is equal to zero for these values), using (7) we get

tP (X) =
M−1X
u=0

xu ≤ (M − k − 1) (n− tP (X)) .

Finally, since n ≥M(M − k), we have tP (X) ≤ n− n
M−k ≤ n−M . ¥

Theorem 4 only works for n large enough. Theorem 5 gives the exact value of tP (n) for
all n when |P | = 3. In fact, Theorem 4 is implied (and improved) by Theorem 5 when M is
relatively prime to some ai, 1 ≤ i ≤ k.
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4.2 Proof of Theorem 5

Let P = {0, a, b} ⊆ Z with 0 < a < b and gcd (a, b) = 1. For n ≤ ¡b
2

¢
, let m and p be the

unique positive integers such that n =
¡
m
2

¢
+ p with 1 ≤ p ≤ m. A simple calculation shows

that m =
lq

2n+ 1
4
− 1

2

m
. Note that 1 ≤ m ≤ b− 1. We want to prove

tP (n) =

(
n−m if n ≤ ¡b

2

¢
n− b if n >

¡
b
2

¢
.

(10)

If n ≥ ¡b
2

¢
+ 1, then tP (n) ≥ tP (An) ≥ n − b as shown in the proof of Theorem 4. If

n ≤ ¡b
2

¢
, we construct the n-set

Xn =
m−1[
j=0

½
ai+ bj : 0 ≤ i ≤ m− j − 2 + εj and εj =

½
1 if j ≤ p− 1
0 if j ≥ p

¾
such that tP (Xn) = n−m.
To check that Xn has in fact n elements, we show that the sets in the union above are

pairwise disjoint, and thus |Xn| =
Pm−1

j=0 (m− j − 1) +Pp−1
j=0 1 =

¡
m
2

¢
+ p = n. Indeed, if

ai1+bj1 = ai2+bj2 then a (i1 − i2) = b (j1 − j2), and since gcd(a, b) = 1, then i1 ≡ i2 (mod b).
But 0 ≤ i1, i2 < m ≤ b− 1 and thus i1 = i2 and j1 = j2.
To count the number of translates in Xn, define X 0

n = {x ∈ Xn : x + P ⊆ Xn}. By
definition, tP (Xn) = |X 0

n|. We claim that

X 0
n ⊇

m−2[
j=0

{ai+ bj : 0 ≤ i ≤ m− j − 3 + εj+1} .

Indeed, suppose that x = ai + bj with 0 ≤ j ≤ m− 2 and 0 ≤ i ≤ m− j − 3 + εj+1. Note
that x ∈ Xn. Since εj+1 = 1 implies εj = 1, then x + a = a (i+ 1) + bj ∈ Xn and thus
1 ≤ i+ 1 ≤ m− j − 2 + εj+1 ≤ m− j − 2 + εj. Similarly, x+ b = ai+ b (j + 1) ∈ Xn since
0 ≤ i ≤ m− (j + 1)− 2 + εj+1. Finally,

tP (Xn) = |X 0
n| ≥

m−2X
j=0

(m− j − 2) +
p−2X
j=0

1 =
¡
m−1
2

¢
+ p− 1

=
¡
m−1
2

¢
+ n− ¡m

2

¢− 1 = n−m.

Now, we argue that the right-hand side of (10) bounds tP (n) above. We follow the proof
and notation of Theorem 4, with k = 1, a1 = a, and a2 =M = b. ButBi andCi are somewhat
different: Bi = {x ∈ X0 : x+ ia ≡ 0 (mod b)} and Ci = {x ∈ X\X0 : x+ ia ≡ 0 (mod b)} for
0 ≤ i ≤ b− 1. Again, let xi = |Bi|, yi = |Ci|, and I = {i : yi = 0}. In this case, (7) and (8)
still hold and (9) becomes

xi − xi−1 ≤ yi−1, (11)

where all indices of x and y are taken mod b. Again, if I = ∅, then tP (X) ≤ n− b ≤ n−m.
The same occurs if s =

Pb
i=1 yi ≥ b. From this point on, the proofs of Theorems 4 and 5

diverge.
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Suppose now that I 6= ∅, s < b, and {xi}, {yi} are non-negative integers maximizingPb
i=1 xi subject to the restrictions in (7), (8), and (11). If yi = 0, then by (8) xi = 0 and

then by (11) xi+1 = 0. Suppose 1 ≤ z(1) < z(2) < · · · < z(k) are the members of I. By a
suitable translation of X, we may assume that z(1) = 1. Note that 1 ≤ k < b ≤ s. Based
on our previous observation and (11) we have for 1 ≤ j ≤ k,

xz(j) = xz(j)+1 = 0 = yz(j)

xz(j)+2 ≤ yz(j)+1

xz(j)+3 ≤ yz(j)+1 + yz(j)+2
...

xz(j+1)−1 ≤ yz(j)+1 + yz(j)+2 + · · ·+ yz(j+1)−2.

Thus
b−1X
i=0

xi ≤
kX

j=1

z(j+1)−z(j)−1X
u=0

yz(j)+u (z (j + 1)− z(j)− 1− u) . (12)

(For convenience we added zero-terms to the second sumwhen u = 0 or u = z(j+1)−z(j)+1.
Also z(k + 1) = b + 1 by convention). The following lemma allows us to bound the right-
hand side of (12). The proof of the lemma consists of solving a simple linear programming
problem. We defer the proof of this lemma to Section 4.3 and continue with the proof of the
theorem.

Lemma 4 Let b, k, s ∈ Z+ such that 1 ≤ k < b ≤ s. Consider the function

G(y1, y2, . . . , yb) =
kX

j=1

z(j+1)−z(j)−1X
u=0

yz(j)+u (z (j + 1)− z(j)− 1− u) (13)

where yi ∈ N∗, I = {i : yi = 0} = {z(1), z(2), · · · , z(k)} with 1 = z(1) < z(2) < · · · < z(k)
(z(k + 1) = b+ 1 by convention), and s =

Pb
i=1 yi.

G is maximized (uniquely except for symmetries mod b) by y1 = y2 = · · · = yk = 0,
yk+1 = s− (b− k − 1), and yk+2 = yk+3 = · · · = yb = 1.

By Lemma 4, we can assume that y1 = y2 = · · · = yk = 0, yk+1 = s − (b− k − 1), and
yk+2 = yk+3 = · · · = yb = 1. Then,

tP (X) =
b−1X
i=0

xi ≤
b−k−1X
u=1

yk+u (b− k − u)

≤ (s− (b− k − 1)) (b− k − 1) + ¡b−k−1
2

¢
= s (b− k − 1)− ¡b−k

2

¢
.

Now recall that s = n− tP (X). Thus

tP (X) ≤ n−
µ

n

b− k
+

b− k − 1
2

¶
.
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Let l = m if n ≤ ¡b
2

¢
, and l = b otherwise. Note that n >

¡
l
2

¢
. Since k ∈ Z, then

(b− k) (l − 1)− ¡b−k
2

¢
=
1

2

µ
l − 1

2

¶2
− 1
2

µ
b− k −

µ
l − 1

2

¶¶2
≤ 1
2

Ãµ
l − 1

2

¶2
− 1
4

!
=
¡
l
2

¢
.

Divide by b− k to get l − 1 ≤ ¡l
2

¢
/(b− k) + (b− k − 1)/2 and thus

tP (X) < n−
Ã ¡

l
2

¢
b− k

+
b− k − 1

2

!
≤ n− (l − 1) ,

that is, tP (X) ≤ n− l, and this completes the proof of the theorem. ¥

4.3 Proof of Lemma 4

We first establish the following

Claim 2 Let l ≥ 1 be an integer and z > l a real number. The expression x2 + 2x3 + 3x4 +
· · ·+ lxl+1 subject to the conditions xi ≥ 1 and x1+x2+ · · ·+xl+1 = z is maximized uniquely
by x1 = x2 = · · · = xl = 1 and xl+1 = z − l.

Proof. If xi > 1 for some i ≤ l, then let x0l+1 = xl+1 + 1, x0i = xi − 1, and x0j = xj
for all other indices. Then

¡
x02 + 2x

0
3 + 3x

0
4 + · · ·+ lx0l+1

¢− (x2 + 2x3 + 3x4 + · · ·+ lxl+1) =
l (xl+1 + 1) + (i− 1) (xi − 1)− lxl+1 − (i− 1)xi = l − i+ 1 ≥ 1 which proves the claim.

Suppose y maximizesG(y). By using a suitable rotationmod b we can assume that yb 6= 0.
Let sj =

Pz(j+1)
i=z(j) yi. If z(j+1)−z(j) ≥ 2, then, by last claim, the jth sum in (13) is maximized

uniquely when yz(j)+1 = sj−(z(j + 1)− z(j)− 2) and yz(j)+2 = yz(j)+3 = · · · = yz(j+1)−1 = 1.
For the sake of brevity let dj = z(j + 1)− z(j). Then the jth sum in (13) equals

(sj − dj + 2) (dj − 2) +
¡
dj−2
2

¢
=
¡
sj (dj − 2)−

¡
dj−1
2

¢¢
.

If z(j + 1) − z(j) = 1, then the jth sum in (13) is zero. Note that this agrees with the
right-hand side of the previous equality. Thus we may assume that

G(y) =
kX

j=1

¡
sj (dj − 2)−

¡
dj−1
2

¢¢
.

Now suppose sj > 0 for some j < k. Note that sj ≥ z(j + 1) − z(j) − 1 = dj − 1 ≥ 1.
We will show this is not the case when y maximizes G(y) by ‘moving’ the j + 1th zero
next to the jth zero. Let y0z(j)+1 = 0, y

0
z(j)+2 = s(j) + s(j + 1) − (z(j + 2)− z(j)− 3), and

y0z(j)+3 = y0z(j)+4 · · · = y0z(j+2)−1 = 1. All other coordinates of y
0 are the same as those of y.

Then s0j = 0, s
0
j+1 = sj + sj+1, and s0i = si for all i 6= j, j + 1. Also z0(j + 1) = z(j) + 1 and
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z0(i) = z(i) for all i 6= j +1, i.e., d0j = 1, d
0
j+1 = dj+1+ dj − 1, and d0i = di for all i 6= j, j +1.

Thus

G(y0)−G(y) = s0j+1
¡
d0j+1 − 2

¢− ¡d0j+1−1
2

¢
− ¡sj (dj − 2)− ¡dj−12 ¢+ sj+1 (dj+1 − 2)−

¡
dj+1−1

2

¢¢
= (sj + sj+1) (dj+1 + dj − 3)−

¡
dj+1+dj−2

2

¢
+
¡
dj+1−1

2

¢
+
¡
dj−1
2

¢− sj (dj − 2)− sj+1 (dj+1 − 2)
= (dj+1 − 1) (sj − (dj − 1)) + sj+1 (dj − 1)
≥ sj+1 (dj − 1) ≥ sj+1 ≥ 0.

Moreover, unless all the k zeros are the first k integers then repeating this operation will
eventually yield a strict inequality (one with sj+1 > 0) because yb 6= 0. This completes the
proof of the lemma. ¥

5 Four-point sets with rational dimension two

If P is a 3-point pattern, then an exact formula for tP (n) follows from Theorem 1, if dimQ P =
2, or from Theorem 5, if dimQ P = 1. For sets P with 4 points, we also have exact formulas
for tP (n) when P has rational dimension 3 or 1 (at least for n large enough). The only
remaining case is when dimQ P = 2. In what follows, we show formulas for two particular
patterns and present some conjectures for the general situation.

5.1 The square and the L

First we present exact results for two important patterns. In particular the pattern L
below is equivalent, under Theorem 2, to the four term arithmetic progression A4. Thus
sA4(n) = tL(n).

Theorem 6 Let L = {(0, 0), (1, 0), (2, 0), (0, 1)} and ¤ = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then
for every n ∈ N, tL(n) = t¤(n) = n− d2√n− 1e.

Proof. For the constructive lower bounds see Figure 4(a) for the set L and Figure 4(b) for
the set ¤. For both L and ¤ the respective optimal sets Xn and Yn consist of the points
with labels 1 to n. The labels are assigned by following the pattern shown in the figure. It
can be verified that tL(Xn) = t¤(Yn) = n− d2√n− 1e. We omit the details.
We now prove both upper bounds. The proof follows the ideas and notation of Theorem

1. Let P ∈ {L,¤} and suppose X is an n-set with tP (X) = tP (n). As in the proof of
Theorem 1, we can assume X ⊆ Z2, all y-coordinates of X are positive and some are equal
to one. We also use the notation dP (X) to denote the number of deficit points of X with
respect to P , Li to denote the points in X with y-coordinate equal to i, and |Li| = li. Note
that l1 ≥ 1.
We first consider P = L. Assume l1 ≥ 2

√
n − 1. Every non-deficit point x ∈ Li is

bijectively associated to x + (0, 1) ∈ Li+1. Thus there are at least li − li+1 deficit points in
Li and then dL(X) ≥ l1 ≥ 2√n − 1. Now assume l1 < 2

√
n − 1. If l1 = 1, then the point
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Figure 4: Constructions of optimal sets X25 and Y25.

in l1 is clearly a deficit point, so dL(X) ≥ 1 + dL(X\L1) ≥ 1 + dL(n − 1). By induction,
1 + dL(n − 1) ≥ 2

√
n− 1, which is at least 2√n − 1 for n ≥ 2. If l1 ≥ 2, then the last

two points in L1 are deficit points. In that case, dL(X) ≥ 2 + dL(X\L1) ≥ 2 + dL(n − l1).
By induction, 2 + dL(n− l1) ≥ 2 + 2

√
n− l1 − 1, which is greater than 2√n− 1 as long as

l1 < 2
√
n− 1. In all cases, tL(n) = n− dL(n) ≤ n− d2√n− 1e.

Let P = ¤ and proceed by induction on n. Suppose u is the largest number for which
lu ≥ 1. If lj = 0 for some 1 < j < u, then the result follows by induction applied to
L1 ∪ · · · ∪ Lj−1 and Lj+1 ∪ · · · ∪ Lu (the function 2

√
n− 1 is concave down). Assume lj ≥ 1

for all 1 ≤ j ≤ u. We have

d¤(X) ≥
u−1X
i=1

max(1, li − li+1 + 1) + lu.

Indeed, every last point in Li is a deficit point with respect to ¤. Also, if i < u, there are
at most li+1 − 1 points x in Li+1 which are not deficit points with respect to {(0, 0), (1, 0)}.
Then there are at least li− (li+1− 1) = li− li+1+1 points in Li which are not exactly below
any of these points x, and thus they are deficit points with respect to ¤. Finally, all points
in Lu are clearly deficit points.
Since max(1, li − li+1 + 1) = (2 + li − li+1 + |li − li+1|)/2, then using the conventions

l0 = lu+1 = 0,

d¤(X) ≥ 1
2

u−1X
i=1

(2 + li − li+1 + |li − li+1|) + lu

= u− 1 + l1
2
+

lu
2
+
1

2

u−1X
i=1

|li − li+1|

≥ u− 1 + 1
2

uX
i=0

|li − li+1| ≥ u− 1 + max
1≤i≤u

li (by the triangle inequality)

≥ u− 1 + 1
u

uX
i=1

li = u+
n

u
− 1 ≥ 2√n− 1.
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Thus t¤(n) = n− d¤(n) ≤ n− d2√n− 1e.

5.2 Conjectures for arbitrary 4-point sets P .

Now we discuss a plan and some conjectures to completely determine the function tP (n)
when P is a four-point-set of affine rational dimension two. First note that, under an affine
transformation T , translates of P correspond bijectively to translates of T (P ). Since P has
rational dimension two, then we can assume P = {(0, 0), (1, 0), (0, 1), (x, y)} where x, y ∈ Q.
Moreover, by choosing appropriately the point in P corresponding to (x, y), we can assume
that (x, y) is not in the interior or the boundary of the triangle (0, 0), (1, 0), (0, 1). That is,
we can assume that x < 0 or y < 0 or x+ y ≥ 1.
Let z = (x, y) ∈ Q2, we can uniquely write x = px/q and y = py/q, where px, py, q are

integers, q > 0, and gcd(px, py, q) = 1. Define F : Q2 → N as

F (z) = F (x, y) =


px + py if px, py ≥ 0
max(px,−py + q) if py < 0 ≤ px
max(py,−px + q) if px < 0 ≤ py
−px − py + q if px, py < 0.

Let Ω = {(x, y) ∈ Q2 : x < 0 or y < 0 or x + y ≥ 1}. For every z = (x, y) ∈ Ω let
P (z) = {(0, 0), (1, 0), (0, 1), (x, y)}. We conjecture that,
Conjecture 1 If z1, z2 ∈ Ω and F (z1) = F (z2), then tP (z1)(n) = tP (z2)(n) for every n ∈ N.
The previous section shows how this conjecture is true when F (z) = 2. Figure 5 shows

four sets P (zi), 1 ≤ i ≤ 4, for which F (zi) = 4 and the conjectured optimal constructions for
n = 102. In fact, every other z ∈ Ω with F (z) = 4 satisfies that P (z) is affinely equivalent
to one of the sets in Figure 5. If Conjecture 1 is true in general, then it would be enough to
determine tP (z)(n) for z of the form z = (a, 0) with a ∈ N. By considering these particular
sets, we further believe that the correct coefficient for the n1/2 term is

p
2F (z), and that the

rest of the error term is constant. More precisely,

Conjecture 2 For every z ∈ Ω,

tP (z)(n) = n−
p
2F (z)n1/2 +O(1).

For every set P (z) with z ∈ Ω we can construct n-element setsXn with n−
p
2F (z)n1/2+

O(1) translates of P (z). However we were able to prove a matching upper bound only for

sets of the form z = (a, 0). For instance, we can prove tP (3,0)(n) = n−
lp

6n− 15/4− 3/2
m

for n ≥ 4, and in general tP (a,0)(n) ≤ n −
lp

2an− a2 (a2 − 4) /12− a/2
m
for a ≥ 2 and

n ≥ ¡
a+1
3

¢
. Already for a = 4 we cannot match, for every n, the O(1) terms from our

construction and from the previous upper bound. It is likely that an exact formula will
depend on some kind of binomial-type representation, much like Theorem 1.

Acknowledgement. We are grateful to E. Rivera-Campo for constructive discussions and
suggestions.
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Figure 5: Conjectured optimal constructions for the functions tP (zi)(n) where n = 102.
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