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ABSTRACT

Erdés and Purdy raised the problem of finding the maximum number of equilateral
triangles determined by a set of n points in R?. This question is investigated in the
first part of this series. Here we study some variations where the sets in consideration
are in convex or general position. Non trivial bounds are given for these problems, as
well as for the corresponding questions where the triangles at issue have unit length
side.



1 Introduction

In this article, the second and last part of this series, we explore some interesting
variations of the following question raised by Erdés and Purdy [5],[7]-[9], (see also

3])-
“What is the maximum number of equilateral triangles that can be deter-
mined by n points in the plane?”

This problem, together with its natural generalizations to higher dimensions, is
treated in the first part of this series [1]. For the second part we impose additional
conditions on the point sets, e.g. sets in convex or general position.

These type of restricted problems have been studied before for the famous “unit
distance” and “different distances” problems (see [4],[12]). But even with these extra
conditions most of these problems remain open.

For an arbitrary finite set P C R? we say P is in convex position if it forms the
vertex set of a convex polytope, we also say that I’ is in general position if there

re no d + 1 points in a (d — 1)-dimensional hyperplane and no d + 2 points in a
(d — 1)-dimensional sphere. Denote by E(P) (F(P)) the number of triplets in P that

are the vertices of an equilateral (unit equilateral) triangle. We define

Ey(n) = max (P), Fa(n) = max F(P) (1)

and ES™(n), F5(n), E5™"(n), FJ™"(n) as generalizations of the functions Ey(n)
and Fy(n) where the maxima are taken over point sets in convex or general position.
For simplicity when d = 2 we avoid writing the subscript on all these functions (e.g.
ECOnQI(n) — Egon'u(n)).

In section 2 we find the correct order of magnitude for £ (n) and F°"(n),
as well as a lower bound for F5°*(n). Section 3 is devoted to the construction of
sets in general position with a large number of equilateral triangles. These examples
provide non trivial lower bounds for the functions E77"(n) and an even better bound
for £9"(n). Finally in section 4 we obtain the asymptotic value of FJ*"(n) for all
dimensions d, and the exact values of F9"(n) and Fy"(n).

Let us remark that in [1] it was proved that E(n) is a discrete function in the
sense that the maximum in (1) can be taken just over subsets of a fixed regular
triangle lattice. The proof of this fact can be easily modified to conclude that the
same statement holds for the functions E®"(n) and E9"(n).

Throughout the paper we use the following notation. For any P finite set, G =
(P,A(P)) denotes the 3-uniform hypergraph with vertex set P, where A(P) is the
set of triplets in P determining equilateral triangles. For A" C A(P) and x € P we
denote by degx,(z) the number of triangles in A’ with x as one of its vertices. For
sake of brevity degx(x) = dega(py(z), and in the special case when A, (P) denotes
the set of unit equilateral triangles determined by P we write degy,(p) (z) = degy ().
All triangles and angles in this paper are named in counter-clockwise order. Also we
often identify the euclidean plane with the field of complex numbers.



2 Sets in Convex Position

In 1970 Erdds and Moser [6] conjectured that the maximum number of unit distances
fe"™(n) among n points in convex position is at most cn for some constant ¢. Erdés
conjectured even further that there is a natural number & with the property that
every convex n-gon has a vertex with at most k£ other vertices equidistant from it
[12].

The best result along these lines is by Fiiredi [11] who proved that f«"(n) =
O(nlogn). From this we deduce that F*°™(n) = O(nlogn). In this section we refine
this bound and prove that both F°"(n) and E°“"(n) are functions of linear order.
To accomplish this we use the following lemma, which is closely related to the second
Erdés conjecture mentioned before.

Lemma 1 For any finite point set P in convex position and A" C A(P), if T is a
triangle in A" with smallest possible sides then T has a vertex with dega, = 1.

Proof. Let C be the solid convex polygon determined by P and let T = pipops.
Suppose by contradiction that dega/(p;) > 2 for j = 1,2,3. Distinguish two cases.

R

Figure 1: Tllustration for proof of Case 1, Lemma 1.

Case 1. There is a triangle 7" € A’ such that the solid triangles T and 7' have
only one point in common. Suppose 7" = psqiqe, also assume by symmetry that
T’ is contained in the cone spanned by the angle £psp1ps. Define the closed regions
I1; 115,113 and ©4, ©4 according to Figure 1. By minimality of 7" we have that ¢1 € ©
and ¢ € O,.

Now, by assumption degn,(p;) > 2, thus there is a triangle p;ryro € A’. Since, by
convexity, there are no points of C in II;; then either r; or ro is in IIo UTl3. Let r be
the point with such property.



2

Figure 2: Illustration for the proof of Case 2, Lemma 1.

If r € I3 then p3 would be contained in the solid closed triangle rp;qs. Similarly,

when r € TIy we would have ps contained in the solid closed triangle r¢;p; (except
when ¢; = po, in which case p; would be contained in rgsp;). In any case we get a
contradiction.
Case 2. Any solid triangle 7" € A’ with one of its vertices in {p;, ps, ps} intersects
the interior of T. By assumption there are triangles T; = p;q;r;, j = 1,2,3 in A’
intersecting 7' in its interior. Let Cy, Cy, C5 be the |p; — po| radius circles with centers
p1, p2 and ps respectively. Define a, b, ¢ as the intersections of these circles according
to Figure 2.

Let u; = pjq; N C; and v; = pjr; N C; (§ = 1,2,3), these points are well defined
by minimality of T. By symmetry we can assume that u; lies in the arc pops and v;
is in the arc psb. There is no point 2 € C in the arc aps, otherwise p3 would be an
interior point of zv1p,. Thus us and ve are in the arcs psp; and p;c respectively. By
analogy us and vs are in the arcs p;p, and psa respectively.

By construction £vspops > 7/3. On the other hand

(Lqupops + 7/3) + /3 < Lqipapr + Apipsgr = Lripspr + Apipsqn = Lripsn

and by convexity £ripsq; < m. Hence Lq1paps < /3 < Luspaps. Again by convexity,
g1 should be outside the solid triangle popsvs. Thus

Ap1p3qs = £papsvs < papsqi. (2)

Let s = q171 Npaps. Since £ spapy = £ sqip1 = 5 then p1,pa, g1, s are cocyclic points
therefore

£ pap3qy < £ pasqr = £ pap1Gr- (3)
From (2) and (3) we conclude that £ pipsgs < £ pap1gr; by symmetry we also have
£ poprqr < £ p3peqe and £ paspega < £ pi1psgs which is a contradiction. [



Theorem 1 For every n > 3
1. B (n)<n-—2

2. |2(n—1)] < F*™(n)<n

—__n
3 4mloggn”

Proof. Let P be an n-point set in convex position.

(1) Let o € P be the vertex given by Lemma 1 with A’ = A(P). Then E(P) =
1+ E(P—{z}) <14 E“"(n—1) for all P, and thus the result follows by induction.

(2) We prove the upper bound by induction on n. True for n = 3. Also clear by
induction if there is a vertex x € P with degix(z) = 0. Hence we may assume that
degix(z) > 1 for all x € P. By Lemma 1 we know that all triangles in A, (P) have a
vertex of degh = 1.

If there is a triangle with at least two of its vertices of degi\ = 1, then by deleting
these two vertices the result would follow by induction, so we can further assume that
all triangles in A, (P) have exactly one vertex of dega = 1. Construct the directed
subgraph H = (V(H), A(H)) where V (H) is the set of points in P with degih > 2 and
for every triangle zyz in A, (P), being z the vertex with degih = 1, we include the
arc yZ in A(H). Observe that |A(H)| = |A, (P)| and |V(H)| = n — |A, (P)|. Fiiredi
proved [11] that among the vertices of a convex n sided polygon the unit distance
occurs at most 7w (2log, n — 1) times, applying this to the convex polygon obtained
from V(H) we find that

[Au (P)] = [A(H)] < 27 (n — [Ay (P)]) (2logy (n — |Au (P)]) = 1)

therefore F'(P) = |A, (P)| <n — (1/47)n/log, n.

p6 p3

Py Py pg/pé Pn
, N\ » N\ »n

YW/ s j 2 > Ds
Py _ D Pig - _—D

p1 pl

Figure 3: n sided polygons with L%(n — 1)j equilateral triangles.

For the lower bound we construct the following example (see Figure 3). Let
m = [(n—1)/3]. Choose a unit segment p;ps and points pg, P12, . . - , P3m such that

0 < Lpspips < Apspipe < ... < P3P1P3m < 7/3.

For 1 < k < [(n—1)/3], construct the rhomb pipsg_1pskpse+1 where the triangles
P1P3k—1P3x and pipagpaxrt are equilateral. Then the set {p1,pa,...,pn} is convex and
it determines |2 (n — 1) unit equilateral triangles. [ ]

4
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may be tempted to think that the multigraph obtained
H above, does not contain any cycles of length > 3; but the example in Figure 4
disproves this. This set also achieves the lower bound in the last theorem. Notice
that, according to the previous proof, the upper bound F“™(n) < (2¢/(2¢ + 1))n
would follow from the conjecture f°""(n) < cn.

For higher dimensions it is easy to see that, whenever the finite sets A C R%, B C
R are in convex position and the origin belongs to the interior of their convex hulls,
then the set {(a,0) : a € A} U{(0,b) : b € B} C R"*% is also in convex position.
From this observation the examples constructed in Theorem 5 in [1] are in convex
position, thus F™(n) = Q(n?), F™(n) = Q(n'/3), and for d > 6 the examples
obtained from a generalized Lenz construction [5] are also in convex position, so
Fg™(n) = O(n®). In the 3-dimensional case it is possible to modify a construction
by Erdés et al. to obtain the following theorem.

Tt o
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It is very likely that F™(n) = |(2/3) (n — 1)], but we could not prove this. One
+ 4+ o)

Figure 4: 14-point convex set determining 8 equilateral triangles.

Theorem 2 F{°""(n) = Q(nlog" n)

Proof. In [10] (see also [12]) Erdds et al. constructed for every m an m-element
set P in a unit sphere with the property that every point is at distance one from
at least clog™m other points (where log™ denotes the iterated logarithm function).

Denote by S; such sphere and assume it is centered at 0. Let a = /2 — /3, for
every © € S; consider the set Cap(z) = S; N {y € R?: |z — y| < @}. The number
« was chosen so that the points in Sy at distance one from Cap(x) are contained

in a proper half sphere. Now let C(z) = P N Cap(x), it is easy to see that the
expected value of |C(z)| equals ﬁfsl |C(z)|dz = ((2 — v/3)/4)m. Thus there is
r € S satisfying |C(x)] > ((2 — v/3)/4)m. Define Q as the set consisting of {0} U
C(x) together with all other points in P at a distance one from points in C(z). By

construction )\ {0} lies in a proper half sphere (hence () is in convex position), it



spans at least c((2 — v/3)/8)mlog* m unit segments among points different from 0,
e d (O SN I AN < 1] < mn T Taxr cmddio e o 1 oo Bocavre £1o e d
alldl kké - VO}/LL)I/ ™~ |\o{| > 1. 11ICICIVIC DY beLLllly 76 — |\o{| we 11dve Luiladt
F&™(n) > F(Q) > ¢((2 — V3)/8)mlog" m > ¢((2 — V3)/8)nlog* n
as we wanted to prove. [ |

3 Sets in General Position

In this section we find bounds for the function ES™ (n). It is fairly easy to construct

n-point subsets of R? in general position with © (n) equilateral triangles. In contrast
to the function Ey(n) we can not use clusters of lattice points to provide quadratic
lower bounds for £ (n). Thus new techniques for the construction of sets in general
position and with many equilateral triangles have to be developed. Here we give a
recursive construction based on the Minkowski sum (A+B ={a+b:a € A,b € B}).
This approach leads to the bounds E%" (n) = Q (n'™%®) and E5™ (n) = Q (nlogn)
when d > 3. With respect to the upper bounds we prove that EJ™" (n) = O (n?).

For a finite set A in the plane let i(A) = log(3E(A) + |A])/ log | A| be the index of
A.

Theorem 3 For any finite subset of the plane A in general position with E(A) > 0
E%"(n) > Q(n'). (4)

Proof. We need two lemmas. Since the first one is rather technical we defer its proof
to the Appendix.

Lemma 2 For any A and B finite subsets in the plane in general position there exists
a constant c(a,p) > 0 such that for almost all v € C with |v| > capy (with respect to
the Lebesque measure), the set A+ vB is in general position. [ |

i

Lemma 3 If A and B are finite sets in the plane such that A+ B has exactly |A| | B|
elements, then E(A+ B) > 3E(A) E(B) + |A| E(B) + |B| E(A).

Proof. Given T4 = aqjasa3 and Tg = b1bobs equilateral triangles with vertices in A
and B respectively, consider the following three types of triangles in A 4+ B.

Type 1: Triangles of the form a + by, a + by, a + b3 with a € A.

Type 2: Triangles of the form a; + b, a9 + b, a3 + b with b € B.

Type 3: Triangles of the form a;+b1,a;41+b2, 442 +bs with j =1,2,3 (a4 = a1, a5 =
ag).

Clearly all triangles of type 1 or 2 arc cquilateral. By sctting v = ¢™/3

wc have
Y ((ajp1+b2) = (aj +b1)) = v(by—b1)+v(ajp1 — ay)

= (b3 — b1) + (a2 — ay)
= (aj+2 + b3) — (ij + bl) .



Then all triangles of type 3 are equilateral Since |A + B| = |A||B|, the relation
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(Cb, b) — a+bforac A, be Bis UlJUbblVU oo all trian 1g les mentioned above are
different. Therefore there are at least 3E (A) E (B)+|A| E (B)+|B| E (A) equilateral
triangles in A + B. [ |

Using the previous two lemmas we construct a large set in general position with
many equilateral triangles as follows. Let A be a finite set in general position. From
Lemma 2 we can obtain suitable sets A, Ao, ..., A, similar to A such that A* =
A;+As+- -+ A, is in general position and furthermore it has exactly |A|™ elements.
Now by a recursive application of Lemma 3 we have that for every k

3E (A1 + ...+ Ap) + A" > BE (A) + |A)"

hence

E(A") 2 5 (BE(A) +|AD™ - |AI™)

W —

and by letting n = |A|™, it yields

E9(n) > E(A™) > (ni(A) _ n) -0 (nz’(A))

Wl =

(note that i(A) > 1 because E(A) > 0). |
Now, to obtain non trivial lower bounds for E9¢"(n) using the previous theorem,
it is enough to construct sets A with large index. In particular when A is the triangle
and the rhomb in Figures 5a and 5b, the index of A is log6/log3 > 1.6309 and
log 10/ log 4 > 1.6609 respectively.
We show three other sets with larger indices.

e The first one is a configuration of 8 points determining 8 equilateral trian-
gles, thus with index 5/3 > 1.666 (see Figure 5¢). To construct this set start
with a triangle pipops. Consider the equilateral triangles pipsp, and popsps.
Reflect the points ps, ps and p; with respect to the middle point of the seg-
ment pyps to get the points pg, pr and pg respectively. For almost any triangle
pip2ps the set C = {p1,p2,...,ps} is in general position. The equilateral tri-
angles in this configuration are (the triangle p;p;pr corresponds to (4, j,k)):
(1,4,2),(3,7,6),(2,5,3),(6,8,1),(1,5,7), (4,3,8), (4,5,6) and (7,8,2).

e The second set is a 27-point configuration determining 81 equilateral triangles,
hence with index log(270)/log(27) > 1.6986. To construct this set (see Figure
5d) start with the 8-point configuration C = {p1,ps,...,ps} given above and
choose any point @ not in C. Let C’' = {pg, p1o, ..., 016} and C” = {p17, P18, - . -, P2a}
be obtained from C by the —“ and 4?” counterclockwise rotations respectively
with center in @) (here p;1g and pir16 are the images of p; under those rotations,
for i = 1,...,8). Let pos, pag and pe7 be the unique points such that the triangles
PaP2sPis, P12P2ePes and pogporpr are equilateral. Then for a suitable choice of Q)



(b)

()

—_

Figure 5: Starting set to give lower bounds of E9"(n).



(almost any point () Works) 7& whenever ¢ # j, and the set {p1,po, ..., por}
A+ an +
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is in 5eneral pumuu‘ The Uqu te“a tuaﬂgl S ermined b:y his set are

Figure 5d (1,4,2), (3,7.6), (2,5,3), (6,8,1)

(in C) (1,5,7), (4,3.8), (4,5,6), (7,3,2)

Figure 5d (9,12,10), (11,15,14), (10,13,11), (14,16,9)

(in C') (9,13,15), (12,11,16), (12,13,14), (15,16,10)

Figure 5d (17,20,18), (19,23,22), (18,21,19), (22,24,17)

(in C") (17,21,23), (20,19,24), (20,21,22), (23,24,18)

Figure 5e (1,9,17), (2,10,18), (3,11,19), (4,12,20)

(center in Q) | (17,21,23), (20,19,24), (20,21,22), (23,24,18),(25,26,27)

Figure 5 (25,9.3), (10,24,7), (26,17,11), (18,8,15), (27,1,19), (2,16,23)
(25,12,7), (14,17,8), (26,20,15), (22,1,16), (27,4,23), (6,9,24)

Figure 5g (25,10,6), (12,24,3), (26,18,14), (20,3,11), (27,2,22), (4,16,19)
(25,11,1), (13,20,6), (26,19,9), (21,4,14), (27,3,17), (5,12,22)

Figure 5h (25,13,8), (10,20,1), (26,21,16), (18,4,9), (27,5,24), (2,12,17)
(25,14,2), (9,23,5), (26,22,10), (17,7,13), (27,6,18), (1,15,21)

Figure 5i (25,15,4), (10,19,5), (26,23,12), (18,3,13), (27,7,20), (2,11,21)
(25,16,5), (15,19,6), (26,24,13), (23,3,14), (27,8,21), (7,11,22).

Even though this set does not provide the best lower bound for E9“"(n), it is
interesting because it avoids rhombs similar to the one in Figure 5b.

e The third example is obtained as a particular case in the construction of the 27-
point set given above. If the point () is precisely the circumcenter of the triangle
P3prpe, then some points overlap, namely: ps = pia = p23, Ps = P16 = Pas,
P6 = P15 = P19, Pr = P11 = P22, P8 = P21 = par and pi3 = pay = pag. Therefore
some of the triangles among the original 81 are repeated. Only 29 different
remaln (QPP F‘mnrpq 51 7 Rn

(1,4,2), (3,7,6), (2,5,3),(6,8,1),(1,5,7),(4,3,8),(4,5,6),(7,8,2),
( 2,10), (10,13,7),(3,5,9), (9,13,6), (12,7,5), (12, 13,3) , (6,5, 10)
(17 20,18),(18,8,6),(7,13,17),(17,8,3), (20,6, 13),(20,8,7), (1,9, 17) ,
(2,10,18), (4,12,20), (5, 13,8), (4,9, 18), (2, 12,17), (1, 10, 20).

This set has 15 points, 29 equilateral triangles, and thus its index is log 102/ log 15.
This gives the best known bound which is stated in the following theorem.

Theorem 4 F97(n) = Q(nl08102/10815) > ((n1.7078)

|

With respect to the upper bound, it was recently proved [2] that E%"(n) = o(n?)

as a corollary of a general result concerning the structure of sets with many similar
subsets.



Unfortunately the construction obtained from Theorem 3 does not work to the
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of type 3 in Lemma 3 without violating the general position assumption.. Next we
show the best bounds we could attain. For this purpose we define a d-simplex to be

a configuration of d 4 1 points in R? all at distance 1 from each other.

Theorem 5 For any d > 3 there is a constant c¢qg > 0 so that

canlogn < By (n) < (d/3) <Z>

Proof. For the lower bound proceed in the same way as in Theorem 3. By an
analogue of Lemma 2 for higher dimensions, we can find a sequence of d-simplices:
Ay, As, ... Ay so that A* = Ay +As+- - -+ Ay, is in general position and furthermore
it has exactly |A|™ = (d + 1)™ elements. Thus the relation (a1, as,...,a,) € Ay X
Ay X - X Ay > a1 +as+ -+ a, € A" is a bijection. Now notice that for any
(ag,a3,...,am,m) € Ay X Az X --- X A, and for any triangle zyz in A;, the triangle
corresponding to the m-tuples

(x,a9,a3,...,0m), (Y, a2,as,...,0,) and (z,a2,a3, ..., an)

is equilateral. Since this is also true when the triangle xyz varies over any coordinate,
we have that

E(A") > (d ;)L 1>m(d + 1)t

and by letting n = (d + 1)™ we get E57*(n) > (d(d — 1)/6log(d + 1))nlogn.

For the upper bound, observe that given a pair of points in R? the locus of a third
point forming an equilateral triangle with this pair is a (d — 2)-dimensional sphere.
Thus by general position assumption there are at most d points on such a sphere,
hence the bound Ej™(n) < (d/3)(}) follows. |

As a final remark, note that the technique used in Theorems 3-5 can be general-
ized (by proving the appropriate version of Lemma 2) to find sets under some other
geometric restrictions and with many equilateral triangles, e.g. sets with no four
points on a line or sets with no seven points on a conic.

4 Unit Triangles in General Position

Now we restrict our attention to subsets of R? in general position and unit equilateral
triangles. Theorems 6 and 7 give recursive formulas for the exact value of Fi"(n)
provided 7 is big enough. As a corollary we obtain the asymptotic behavior of F{"(n).
We also provide the exact values of F9"(n) and F{“"(n) for arbitrary n.

Consider an n-point set P C R? in general position. Since by assumption there
are no d + 2 points on a (d — 1)-dimensional sphere, and there is no configuration of
d+ 2 points in R? all at distance 1 from each other, then any point in P is in at most

10



T ~amn i —~

D P 5 ~OT Ln.- A
L. rroil blllb we lllllllt:uld;bb'ly Ul)l,chIl bllb‘ UppUl pouLd

(d;rl) 1 unit equllateral trlangles determined by P, i.e., degh (z) < (‘”1) 1 for all
c =

R n) < 5 (%)~ 1) 5)

which gives the correct order of magnitude. Now we construct a lower bound and
prove that it is asymptotically best possible.

Theorem 6 For any natural numbers d > 2 andn > d + 2
Fi"(n) > 2(H) + (D) + F" (n— (d+2)). (6)

Proof. Consider two regular d-simplices joined by a (d — 1)-face. This configuration
Sy has exactly d + 2 points in R? and determines exactly 2(3) -+ (g) unit equilateral
triangles. Now let C be an extremal configuration in R? with n — (d + 2) points in
general position, i.e., F (C) = F{™ (n— (d +2)). It is always possible to construct
an n-point configuration P C R as a disjoint union of a copy of S; and a copy of C
so that the points in P are in general position. Thus we get

Fi™ (n) 2 F(P) 2 F (Sa) + F(C) =2(3) + (5) + F{™ (n— (d +2).

|
Next we show that (6) is actually an identity for n large enough.
Theorem 7 Ford>3 andn > d(d—1)(d+2)(d+4) /12 we have
Fi(n) <2(5) + (5) + FI" (n— (d +2)). (7)

Proof. Consider an n-point set P C R? in general position. For any Q C P define
S(Q) to be the set of unit segments belonging to triangles in A, (Q). Also, for any
x € () define deg,(x) as the number of y € @ such that 7y € S(Q). Recall that
degh (z) < (dgl) — 1 for all z € P. We consider three cases.

Case 1. For all z € P, deg) (z) < (d;rl) —3. Then F(P) < % ((d;rl) —3), and since
n>d(d—1)(d+2)(d+4) /12 then

() -3 < (@G- 6 +E)
< Fsl 20) + () T ET (- (d+2) | 75]) (8)
< 2(5) + (5) + FI (n— (d+2))

(the last inequality is given by a recursive application of Theorem 6).
Case 2. For some z € P, degh (z) = (7") — 1. Let P' = {z}u{y e P:75 € S(P)}.
Note that |P’/| = d + 2, and all but one pair of points in P, say u and v, are at

distance one from each other. Thus P’ is a copy of the configuration Sy defined on
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the proof of Theorem 6, and moreover any triangle in A, ( ) with a vertex in P’ is a
bllangle in Au\P/) (S‘l” ce all vertices in P’ \1@ Uj have ctucauy d+1 pUlllbb in P’ at

distance one, degp (u) = degp, (v) = d, and |u — v| # 1). Hence
F(Py<F(PY+Ff" (n—(d+2)=2() + () + F" (n— (d+2)).

Case 3. For some z € P, degi (z) = (“}') —2. Let P' = {z}u{y € P: 75 € S(P)}.
Again |P'| = d+2 but in this case S (P') consists of all possible segments among points
in P’ except two. Suppose those two segments are Uiz, Uztis for some uy, Us, Uz, Uy €
P

Then any triangle in A, (P) having a vertex in P’ is either a triangle in A, (P’)
or a triangle with at least one vertex in {uj, us, us, us} and at least one vertex not in
P’ (since all vertices in P’\ {u1, us, us, us} have already d+ 1 points in P’ at distance
1).
a) If uy, ug, us, uq are all different then degp, (u;) = d for all 1 < j < 4. Thus for each
1 < j <4, there is at most one point w; in P\ P’ at distance one from u;. Then the
only possible triangles in A, (P)\A, (P’) involving points in P’ are

U1U3W if w; = Wz, U1UsgwWy if W1 = Wy, (9)
ugusws if we = ws, and usugws if wy = wy.

Thus
F(P) < F(P)Y4+4+F]"(n—(d+2))

(53 —2d + 4+ F{™" (n — (d +2))

< 2+ (@) +FF"(n—(d+2)

for all d > 4. For the remaining case, d = 3, notice that the four triangles given in
(9) can be in A, (P) at the same time only if wy = ws = w3 = wy, which means that
wy would be at distance 1 from each of the points uq,us, u3 and uys. But this is not
possible by general position assumption. So in this case

F(P) < F(P)+3+F{"(n—(d+2))
(2 —2d+ 3+ F¥" (n— (d+2))
= T+ F{" (n=5)=2(3) + (5 +Fi" (n—(d+2).
b) If (without loss of generality) u; = u4 then there are at most two points wq, w] in
P\ P’ at distance 1 from u; and for each j € {2,3} there is at most one point w; in
P\ P' at distance 1 from u; (since degp (u1) = d — 1,degp (u2) = degp: (us) = d).
Then the only possible triangles in A, (P)\A, (P’) having a vertex in P’ are
usuzwsy (if we = w3) and wywiw!. Thus for all d > 3
F(P) < F(P)Y+24+F]"(n—(d+2))
= (") —2d+1+2+F" (n— (d+2))
< 205) + () + EFT (n— (d+2).
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Finally, since P was arbitrary, the three cases above imply (7). [

From Theorems 6 and 7, together with (5) we obtain the following corollary.

Corollary 1 For all d > 3

Fi™ (n) = (2(3) + () 7] + 0.

|

When d = 3 the inequality (8) can be verified to be valid for all n > 5 using the

fact that F§"(r) = (7) for all » < d + 1. This, together with Theorem 6 yields the
exact value

n n+1 n+2
F{™ () =3 2| +3 .
5 (n) 5] B + B
A similar argument can be applied for d = 2 to obtain
n n+1
o ) = | 2
w=[5]+ |

5 Appendix

Proof of Lemma 2. Denote by Ball.(b) the set {z € C:|z—b| <e}. Since B
is in general position there exists ¢ > 0 such that | J, 5 Ball.(b) is still in “general
position” (i.e. there is no line intersecting three balls, or a circle intersecting four
balls). Let p be such that A € Ball,(0) and set c(4,5) = 2p/e. Denote by S the set
{v:|v| > 2p/e and A+vB not in general position}. Fora € A,b€ B,andT C Ax B
let (a,b), = a+vband T, = {(a,b), : (a,b) € T}. Under this notation we have that

S=1 |J {ves:3Llnewith T, C £} |U[ | {veS:3C circle with T, C C}
TCAxB TCAXB
T|=3 T|=4

To finish the proof we show that each term in this union has Lebesgue measure
zero. First we argue that for T C Ax B, |T| =4, if {v € S : AC circle with T,, C C}
is not empty then T" has two points with the same B coordinate. Suppose not, then
there is a circle C containing T, for some v and T' = {(a;,b;) : 1 < j <4} with all
b;’s distinct. The circle v~ !C passes through the points v'a; +b; ,1 < j < 4 but
|(vta; + b;) — bj] = |vta;] < /2, hence v~!C intersects Ball.(b;) for each 1 < j < 4
which contradicts the definition of «.

Similarly, for T C Ax B, |T| =3, if {v € S: 3L line with T, C L} is not empty
then T has two points with the same B coordinate. From these two observations and
the fact that A is in general position we have to examine only two cases.

Case 1. T = {(a1,b1), (az,b1), (a3, by)} with a; # ag and by # by. Suppose L is a
line containing T, then we have that (ag, b1), — (a1,b1), = A ((as, b2)y — (ag, b)) for
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some A € R, thus v = (by — by) *(as — as + A *(as — a1)) which is the parametric
equation of a line £'. Hence {v € S: 3L line with T, C L} C £’ and consequently
{v € S : 3L line with T, C L} has zero measure.

Case 2. T = {(a1,b1),(as,b1),(as,b2),(as,b3)} with by # by and |T| = 4. By
considering the Mobius transformation f(z2) = (a1 — az) (a; + as + 2(vb; — 2)) we
can assume that b = 0, a1 = —1, and a; = 1. Now, let |z — Z'h|2 = 1+ h? be the
equation in z of a circle C containing T,. Since {—1,1} € C then az+vbs, as+vbs ¢ R,
theretore

1 — |ag + vbs|? 1 — |as + vbs|®

ih = — = —
ag—a_3+vbg—vb2 a4—a_4+vbg—vb3

which is a non trivial equation in v since by # 0, in fact it is the equation of

a circle if by = bs or a cubic curve on two real variables otherwise. Therefore
{v e S:3C circle with T,, C C} has measure zero. |
References

[1] B. Abrego and S. Fernandez-Merchant. On the Maximum Number of Equilateral
Triangles I, to appear in Discrete Computational Geometry.

[2] B. Abrego, G. Elekes and S. Ferndndez-Merchant. Structural Results for Planar
Sets with many Similar Subsets, to be published.

[3] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry,
Springer-Verlag, New York, (1991).

[4] P. Erdés. On sets of distances of n points, American Mathematical Monthly 53
(1946), 248-250.

[5] P. Erdés. On some Problems of Elementary and Combinatorial Geometry. Annali
di Matematica Pura Applicata Ser IV 103 (1975) 99-108.

[6] P. Erdés and L.Moser. An Extremal Problem in Graph Theory, Australian Jour-
nal of Mathematics, 11, 42-47.

[7] P. Erdés and G. Purdy. Some Extremal Problems in Geometry. Journal of Com-
binatorial Theory 10 (1971) 246-252.

[8] P. Erdés and G. Purdy. Some Extremal Problems in Geometry III. Proc. 6"
Southeastern Conference in Combinatorics, Graph Theory and Comp. (1975)
291-308.

[9] P. Erdés, G. Purdy. Some Extremal Problems in Geometry IV. Proc. 7" South-
eastern Conference in Combinatorics, Graph Theory and Comp. (1976) 307-322.

[10] P. Erdés, D. Hickerson, and J. Pach, A problem of Leo Moser about repeated
distances on the sphere, American Mathematical Monthly 96, (1989) 569-575.

14



[11] Z. Fiiredi. The maximum number of unit distances in a convex n-gon. Journal

of Combinatorial Theory, Series A 55 (1990) 316-320.

[12] J. Pach and P. K. Agarwal. Combinatorial Geometry, Wiley, New York, 1995.

15



