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Abstract. For every pattern P , consisting of a finite set of
points in the plane, S′P (n) is defined as the largest number of
similar copies of P among sets of n points in the plane without
3 points on a line. A general construction, based on iterated
Minkovski sums, is used to obtain new lower bounds for S′P (n)
when P is an arbitrary pattern. Improved bounds are obtained
when P is a triangle or a regular polygon with few sides.

1. Introduction

Sets A and B in the plane are similar, denoted by A ∼ B, if
there is an orientation-preserving isometry followed by a dilation
that takes A to B. Identifying the plane with C, the set of complex
numbers, A ∼ B if there are complex numbers w and z 6= 0 such that
B = zA+w. Here, zA = {za : a ∈ A} and A+w = {a+w : a ∈ A}.

Consider a finite set of points P in the plane, |P | ≥ 3. We refer
to P as a pattern (P is usually fixed). For any finite set of points Q,
we define SP (Q) to be the number of similar copies of P contained
in Q. More precisely,

SP (Q) = |{P ′ ⊆ Q : P ′ ∼ P}| .
The main goal of this paper is to explicitly construct point sets Q in
general position with a large number of similar copies of the pattern
P , that is, with large SP (Q). By general position we mean to forbid
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triples of collinear points. In a forthcoming paper, we also consider
the restriction of allowing at most m points on a line, m ≥ 3, and the
stronger restriction of not allowing collinear points or parallelograms
in Q.

Figure 1. Point-set in general position with many
triples spanning equilateral triangles.

To explain the motivation of this paper, we first turn to the orig-
inal problem. Erdős and Purdy [8]-[10] posed the problem of max-
imizing the number of similar copies of P contained in a set of n
points in the plane. That is, to determine the function

SP (n) = max
|Q|=n

SP (Q) ,

where the maximum is taken over all point-sets Q ⊆ C with n points.
Elekes and Erdős [6] noted that SP (n) ≤ n (n− 1) for any pattern
P . They gave a quadratic lower bound for SP (n) when |P | = 3 or
when all the coordinates of the points in P are algebraic numbers.
They also proved a slightly subquadratic lower bound for all other
patterns P . Later, Laczkovich and Ruzsa [11] characterized precisely
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those patterns for which SP (n) = Θ(n2). However, the coefficient
of the quadratic term is not known for any non-trivial pattern, not
even for the simplest case of P an equilateral triangle [1]. Elekes and
the authors [3] investigated the structural properties of the n-sets Q
that achieve a quadratic number of similar copies of a pattern P .
We proved that those sets contain large lattice-like structures, and
therefore, many collinear points. In particular, the next result was
obtained.

Theorem (Ábrego et al. [3]). For every positive integer m and every
real c > 0, there is a threshold function N0 = N0(c,m) with the
following property: if n ≥ N0 and Q is an n-set with SP (Q) ≥ cn2,
then Q has m points on a line forming an arithmetic progression.

Thus having many points on a line is a required property to achieve
Θ(n2) similar copies of a pattern P . It is only natural to restrict the
problem of maximizing SP (Q) over sets Q with a limited number of
possible collinear points. For every natural number n, we restrict
the maximum in SP (n) to n-sets in general position, that is, with
no 3 points on a line. We denote this maximum by

S ′P (n) = max{SP (Q) : |Q| = n and Q in general position}.
We mention here that Erdős’ unit distance problem [7] (arguably the
most important problem in the area), has also been studied under
the general position assumption of no 3 points on a line [10]. (See
also [5, Section 5.1].)

The theorem above implies that limn→∞ S ′P (n)/n2 = 0, i.e., S ′P (n) =
o (n2). We believe that the true asymptotic value of S ′P (n) is close
to quadratic; however, prior to this work there were no lower bounds
other than the trivial S ′P (n) = Ω(n). The rest of the paper is devoted
to the construction of point-sets giving non-trivial lower bounds for
S ′P (n). In particular, when the pattern P is a triangle or a regular
polygon.

2. Statement of results

The symmetries of the pattern P play an important role in the
order of magnitude of our lower bound to the function S ′P (n). Let
us denote by Iso+(P ) the group of orientation-preserving isometries
of the pattern P , also known as the proper symmetry group of P .
Define the index of a point set A with respect to the pattern P ,
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denoted by iP (A), as

iP (A) =
log

(∣∣Iso+(P )
∣∣ SP (A) + |A|)

log |A| .

Observe that 1 ≤ iP (A) ≤ 2, because
∣∣Iso+(P )

∣∣ SP (A) ≤ |A|2 − |A|
as was noted by Elekes and Erdős, and moreover, iP (A) = 1 if and
only if SP (A) = 0. Our main theorem gives a lower bound for S ′P (n)
using the index as the corresponding exponent. Its proof, presented
in Section 3, is based on iterated Minkovski Sums.

Theorem 1. For any A and P finite sets in the plane in general po-
sition, there is a constant c = c(P, A) such that, for n large enough,

S ′P (n) ≥ cniP (A).

By using A = P , we conclude that the function S ′P (n) is super-
linear, that is, for any finite pattern P in general position, S ′P (n) ≥
Ω(nlog(1+|P |)/ log|P |). So the key to obtaining good lower bounds for
these functions is to begin with a set A with large index. For a
general pattern P , we can marginally improve the last inequality by
constructing a better initial set A. The proof of next theorem is in
Section 4.1.

Theorem 2. For any finite pattern P in general position and |P | =
k ≥ 3, there is a constant c = c(P ) such that, for n large enough,

S ′P (n) ≥ cnlog(k2+k)/ log(k2−k+1).

The following theorems summarize the lower bounds for S ′P (n)
obtained from the best known initial sets A for some specific patterns
P . We concentrate on triangles and regular polygons. We often
refer to a finite pattern as a geometric figure. For instance, when we
say “let P be the equilateral triangle” we actually mean the set of
vertices of an equilateral triangle.

Theorem 3. Let P = T be a triangle.

• For T = 4 equilateral, S ′4 (n) ≥ Ω
(
nlog 102/ log 15

) ≥ Ω (n1.707).

• For T isosceles, S ′T (n) ≥ Ω
(
nlog 17/ log 8

) ≥ Ω (n1.362).

• For T almost any scalene triangle, S ′T (n) ≥ Ω
(
nlog 40/ log 14

) ≥
Ω (n1.397). For all others, S ′T (n) ≥ Ω

(
nlog 9/ log 5

) ≥ Ω (n1.365).

If P is a k-sided regular polygon, then iP (P ) = log(2k)/ log k and
thus SP (n) ≥ Ω(nlog(2k)/ log k). If k is even, 4 ≤ k ≤ 10 or if k = 5 we
have the following improvement.
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Theorem 4. Let P = R(k) be a regular k-gon. Then

• S ′R(4) (n) ≥ Ω
(
nlog 144/ log 24

) ≥ Ω (n1.563),

• S ′R(6) (n) ≥ Ω
(
nlog 528/ log 84

) ≥ Ω (n1.414),

• S ′R(8) (n) ≥ Ω
(
nlog 1312/ log 208

) ≥ Ω (n1.345),

• S ′R(10) (n) ≥ Ω
(
nlog 2640/ log 420

) ≥ Ω (n1.304), and

• S ′R(5) (n) ≥ Ω
(
nlog 264/ log 120

) ≥ Ω (n1.519).

3. Proof of Theorem 1

Let P and A be sets in general position. With A as a base set,
we recursively construct large sets in general position and with large
number of similar copies of P . Our main tool is the Minkovski Sum of
two sets A,B ⊆ C, defined as the set A+B = {a + b : a ∈ A, b ∈ B}.
First we have the following observation.

Proposition 1. Let P = {p1, p2, . . . , pk} and Q = {q1, q2, . . . , qk} be
sets with k elements. P is similar to Q, with pj corresponding to qj

if and only if

qj − q1

q2 − q1

=
pj − p1

p2 − p1

for j = 1, 2, . . . , k.

Proof. If P ∼ Q with qj = zpj + w, where z 6= 0 and w are fixed
complex numbers, then

qj − q1

q2 − q1

=
(zpj + w)− (zp1 + w)

(zp2 + w)− (zp1 + w)
=

pj − p1

p2 − p1

.

Reciprocally, if (qj − q1) / (q2 − q1) = (pj − p1) / (p2 − p1) for 1 ≤
j ≤ k, then letting z = (q2 − q1)/(p2 − p1) and w = q1 − zp1 we get
that qj = zpj + w and z 6= 0. ¤

We now bound the number of copies of P in the sum A + B. To
be concise, let I =

∣∣Iso+(P )
∣∣.

Lemma 1. Let P be any finite pattern, and B and C finite sets such
that B + C has exactly |B| |C| points. Then

I · SP (B + C) + |B| |C| ≥ (I · SP (B) + |B|) (I · SP (C) + |C|) .

Proof. Suppose that P = {p1, p2, . . . , pk} and let λj denote the ra-
tio (pj − p1) / (p2 − p1). Let PB = {b1, b2, . . . , bk} ⊆ B and PC =
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{c1, c2, . . . , ck} ⊆ C be corresponding copies of P with P ∼ PB ∼ PC .
Then by the previous proposition,

bj − b1

b2 − b1

=
cj − c1

c2 − c1

=
pj − p1

p2 − p1

= λj.

Since B + C has exactly |B| |C| elements, then the relation (b, c) ↔
b + c for b ∈ B, c ∈ C is bijective. For any orientation-preserving
isometry f of PC (which uniquely corresponds to an element of
Iso+(P )), consider the set Q = {qj := bj + f (cj) : j = 1, 2, ..., k} ⊆
B+C. Since (f (cj)− f (c1)) / (f (c2)− f (c1)) = (cj − c1) / (c2 − c1)
= λj, then

qj − q1

q2 − q1

=
bj − b1 + f (cj)− f (c1)

b2 − b1 + f (c2)− f (c1)

=
λj (b2 − b1 + f (c2)− f (c1))

b2 − b1 + f (c2)− f (c1)
= λj.

That is, by the previous proposition, Q ∼ P . Thus every simi-
lar copy PB of P in B together with a similar copy PC of P in C
originate I distinct similar copies of P in B + C. We also have
the ‘liftings’ of P in B and C. That is, similar copies of P of the
form (b, c1), (b, c2), . . . , (b, ck) or (b1, c), (b2, c), . . . , (bk, c), with b ∈ B
and c ∈ C. All these copies of P in B + C are different because
|B + C| = |B| |C|. Therefore the number of similar copies of P in
B+C is at least I ·SP (B) SP (C)+ |B|SP (C)+ |C|SP (B). In other
words

I · SP (B + C) + |B| |C| ≥ I2 · SP (B) SP (C) + I · |B|SP (C)

+ I · |C|SP (B) + |B| |C|
= (I · SP (B) + |B|) (I · SP (C) + |C|) .¤

The next lemma allows us to preserve the maximum number of
collinear points when we use the Minkovski Sum of two appropriate
sets.

Lemma 2. Let A and B be two sets with no m points on a line,
m ≥ 3. If S is the set of points v ∈ C for which A + vB has less
than |A| |B| points, or m points on a line; then S has zero Lebesgue
measure.

For presentation purposes we defer the proof of this lemma and
instead proceed to the proof of the theorem.
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Proof of Theorem 1. Let A1 = A∗
1 = A and suppose Aj and A∗

j have
been defined. By Lemma 2 there is a set Aj+1, similar to A, such that
A∗

j+1 := A∗
j +Aj+1 is in general position and |A∗

j+1| = |A∗
j ||Aj+1|. For

every j ≥ 1, |A∗
j | = |A∗

j−1||A| = |A∗
j−2||A|2 = · · · = |A|j. Moreover,

by Lemma 1, it follows that

I · SP

(
A∗

j

)
+

∣∣A∗
j

∣∣ = I · SP

(
A∗

j−1 + Aj

)
+

∣∣A∗
j−1

∣∣ |Aj|
≥ (

I · SP

(
A∗

j−1

)
+

∣∣A∗
j−1

∣∣) (I · SP (A) + |A|)
≥ (I · SP (A) + |A|)j .

If SP (A) = 0, then iP (A) = 1 and the result is trivial. Assume

iP (A) > 1 and suppose |A|j ≤ n < |A|j+1. The previous inequality
yields

S ′P (n) ≥ SP (A∗
j) ≥

1

I
((I · SP (A) + |A|)j − |A|j)

≥ 1

I

(
|A|j·iP (A) − n

)
≥ 1

I

((
n

|A|
)iP (A)

− n

)

≥ cniP (A),

for some constant c = c(A,P ) if n is large enough. For instance,

c = (2I |A|iP (A))−1 works whenever niP (A)−1 ≥ 2 |A|iP (A). ¤

Figure 1 shows a set A∗
3 obtained from this procedure when P = 4

the equilateral triangle and A is the starting set with 15 points and
29 equilateral triangles constructed in Section 4.2.3. Finally, we
present the proof of Lemma 2.

Proof of Lemma 2. We show that S is the union of a finite number
of algebraic sets, all of them of real dimension at most one. This
immediately implies that the Lebesgue measure of such a set is zero.
For every a ∈ A and b ∈ B, let q(a, b) = a + vb. Suppose that
q(a1, b1) = q(a2, b2) with (a1, b1) 6= (a2, b2). Then v(b2 − b1) + (a2 −
a1) = 0 and b1 6= b2. Thus v = −(a2− a1)/(b2− b1). Therefore there

are at most
(|A||B|

2

)
values of v for which A+vB has less than |A| |B|

points.
Now suppose that the set {q(aj, bj) : 1 ≤ j ≤ m} consists of m

points on a line, where {aj} ⊆ A and {bj} ⊆ B. Then for 3 ≤
j ≤ m, we have q(aj, bj)− q(a1, b1) = λj (q(a2, b2)− q(a1, b1)), where
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λj 6= 0, 1 is a real number. Thus for 3 ≤ j ≤ m,

v (bj − b1 − λj (b2 − b1)) = λj (a2 − a1)− (aj − a1) . (1)

First assume all bj are equal. Then all aj are pairwise different,
otherwise we would have less than m points initially. Moreover,
Equation (1) implies that (aj − a1)/(a2 − a1) = λj ∈ R for all
3 ≤ j ≤ m. But this contradicts the fact that there are no m points
on a line in A. By possibly relabeling the points, we can now assume
that b1 6= b2. If bj − b1 − λj (b2 − b1) 6= 0 for some j, then

v = −λj (a2 − a1)− (aj − a1)

λj (b2 − b1)− (bj − b1)
.

Möbius transformations send circles (or lines) to circles (or lines);
thus the last equation, seen as a parametric equation on the real
variable λj, represents a circle (or a line) in the plane. The remaining
case is when

bj − b1 − λj (b2 − b1) = 0 for 3 ≤ j ≤ m. (2)

Since λj 6= 0, 1, then bj 6= b1, b2. Suppose bj = bk for 3 ≤ j <
k ≤ m, then λj = λk and by (1) and (2) we deduce that aj = ak.
This contradicts the fact that q(aj, bj) and q(ak, bk) are two different
points. Therefore all the bj are pairwise different, and then by (2)
all the bj are on a line. This is a contradiction since there are no m
points on a line in B.

Therefore S is the union of a finite number of points and at most(|A||B|
m

)
circles (or lines), and consequently it has zero Lebesgue mea-

sure. ¤

4. Constructions of the initial sets

All the constructions of the initial sets A we provide have explicit
coordinates so it is possible to calculate SP (A) via the following
algorithm [4]: Fix two points p1, p2 ∈ P , for every ordered pair
(a1, a2) ∈ A × A of distinct points consider the unique orientation-
preserving similarity transformation f that maps p1 7→ a1 and p2 7→
a2. An explicit expression is f(z) = a1−a2

p1−p2
· z + a2p1−a1p2

p1−p2
. Then verify

whether f(P ) ⊆ A. If N is the number of pairs (a1, a2) for which
f(P ) ⊆ A, then SP (A) = N/

∣∣Iso+(P )
∣∣. The running time of this

algorithm is O(|P ||A|2 log |A|). Likewise, it is possible to verify that
no 3 points are on a line by simply checking the pairwise slopes of
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every triple of distinct points. We first present our construction for
arbitrary patterns P .

4.1. Arbitrary pattern P .

Proof of Theorem 2. Let z0 ∈ C\P be an arbitrary point and let
p1, p2 ∈ P be two fixed points in P . For every p ∈ P , there is
exactly one orientation-preserving similarity function fp such that
p1 7→ z0 and p2 7→ p; indeed an explicit expression of such function
is fp(z) = z0−p

p1−p2
· z + pp1−z0p2

p1−p2
. Let A be the point set obtained by

taking the image of P under every one of the functions fp, that
is, A =

⋃
p∈P fp(P ). For almost all z0, except for a subset of real

dimension 1, the set A does not have 3 points on a line and all the
sets fp(P )\{z0} are pairwise disjoint, that is |A| = 1 + k (k − 1) =
k2 − k + 1. This fact can be proved along the same lines as Lemma
2, we omit the details. By construction, each of the k sets fp(P ) is

Figure 2. A has no m points on a line, |A| = |P |2−
|P |+ 1 points and SP (A) = 2 |P | − 1.

similar to P . For every q ∈ P\{p1}, the set

{fp(q) : p ∈ P} =
p1 − q

p1 − p2

P +
z0 (q − p2)

p1 − p2

(3)

is also similar to P and different from the previous copies of P we
counted before. Thus SP (A) ≥ 2k − 1 and

iP (A) ≥ log (SP (A) + |A|)
log |A| =

log (k2 + k)

log (k2 − k + 1)
.
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The conclusion follows from Theorem 1. ¤

4.2. Triangles. The following table gives the currently best avail-
able initial set A for each pattern P in Theorem 3. That is, the set
A with the largest index iP (A) known to date. The lower bound
stated in Theorem 3 is then given by Theorem 1 applied to A. It

Best available A
P = T triangle |Iso+(T ) |A| ST (A) iT (A)
most scalene T 1 14 26 log 40/ log 14 > 1. 397
all scalene T 1 5 4 log 9/ log 5 > 1. 365
isosceles T = T (α)
α 6= π/6, π/4, π/3 1 8 9 log 17/ log 8 > 1. 362

T (π/6) 1 84 444 log 528/ log 84 > 1. 414
T (π/4) 1 24 120 log 144/ log 24 > 1. 563
equilateral T (π/3) 3 15 29 log 102/ log 15 = 1. 707

Table 1. Indices for the best initial sets when P = T
is a triangle.

is worth noting that our bound for scalene triangles is better than
the one for (most) isosceles triangles. The intuitive reason for this
is that it is harder to obtain better initial sets when the pattern has
any type of symmetries. This difficulty is overtaken by the factor∣∣Iso+(P )

∣∣ = 3 when P is an equilateral triangle. We extend our
comments in the concluding section.

4.2.1. Scalene triangles. We first give a construction for all scalene
triangles. If the pattern P = T consists of the points (complex num-
bers) 0, 1, and z /∈ R, then the initial set A1 = {0, 1, z, w = z − 1 +
1/z, wz} is in general position for every scalene triangle T , see Fig-
ure 3(a). A1 has 4 triangles similar to T : (0, 1, z) , (z, w, 1) , (1, z, wz)
and (0, w, wz). For all z, but a subset of real dimension 1, the con-
struction in Figure 3(b) is in general position and gives a better
lower bound for S ′T (n). The corresponding initial set is A2 = A∪A′

where A = A1 ∪ zA1 ∪ {wz2/ (z − 1)} and A′ is the π-rotation of A
about wz/2, that is A′ = −A + wz. Because some points overlap,
A2 has only 14 points,

A2 = {0, 1, z, w, wz, z2, wz2, wz2/ (z − 1) , wz − 1,

wz − z, wz − w, 1− z, wz (1− z) , wz/ (1− z)}.
10



Figure 3. (a) 5-point set A1 with ST (A1) = 4, (b)
14-point set A2 with ST (A2) = 26.

Among the points in A2, there are 6 similar copies of A1 with no
triangles similar to T in common: A1, zA1,

z
1−z

(A1 − wz), and
their π-rotations about wz/2. In addition, the triangles (w, wz(1−
z), wz2/(z − 1)) and (wz2, wz −w, wz/(1− z)) are similar to T and
are not contained in the 6 sets similar to A1 mentioned before, so
ST (A) ≥ 26.

4.2.2. Isosceles triangles. Let the pattern P = T (α) be an isosceles
triangle with angles α, α, and π−2α, where 0 < α < π/2. We use as
initial set one of the following two constructions, each with 8 points
and 9 copies of T (α), i.e., ST (α)(A) = 9. There are three exceptions
that are analyzed later in Section 4.3.3: T (π/6), T (π/4), and the
equilateral triangle T (π/3). Let u = e2αi so that T (α) = {0, 1,−u}.
The first initial set is A1 = B1 ∪B1 where B1 = {0, 1, u, 1 + u, (2u +
1)/(u + 1)} and B1 is the conjugate of B1, i.e., B1 = {b : b ∈ B1}.
(See Figure 4(a).) This configuration is in general position as long as
α 6= kπ/12, k ∈ Z. It has 9 copies of T (α): (0, 1, 1+u), (1+u, u, 0),
(1, (2u+1)/(u+1), 1+u), (1+1/u, (2u+1)/(u+1), u), their reflections
about the real axis, and (1/u, 1, u). The actual points in A1 are

A1 =

{
0, 1, u,

1

u
, 1 + u, 1 +

1

u
,
u + 2

u + 1
,
2u + 1

u + 1

}
.
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Figure 4. Sets Ai with |Ai| = 8 and ST (β)(Ai) = 9.
A1 is in general position for α 6= π/12, π/6, π/4, π/3,
or 5π/12, A2 is in general position for α 6=
arccos

√
(3 +

√
17)/8, π/6, π/4, or π/3.

The second initial set is A2 = B2 ∪B2 where B2 = {0, 1, u, u/(u+
1), 1−1/ (u + 1)2}. (See Figure 4(b).) This set is in general position

as long as α 6= arccos
√

(3 +
√

17)/8, π/6, π/4, or π/3. It has 9 copies

of T (α): (1, u/(u + 1), 0), (0, u/(u+1), u), (1, 1−1/ (u + 1)2 , u/(u+
1)), (1/(u+1), 1−1/ (u + 1)2 , u), their reflections about the real axis,
and (1/u, 1, u). The actual points in A2 are

A2 =

{
0, 1, u,

1

u
,

u

u + 1
,

1

u + 1
, 1− 1

(u + 1)2 , 1− u2

(u + 1)2

}
.

4.2.3. Equilateral triangle. Let z ∈ C and ω = e2iπ/3 so that ω2 +
ω + 1 = 0. When the pattern P = 4 = {1, ω, ω2} is the equi-
lateral triangle, we use as initial set A = B ∪ ωB ∪ ω2B where
B = {1,−z} ∪ (−1 + zP ). For all z but a 1-dimensional sub-
set of C, the set A is in general position and |A| = 15. The set
B1 =

⋃2
k=0 ωk(−1 + zP ) is the Minkovski Sum −P + zP , thus by

Lemma 1 there are at least 9 equilateral triangles in B1. In ad-
dition (1, ω, ω2) and (−z,−zω,−zω2) are equilateral, and each of
the points 1, ω, and ω2 is incident to 6 more equilateral trian-
gles: (1,−ω2 + z,−ω2z), (1,−ω2 + zω,−z), (1,−ω2 + zω2,−zω),
(1,−ω2z,−ω + zω), (1,−z,−ω + zω2), and (1,−ωz,−ω + z), to-
gether with the π/3- and 2π/3-rotations of these triangles about the
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origin. Thus S4(A) ≥ 29. It can be checked that there are only 29
equilateral triangles in A.

Figure 5. Initial set A with |A| = 15 and S4(A) = 29.

4.3. Regular polygons. As in the previous section, we construct
initial sets for each k-regular polygon with k ∈ {4, 5, 6, 8, 10}. The
following table gives the currently best available initial set A for each
of these regular polygons.

Best available A
Polygon R(k)

∣∣Iso+(R(k))
∣∣ |A| SR(k) (A) iR(k) (A)

Square = R(4) 4 24 30 log 144/ log 24 > 1. 563
Hexagon = R(6) 6 74 84 log 528/ log 84 > 1. 414
Octagon = R(8) 8 208 138 log 1312/ log 208 > 1. 345
Decagon = R(10) 10 420 222 log 2640/ log 420 > 1. 304
Pentagon = R(5) 5 120 264 log 1440/ log 120 > 1. 519

Table 2. Indices for the best initial sets for k-regular
polygons R(k).

We first present the construction for the even-sided polygons and
then the construction for the regular pentagon. Finally we explain
how to use these initial sets for any pattern that is a subset of a
regular polygon.

4.3.1. Even sided regular polygons. The following construction of the
initial set A is in general position for all even k, however the index
iR(k)(A) is only better than iR(k)(R(k)) when k ≤ 10. Let ω = e2πi/k,
k even, and z ∈ C an arbitrary nonzero complex number. Suppose
that the regular k-gon R(k) is given by R(k) = P = 1 + ω + z{ωj :
0 ≤ j ≤ k− 1}. The reason why we translated the canonical regular
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polygon by 1 + ω and rotated and magnified it by z will become
apparent soon. To construct our initial set A, we first follow the
construction of Theorem 2 applied to P with p1 = 1 + ω + z, p2 =
1+ω+zω, and z0 = 2. We obtain a set A1 consisting of z0 and k−1
disjoint similar copies of P given by (3). That is, A1 = {2}∪⋃k−1

j=1 Bj

where

Bj =
1− ωj

1− ω
P +

2 (ωj − ω)

1− ω
, 1 ≤ j ≤ k − 1.

Note that there are exactly k similar copies of P with vertex z0 =
2. Furthermore, ωk/2 = −1 because k is even and thanks to the
translation by 1 + ω in the definition of P , we have that

Bk/2 =

(
2z

1− ω

) {
ωj : 0 ≤ j ≤ k − 1

}
,

that is Bk/2 is a k-regular polygon centered at the origin. Now we
add to the construction every rotation of A1 by an integer multiple
of 2π/k. More precisely, we let

A =
k−1⋃

l=0

ωlA1. (4)

Note that Bk/2 is a subset of all the sets ωlA1. Because k is even,

Figure 6. Initial set A for R(4). |A| = 24 and
SP (A) = 30.

−P = P − 2− 2ω, thus for every 1 ≤ j ≤ k/2− 1,

ωjBk−j =
1− ωj

1− ω
(−P )+

2 (1− ωj+1)

1− ω
=

1− ωj

1− ω
P +

2 (ωj − ω)

1− ω
= Bj.

For almost all z ∈ C, except for a subset of real dimension 1, there
are no 3 collinear points in A and also for every j 6= k/2 the sets Bj
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and ωlBi are disjoint except for the pairs (i, l) = (j, 0) and (i, l) =
(k − j, j). It follows that every set of the form ωlBj with j 6= k/2 is
a subset of exactly two terms in the union from Equation (4) and it
is disjoint from the rest. Thus

|A| =
∣∣Bk/2

∣∣ +

∣∣∣∣∣∣∣∣

⋃

0≤l≤k−1
j 6=k/2

ωlBj

∣∣∣∣∣∣∣∣
+

∣∣{ωlz0 : 0 ≤ l ≤ k − 1
}∣∣

= k +
1

2
k (k − 2) + k =

k

2

(
k2 − 2k + 4

)
.

To bound the number of k-regular polygons in A, first note that
for each 0 ≤ l ≤ k − 1, there are at least k regular polygons with
a vertex in ωlz0 contained in ωlA1 and all of these k2 copies of P
are different. For every 1 ≤ j ≤ k/2 − 1 the set

⋃k−1
l=0 ωlBj is the

Minkovski Sum of two copies of P , namely

P1 =
(
1 + ωj

) {
ωl : 0 ≤ l ≤ k − 1

}
and

P2 =
1− ωj

1− ω
z

{
ωl : 0 ≤ l ≤ k − 1

}
,

with exactly k2 points. Thus, by Lemma 1, SP (
⋃k−1

l=0 ωlBj) = SP (P1+
P2) ≥ 3k. Furthermore, all these 3k(k/2 − 1) regular polygons
are distinct and also different from those previously counted. Fi-
nally, there are two extra polygons not yet counted, namely Bk/2

and
{
ωlz0 : 0 ≤ l ≤ k − 1

}
. Thus SP (A) ≥ k2 + 3k(k/2 − 1) + 2 =

1
2
(5k2 − 6k + 4) and then

iP (A) ≥ log
(

k
2
(5k2 − 6k + 4) + k

2
(k2 − 2k + 4)

)

log
(

k
2
(k2 − 2k + 4)

)

≥ log (3k3 − 4k2 + 4k)

log
(

k
2
(k2 − 2k + 4)

) .

The conclusion follows by setting k = 4, 6, 8, or 10.

4.3.2. The regular pentagon. Let ω = e2πi/5, for every z ∈ C set
R(5) = P = z{1, ω, ω2, ω3, ω4}. Define

A1 = P +

√
5 + 3

2
, A2 =

√
5 + 1

2
(−P + 1) ,

and A3 =
(
ω2 − 1

) {z, ω + 1} .
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Figure 7. Best known initial sets for P = R(6) and
P = R(8).

Now we consider all the 2πk/5 rotations of these points, 0 ≤ k ≤
4, as well as their symmetrical points with respect to the origin.
That is, we define B = A1 ∪ (−A1) ∪A2 ∪ (−A2) ∪A3 ∪ (−A3) and
A =

⋃4
k=0 ωkB. For almost all z ∈ C, except for a subset of real

dimension one, A has exactly 120 points and has no three points on
a line. There are at least 264 regular pentagons with vertices in A:
for each j = 1, 2, the set

⋃4
k=0 ωk (±Aj) is the Minkovski Sum of

two regular pentagons, and thus by Lemma 1 each of these 4 sets
has 15 regular pentagons, the point set

⋃4
k=0 ωk (±A3) consists of

two regular decagons so it contains 4 pentagons, finally each of the
20 points in

⋃4
k=0 ωk (±A3) is incident to 10 more regular pentagons

different from the ones previously counted (See Figure 8.) In fact
every point in A is incident to exactly 11 regular pentagons and it
turns out that the set A has an interesting set of automorphisms
that preserve the regular pentagons.

4.3.3. Subsets of regular polygons. If P is a subset of a regular poly-
gon R, then the constructions we have previously obtained for R
would also be suitable for P . More precisely we have the following
result.

Theorem 5. Let R be a regular polygon and P ⊆ R with |P | ≥ 3.
For every nonempty finite A ⊆ C, we have that

SP (n) ≥ Ω
(
niR(A)

)
.
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Figure 8. The best initial set A for the regular pentagon

Proof. Let I = |Iso+(P )|. Because R is a regular polygon and |P | ≥
3, each similar copy of P in A is contained in at most one copy
of R in A. Thus SP (A) ≥ SR(A) · SP (R). On the other hand,
SP (R) = |R| /I and thus

I · SP (A) ≥ I · SR(A) · SP (R) = |R|SR(A).

Consequently

iP (A) =
log (I · SP (A) + |A|)

log |A| ≥ log (|R|SR(A) + |A|)
log |A| = iR(A).

Finally, by Theorem 1, SP (n) ≥ Ω(niP (A)) ≥ Ω(niR(A)). ¤
As a direct consequence of this theorem, we take care of the

isosceles triangles for which the construction in Section 4.2.2 yielded
collinear triples. For the isosceles triangles T (α) with α = π/6 or
π/4 we have that ST (π/6)(n) ≥ Ω(nlog 528/ log 84) and ST (π/4)(n) ≥
Ω(nlog 144/ log 24), both of which exceed the bound in Theorem 3.
Other point sets treated before can be improved this way as well.
For instance ST (π/5)(n), ST (2π/5)(n) ≥ Ω(nlog 1440/ log 120) ≥ Ω(n1.519).

5. Conclusions and open problems

The main relevance of Theorem 1 is that it provides an effective
tool to obtain better lower bounds for S ′P (n). Indeed, any of the
results for specific patterns in this paper, can be improved by finding
initial sets with larger indices. For a general pattern P , Theorem
2 is only slightly better than the bound Ω(nlog(1+|P |)/ log|P |) which is
obtained using A = P as the initial set. There must be a way to
construct a better initial set.
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When the pattern P = T is a triangle we obtained a considerably
larger bound when T is equilateral. The reason behind this is the
fact that there is a multiplying factor of |Iso+(T )| = 3 in the index
of iT (A). We could not construct initial sets for arbitrary isosceles
triangles that would improve the bound for scalene triangles. The
mirror symmetry of the isosceles triangles became an obstacle when
trying to construct sets with large indices. For instance, the set A1

in Section 4.2.1 always yields collinear points when T is an isosceles
triangle.

Problem 1. For every isosceles triangle T , find a set A in general
position such that iT (A) ≥ log 9/ log 5.

We also had some limitations to construct initial sets when P =
R(k) is a regular polygon. In this case, the index obtained using P
itself as initial set is log(2k)/ log k. We do not have a better initial
set for odd k ≥ 7 and in fact our construction of the initial set A
for even-sided regular k-gons in Section 4.3.1 only gives an index
iR(k)(A) better than log(2k)/ log k when k < 12. The constructions
for the square and the pentagon have the property that every point
belongs to the same number of regular polygons. Furthermore, their
point–polygon incidence graphs are vertex transitive. It would be
interesting to find such constructions for larger values of k.

Problem 2. Let R(k) be a regular k-gon. For every even k ≥ 12
and odd k ≥ 7 find a set A in general position such that iR(k)(A) ≥
log(2k)/ log k.

We are confident that there are some yet undiscovered methods
for getting initial sets with larger indices. We would like to find such
sets for some other classes of interesting geometric patterns.

Problem 3. Find initial sets A with indices as large as possible
when P is a right triangle, or a parallelogram, or a trapezoid.
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[8] P. Erdős and G. Purdy. Some extremal problems in geometry. Journal of
Combinatorial Theory 10 (1971), 246–252.

[9] P. Erdős and G. Purdy. Some extremal problems in geometry III. Proc.
6th Southeastern Conference in Combinatorics, Graph Theory and Comp.
(1975), 291–308.
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