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Abstract

Given a large weighted graph G = (V| E) and a subset
U of V', we define several graphs with vertex set U in
which two vertices are adjacent if they satisfy some
prescribed proximity rule. These rules use the short-
est path distance in G and generalize the proximity
rules that generate some of the most common proxim-
ity graphs in Euclidean spaces. We prove basic prop-
erties of the defined graphs and provide algorithms
for their computation.

1 Introduction

In Euclidean spaces, proximity graphs are a key tool
to obtain neighborhood relations in a given set of
points [5]. They have been intensively explored in
the contexts of spacial distribution analysis [9] and
graph drawing [7], among others.

In non-Euclidean settings, the Delaunay graph and
its relatives have found applications in the analysis of
networks that model real connection nets. A promi-
nent example is the network Voronoi diagram (see
Section 3.8 in [9]).

Here we deal with a complex graph G with a large
number of vertices and edges, in which it is difficult
to distinguish which are the relations of proximity
among a subset of the vertices. The edges of the graph
come with an associated positive weight. We study
relations of proximity based on shortest paths along
G = (V,E) among the vertices of a subset U C V,
which might represent the schools in the map of a
city, the corresponding stations in a huge transporta-
tion net, etc. We use generalizations of some well-
known proximity graphs. This appears as a natural
method to provide notions of closeness.
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The natural and important question of defining
suitable notions of closeness among vertices of a graph
has found different kinds of answers in the literature.
However, we are only aware of one approach that uses
proximity graphs (see [6, 11]). The graphs considered
there are clearly different from ours, as proximity is
constructed by adopting a notion whose universe is
a given geometric graph, but where the relations are
given by the full Euclidean plane.

Let us mention that the set U together with
the shortest-path distance constitutes a finite metric
space, so some of the proximity graphs we consider are
not new because they can be seen as a particular case
of proximity graphs defined on general metric spaces.
Even though there exists some literature on proximity
graphs in metric spaces, to the best of our knowledge
this topic has not been deeply investigated, as only
some definitions and basic properties have been given
(see Section 4.5 in [12], and also [4]). The sphere-of-
influence graph has been further studied [3, 8], but it
is out of the scope of our work.

When using empty regions as proximity criteria
in G, such as disks, two main variations arise, since
we might allow these disks to be centered at any point
in G, or we might restrict their centers to lie only on
vertices of the graph, as in [3, 1]. Moreover, the defi-
nition of certain regions of interference might depend
on the multiplicity of paths or distances in G. Degen-
eracies that occur in the standard geometric case also
generate several possibilities. For the sake of clarity
we first present the situation where there are essen-
tially no degeneracies (Sections 2-5). In Section 6 we
drop the non-degeneracy assumptions and extend our
results to the general setting.

Proofs and descriptions of the algorithms will be
given in the full-version of this paper.

2 Definitions and Notation

We deal with a connected and edge-weighted graph
G = (V,U,E), where U C V and all edges have posi-
tive real weights assigned to them. We assume that it
is possible to consider points in the edges of G; more
precisely, for every edge e = (v1, v2) with weight w(e)
and every r € (0,w(e)), we assume that there exists
a point p in e and paths from both v; and vs to p
such that the weight of the path from v, to p is r,
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and the weight of the path from ve to p is w(e) — r
(if G is embedded in the plane, these paths are sim-
ply portions of the edges). We say that p is a point
of G if p is either a vertex of GG, or a point in an
edge of G. The distance dg(p,q) between two points
p and ¢ in G is defined as the minimum total weight
of any path connecting p and g in G. The closed disk
D¢ (p, ) is defined as the set of points g of G for which
de(p,q) < r. We say that u; € U is a nearest neighbor
of uj € U with ¢ # j if de(u;, us) < da(uj, ug) for all
vertices u # u; € U. A midpoint of two points p and
q of G is a point m on one of the shortest paths from
p to ¢ such that dg(m,p) = dg(m, q). We denote the
set of midpoints of p and g by Mg(p, q). For the re-
mainder of this paper, we define |V| = m, |U| = n,
and |E| =e.

We first consider the case where the following non-
degeneracy assumptions hold: (A1) for all u;, u; € U,
the shortest path connecting u; and w; is unique; (A2)
there do not exist three distinct vertices u;,u; € U,
v € V —U such that dg(v,u;) = dg(v,u;); (A3) there
do not exist vertices v;,v; € V, us, u; € U such that
da(vi,u;) = dg(vj, uj) with v; # u;; (A4) all paths in
G between distinct nodes in V' have different lengths.

Obviously, the previous assumptions are not inde-
pendent, but considering them separately allows to
clarify and provide a more precise description of the
scenario. In Section 6, we extend the results from
Sections 3-5 to the general case where A1-A4 are not
necessarily satisfied.

We now adapt several known definitions to proxim-
ity structures in graphs G = (V,U, E).

Definition 1 The nearest neighbor graph of G =
(V,U,E), denoted by NNG(G), is the graph H =
(U, F') such that (u;,u;) € F' ifu; is one of the nearest
neighbors of u; in G.

Definition 2 A minimal spanning tree of G =
(V,U,E) is a tree T = (U, F) such that the sum of
dg(ui, uj) over all edges (u;,u;) € F is minimal. The
union of the minimal spanning trees of G, denoted
by UMST(GQ), is the graph consisting of all the edges
included in any of the minimal spanning trees of G.

If A3 holds, each vertex in U has exactly one nearest
neighbor and the minimal spanning tree of G, denoted
by MST(G), is unique.

Definition 3 The relative neighborhood graph of
G = (V,U,E), denoted by RNG(G), is the graph
H = (U, F) such that (u;,u;) € F if there exists no
vertex uy € U such that dg(ug,w;) < dg(u;,u;) and
da(uk, uj) < da(us, uj).

Definition 4 The free Gabriel graph of G =
(V,U,E), denoted by GG¢(G), is the graph H =
(U, F) such that (u;,u;) € F if there exists no vertex

up € U (ug # u;,u;) such that dg(p,ur) < da(p, w;),
where p is the midpoint of u; and u;.

If A1l holds, there exists only one midpoint of w;
and u;, thus the previous graph is well-defined.

Definition 5 The constrained Gabriel graph of G =
(V,U,E), denoted by GG.(G), is the graph H =
(U,F) such that (u;,u;) € F if the smallest closed
disk centered at a vertex in V enclosing u; and u;
does not contain any other vertex from U.

The previous graph is well-defined if A3 holds.

Definition 6 The Voronoi region of a vertex u; €
U is the set of points p of G such that dg(p,u;) <
de(p,u;) for all vertices u; € U different from wu,.
The Voronoi diagram of G = (V,U, E), denoted by
VD(G), is the Voronoi diagram of the vertex set U
for the distance dg.

Definition 7 The free Delaunay graph of G =
(V,U,E), denoted by DG¢(G), is the graph H =
(U, F) such that (u;,u;) € F if there exists a closed
disk Dg(p,r), where p is a point of G, enclosing u;
and u; and no other vertex from U.

Definition 8 The constrained Delaunay graph of
G = (V,U,E), denoted by DG.(G), is the graph
H = (U, F) such that (u;,u;) € F if there exists a
closed disk D¢ (v, r), with v € V', enclosing u,; and u;
and no other vertex from U.

3 Inclusion Sequence

The graphs just defined satisfy some inclusion rela-
tions. In this section we show which proximity graphs
are subgraphs of which other proximity graphs assum-
ing A1, A2, and A3.

Theorem 1 The relations of containment among all
classes of proximity graphs are shown in Table 1. The
symbol C means that the inclusion is satisfied for all
graphs G, and ¢ means that there are graphs G for
which the inclusion is not satisfied.

All inclusions in the table are proper, in the sense
that there exist graphs G for which the corresponding
proximity subgraph does not coincide with its super-
graph.

4 Geometric and Combinatorial Properties

We define the dual graph of the Voronoi diagram of
G = (V,U,E) as the graph with vertex set U and
edges connecting two vertices if their Voronoi regions
share some point in G that does not belong to the
Voronoi region of any other element in U.
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Table 1: Relations of containment among proximity
graphs in the non-degenerate case.

Table 2: Running times of the algorithms to compute
the proximity graphs on G.

| [ MST [ RNG | GG, | GGy | DG, | DG |

NNG c - < c - c
MST C < - <z C
RNG < - g -
GG, Z - C
GGy Z C
DG, -

Proposition 2 Let G = (V,U, E) be a graph. Then
DG¢(G) is the dual the graph of VD(G).

The previous proposition allows to draw the first
analogy between the usual proximity graphs and these
new proximity structures on graphs. Moreover, it is
a key tool to prove the following result:

Corollary 3 Let G = (V,U,E) be a graph. The
number of edges of NNG(G), MST(G), RNG(G),
GG.(G), GG¢(R), DG(G), and DG¢(G) is at most e.

This bound is tight up to a constant factor:

Proposition 4 There exists a graph G = (V,U, E)
such that RNG(G) = GG¢(G) = DG¢(G) = G. There
also exists a graph G' = (V',U’,E’) such that the
number of edges of GG.(G') and DG.(G’) is €'/2.
Furthermore, all of these graphs have ©(n?) edges.

In the following theorems we show that the prox-
imity graphs inherit planarity and acyclicity from the
original graph.

Theorem 5 Let G = (V,U,E) be a planar
graph. Then NNG(G), MST(G), RNG(G), GG.(G),
GG¢(G), DG.(G), and DG¢(G) are planar.

Theorem 6 Let G = (V,U,E) be a tree. Then
GG¢(GQ) and DG(G) are forests, and RNG(G) =
GGt(G) = DG¢(G) = MST(G).

Next we give complete characterizations for those
graphs that are isomorphic to a certain proximity
graph of some other graph.

Proposition 7 If G = (V, E) is a graph, there exists
a graph G = (V,U,E) such that G = NNG(G) if
and only if G is acyclic and does not contain isolated
vertices.

Proposition 8 If G = (V, E) is a graph, there exists
a graph G = (V,U, F) such that G = MST(QG) if and
only if G is a tree.

l proximity graph l running time ‘

NNG O(e + (m — n)log(m — n))
MST O(eal(e,n) + (m — n)log(m —n))
RNG O(APSP(G) + min{n?, e}n)
GGc O(APSP(G) + min{n?, e}m)
GGs O (APSP(G) + min{n* e}m)
DG, O(e + mlogm)

DGt O(e + (m — n)log(m — n))

Proposition 9 If G = (V, E) is a graph, there exists
a graph G = (V,U, FE) such that G =2 RNG(G) if and
only if G is triangle-free.

Proposition 10 Let G = (
exists a graph G = (V

GGo(G) = GG¢(G) =D c(b)

E) be a graph. There
,E) such that G =
= DG¢(G).

4
U

5 Algorithms

We have derived algorithms to compute each of the
proximity graphs we have studied. Due to lack of
space, we omit the description of the algorithms and
only give their running times.

In some cases the algorithm computes the short-
est paths between all pairs of vertices in U.
If G is a sparse graph, we use the algorithm
in [10], which runs in O(mlogm + neloga(m,e))

time. If G is dense, we use the algorithm
in [2], which runs in O (m®log®logm/log®m)
time.  We define APSP(G) = min{mlogm +

nelog a(m, e), m? log® log m/ log® m}.

Theorem 11 For each graph G = (V,U,E), the
proximity graphs on G can be computed in the num-
ber of steps indicated in Table 2.

6 Presence of Degeneracies

In this section we generalize our results to the case in
which degeneracies arise.

First of all, we look through the definitions. The
graphs NNG(G), UMST(G), RNG(G), DG¢(G), and
DG.(G) are well-defined regardless of the properties
of G, although, in contrast to the non-degenerate case,
a vertex in U might have several nearest neighbors.

In the general case there might be more than one
shortest path between two vertices of U. This gives
rise to two definitions of free Gabriel graphs:

Definition 9 The free-one Gabriel graph of G
(V,U,E), denoted by GGy (G), is the graph H
(U,F) such that (u;,u;) € F if there exists p €
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Table 3: Relations of containment among all classes
of proximity graphs in the general case.

[ [UMST[RNG|GGca | GGe1|GGrta | GGr1 [DGe [ DGy
NNG C c 4 <
UMST C [
RNG 7
GGea
GGe1
GGga
GGq
DG.

NI

R

IRISINBSIISIN

INBSTRIIRIBSIINIIN]

IN[ININININIRIMR

M (ui, uj) such that no vertex ux € U (up, # wi, uj)
satisfies dg(p, ux) < dg(p, u;).

Definition 10 The free-all Gabriel graph of G =
(V,U,E), denoted by GGg,(G), is the graph H =
(U,F) such that (u;,u;) € F if, for each p €
Mc(ui, uj), no vertex u,, € U (uy, # u;,u;) satisfies
da(p,ux) < dg(p, wi).

Analogously, the definition of the constrained
Gabriel graph must be replaced by the following vari-
ants:

Definition 11 The constrained-one Gabriel graph
of G = (V,UE), denoted by GGe¢(G), is the
graph H = (U,F) such that (u;,u;) € F if there
exists a closed disk Dg(v,r), with v € V and
r = minyev{r | De(v,r) contains both u; and u;},
enclosing u; and u; and no other vertex from U.

Definition 12 The constrained-all Gabriel graph of
G = (V,U,E), denoted by GGe,(G), is the graph
H = (U,F) such that (u;,u;) € F if every closed
disk Dg(v,r) containing both w; and u;, and where
veVandr = mingey{r | Dg(v,r) contains both
u; and u;}, does not contain any other vertex of U.

Now we may go through the inclusion relations of
the proximity graphs.

Theorem 12 If degenerate situations are allowed,
the relations of containment among all classes of prox-
imity graphs are shown in Table 3. Furthermore, all
classes of proximity graphs are different.

To conclude this section, we focus on the most im-
portant properties presented in Section 3.

The fact that DG¢(G) is the dual graph of the
Voronoi diagram of GG holds in all cases. On the other
hand, if A2 is not satisfied, some of the proximity
graphs might have more edges than the original graph:

Theorem 13 Let G = (V,U,E) be a graph. The
number of edges of GGea(G), GG.(G), GG(G),

GG¢(G), DG.(G), and DG¢(G) is at most e. The num-
ber of edges of NNG(G), UMST(G), and RNG(G)
may be greater than e.

Finally, we check whether all proximity graphs in-
herit the property of being planar or acyclic in the
degenerate case.

Theorem 14 Let G = (V,U, E) be a planar graph.
Then the graphs GGe(G), GGc1(G), GGn(G),
GG (G), DG.(G), and DG¢(G) are planar, whereas
NNG(G), UMST(G), and RNG(G) may not be.

Theorem 15 Let G = (V,U,E) be a tree. Then
the graphs GGea(G), GG (G), GGun(G), GGn(G),
DG¢(G), and DG¢(G) are acyclic, whereas NNG(G),
UMST(G), and RNG(G) may not be.

The algorithms in the preceding section can be
adapted to run under the presence of degeneracies yet
we omit here further details.
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