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Abstract

Let Q be a finite set of points in the plane. For any set P of points in the plane,
SQ(P ) denotes the number of similar copies of Q contained in P . For a fixed n, Erdős
and Purdy asked to determine the maximum possible value of SQ(P ), denoted by
SQ(n), over all sets P of n points in the plane. We consider this problem when Q = △
is the set of vertices of an isosceles right triangle. We give exact solutions when n ≤ 9,
and provide new upper and lower bounds for S△(n).

1 Introduction

In the 1970s Paul Erdős and George Purdy [6, 7, 8] posed the question, “Given a finite set
of points Q, what is the maximum number of similar copies SQ(n) that can be determined
by n points in the plane?”. This problem remains open in general. However, there has
been some progress regarding the order of magnitude of this maximum as a function of n.
Elekes and Erdős [5] noted that SQ (n) ≤ n (n − 1) for any pattern Q and they also gave
a quadratic lower bound for SQ(n) when |Q| = 3 or when all the coordinates of the points
in Q are algebraic numbers. They also proved a slightly subquadratic lower bound for all
other patterns Q. Later, Laczkovich and Ruzsa [9] characterized precisely those patterns Q
for which SQ (n) = Θ(n2). In spite of this, the coefficient of the quadratic term is not known
for any non-trivial pattern; it is not even known if limn→∞ SQ(n)/n2 exists!

Apart from being a natural question in Discrete Geometry, this problem also arose in
connection to optimization of algorithms designed to look for patterns among data obtained
from scanners, digital cameras, telescopes, etc. (See [2, 3, 4] for further references.)
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Our paper considers the case when Q is the set of vertices of an isosceles right triangle.
The case when Q is the set of vertices of an equilateral triangle has been considered in [1].
To avoid redundancy, we refer to an isosceles right triangle as an IRT for the remainder of the
paper. We begin with some definitions. Let P denote a finite set of points in the plane. We
define S△(P ) to be the number of triplets in P that are the vertices of an IRT. Furthermore,
let

S△(n) = max
|P |=n

S△(P ).

As it was mentioned before, Elekes and Erdős established that S△(n) = Θ(n2) and it is
implicit from their work that 1/18 ≤ lim infn→∞ S△(n)/n2 ≤ 1. The main goal of this paper
is to derive improved constants that bound the function S△(n)/n2. Specifically, in Sections
2 and 3, we prove the following result:

Theorem 1.

0.433064 < lim inf
n→∞

S△(n)

n2
≤ 2

3
< 0.66667.

We then proceed to determine, in Section 4, the exact values of S△(n) when 3 ≤ n ≤ 9.
Several ideas for the proofs of these bounds come from the equivalent bounds for equilateral
triangles in [1].

2 Lower Bound

We use the following definition. For z ∈ P , let Rπ/2(z, P ) be the π/2 counterclockwise
rotation of P with center z. Furthermore, let degπ/2(z) be the number of isosceles right
triangles in P such that z is the right-angle vertex of the triangle. If z ∈ P , then degπ/2(z)
can be computed by simply rotating our point set P by π/2 about z and counting the number
of points in the intersection other than z. Therefore,

degπ/2(z) = |P ∩ Rπ/2(z, P )| − 1. (1)

Due to the fact that an IRT has only one right angle, then

S△(P ) =
∑

z∈P

degπ/2(z).

That is, the sum computes the number of IRTs in P . From this identity an initial 5/12 lower
bound can be derived for lim infn→∞ S△(n)/n2 using the set

P =
{

(x, y) ∈ Z
2 : 0 ≤ x ≤

√
n, 0 ≤ y ≤

√
n
}

.

We now improve this bound.
The following theorem generalizes our method for finding a lower bound. We denote by

Λ the lattice generated by the points (1, 0) and (0, 1); furthermore, we refer to points in Λ
as lattice points. The next result provides a formula for the leading term of S△(P ) when
our points in P are lattice points enclosed by a given shape. This theorem, its proof, and
notation, are similar to Theorem 2 in [1], where the authors obtained a similar result for
equilateral triangles in place of IRTs.
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Theorem 2. Let K be a compact set with finite perimeter and area 1. Define fK : C → R+

as fK(z) = Area(K ∩Rπ/2(z, K)) where z ∈ K. If Kn is a similar copy of K intersecting Λ
in exactly n points, then

S△(Kn ∩ Λ) =

(
∫

K

fK(z) dz

)

n2 + O(n3/2).

Proof. Given a compact set L with finite area and perimeter, we have that

|rL ∩ Λ| = Area(rL) + O(r) = r2Area(L) + O(r),

where rL is the scaling of L by a factor r. Therefore,

S△(Kn ∩ Λ) =
∑

z∈Kn∩Λ

|(Λ ∩ Kn) ∩ Rπ/2(z, (Kn ∩ Λ))| − 1

=
∑

z∈Kn∩Λ

Area(Kn ∩ Rπ/2(z, Kn)) + O(
√

n).

We see that each error term in the sum is bounded by the perimeter of Kn, which is finite
by hypothesis. Thus,

S△(Kn ∩ Λ) = n2
∑

z∈Kn∩Λ

1

n2
Area(Kn ∩ Rπ/2(z, Kn)) + O(n3/2)

= n2
∑

z∈Kn∩Λ

1

n
Area(

1√
n

(

Kn ∩ Rπ/2(z, Kn)
)

) + O(n3/2)

= n2
∑

z∈Kn∩Λ

1

n
Area

(

1√
n

Kn ∩ Rπ/2

(

z√
n

,
1√
n

Kn

))

+ O(n3/2).

The last sum is a Riemann approximation for the function f(1/
√

n)Kn
over the region (1/

√
n)Kn,

thus

S△(Kn ∩ Λ) = n2

(

∫

1
√

n
Kn

f 1
√

n
Kn

(z) dz + O

(

1√
n

)

)

+ O(n3/2).

Since

Area

(

1√
n

Kn

)

=
1

n
Area(Kn) =

1

n
(n + O(

√
n)) = 1 + O

(

1√
n

)

= Area(K) + O

(

1√
n

)

,

it follows that,
∫

1
√

n
Kn

f 1
√

n
Kn

(z) dz =

∫

K

fK(z) dz + O

(

1√
n

)

.

As a result,

S△(Kn ∩ Λ) = n2

∫

1
√

n
Kn

f 1
√

n
Kn

(z) dz + O(n3/2)

= n2

∫

K

fK(z) dz + O(n3/2).
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The importance of this theorem can be seen immediately. Although our 5/12 lower bound
for lim infn→∞ S△(n)/n2 was derived by summing the degrees of each point in a square lattice,
the same result can be obtained by letting K be the square {(x, y) : |x| ≤ 1

2
, |y| ≤ 1

2
}. It

follows that fK(x, y) = (1 − |x| − |y|)(1 − ||x| − |y||) and

S△(Kn ∩ Λ) =

(
∫

K

fK(z) dz

)

n2 + O(n3/2) =
5

12
n2 + O(n3/2).

An improved lower bound will follow provided that we find a set K such that the value
for the integral in Theorem 2 is larger than 5/12. We get a larger value for the integral by
letting K be the circle {z ∈ C : |z| ≤ 1/

√
π}. In this case

fK(z) =
2

π
arccos(

√
2π

2
|z|) − |z|

√

2

π
− |z|2 (2)

and

S△(Kn ∩ Λ) =

(
∫

K

fK(z) dz

)

n2 + O(n3/2) =

(

3

4
− 1

π

)

n2 + O(n3/2).

It was conjectured in [1] that not only does limn→∞ E(n)/n2 exist, but it is attained
by the uniform lattice in the shape of a circle. (E(n) denotes the maximum number of
equilateral triangles determined by n points in the plane.) The corresponding conjecture in
the case of the isosceles right triangle turns out to be false. That is, if limn→∞ S△(n)/n2

exists, then it must be strictly greater than 3/4 − 1/π. Define Λ to be the translation of Λ
by the vector (1/2, 1/2). The following lemma will help us to improve our lower bound.

Lemma 1. If (j, k) ∈ R2 and Λ′ = Λ or Λ′ = Λ, then

Rπ/2((j, k), Λ′) ∩ Λ′ =

{

Λ′ if (j, k) ∈ Λ ∪ Λ,
∅ else.

Proof. Observe that

Rπ/2((j, k), (s, t)) =

(

0 −1
1 0

)(

s − j
t − k

)

+

(

j
k

)

=

(

k − t + j
s − j + k

)

.

First suppose (s, t) ∈ Λ. Since s, t ∈ Z, then (k− t+ j, s− j +k) ∈ Λ if and only if k− j ∈ Z

and k + j ∈ Z. This can only happen when either both j and k are half-integers (i.e.,
(j, k) ∈ Λ), or both j and k are integers (i.e., (j, k) ∈ Λ). Now suppose (s, t) ∈ Λ. In this
case, because both s and t are half-integers, we conclude that (k− t+ j, s− j +k) ∈ Λ if and
only if both k− j ∈ Z and k+ j ∈ Z. Once again this occurs if and only if (j, k) ∈ Λ∪Λ.

Recall that if K denotes the circle of area 1, then (3/4 − 1/π)n2 is the leading term of
S△(Kn∩Λ). The previous lemma implies that, if we were to adjoin a point z ∈ R2 to Kn∩Λ
such that z has half-integer coordinates and is located near the center of the circle formed
by the points of Kn ∩ Λ, then degπ/2(z) will approximately equal |Kn ∩ Λ|. We obtain the
next theorem by further exploiting this idea.
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Theorem 3.

.43169 ≈ 3

4
− 1

π
< .433064 < lim inf

n→∞

S△(n)

n2

Proof. Let K be the circle of area 1, A = Km1
∩Λ, and B = Km2

∩Λ. Moreover, position B
so that its points are centered on the circle formed by the points in A (See Figure 1). We let
n = m1 + m2 = |A ∪ B| and m2 = x · m1, where 0 < x < 1 is a constant to be determined.

Figure 1: (a) Set B (gray points) centered on set A (black points), (b) Plot of the n2

coefficient of S△(A ∪ B) as x ranges from 0 to 1.

We proceed to maximize the leading coefficient of S△(A∪B) as x varies from 0 to 1. By
Lemma 1, there cannot exist an IRT whose right-angle vertex lies in A while one π/4 vertex
lies in A and the other lies in B. Similarly, there cannot exist an IRTwhose right angle-vertex
lies in B while one π/4 vertex lies in A and the other lies in B. Therefore, each IRTwith
vertices in A ∪ B must fall under one of the following four cases:

Case 1: All three vertices in A. Using Theorem 2, it follows that there are (3/4− 1/π)m2
1 +

O(m
3/2
1 ) IRTs in this case. Since m1 = n/(1 + x), the number of IRTs in terms of n equals

(

3

4
− 1

π

)

n2

(1 + x)2
+ O(n3/2). (3)

Case 2: All three vertices in B. By Theorem 2, there are (3/4 − 1/π)m2
2 + O(m

3/2
2 ) IRTs in

this case. This time m2 = nx/(1 + x) and the number of IRTs in terms of n equals

(

3

4
− 1

π

)

n2x2

(1 + x)2
+ O(n3/2). (4)

Case 3: Right-angle vertex in B, π/4 vertices in A. The relationship given by Lemma 1
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allows us to slightly adapt the proof of Theorem 2 in order to compute the number of IRTs
in this case. The integral approximation to the number of IRTs in this case is given by

∑

z∈Km2
∩Λ

|(Km1
∩ Λ) ∩ Rπ/2(z, (Km1

∩ Λ))| = m2
1

(

∫

1
√

m1
Km2

f 1
√

m1
Km1

(z) dz

)

+ O(m
3/2
1 ).

But

Area

(

1√
m1

Km2

)

= Area

(√

m2

m1

K

)

+ O(
√

m1),

so

m2
1

(

∫

1
√

m1
Km2

f 1
√

m1
Km1

(z) dz

)

+ O(m
3/2
1 ) = m2

1

(

∫

√

m2

m1
K

fK(z) dz

)

+ O(m
3/2
1 ).

Expressing this value in terms of n gives
(
∫

√
xK

fK(z) dz

)

n2

(1 + x)2
+ O(n3/2). (5)

Case 4: Right-angle vertex in A, π/4 vertices in B. As in Case 3, the number of IRTs is
given by

∑

z∈Km1
∩Λ

|(Km2
∩ Λ) ∩Rπ/2(z, (Km2

∩Λ))| = m2
2

(

∫

1
√

m2
Km1

f 1
√

m2
Km2

(z) dz

)

+ O(m
3/2
2 ). (6)

Now recall that f(1/
√

m2)Km2
(z) = Area

(

(1/
√

m2)Km2
∩ Rπ/2(z, (1/

√
m2)Km2

)
)

. It fol-

lows that f(1/
√

m2)Km2
(z0) = 0 if and only if z0 is farther than

√

2/π from the center of
(1/

√
m2)Km2

. Thus for small enough values of m2, the region of integration in Equation (6)

is actually (
√

2/m2)Km2
, so it does not depend on m1. We consider two subcases.

First, if x ≤ 1/2 (i.e., m2 ≤ m1/2), then
√

2

π
=

1√
m2

√
2m2√
π

≤ 1√
m2

√
2√
π

√
m1√
2

=
1√
m2

√

m1

π
.

The left side of the above inequality is the radius of (
√

2/m2)Km2
, meanwhile the right side

is the radius of (1/
√

m2)Km1
, thus the region of integration where f 1

√

m2

Km2

is nonzero equals

(
√

2/m2)Km2
. Hence, the number of IRTs equals

m2
2

(

∫

√

2

m2
Km2

f 1
√

m2
Km2

(z) dz

)

+ O(m
3/2
2 ) = m2

2

(
∫

√
2K

fK(z) dz

)

+ O(m
3/2
2 )

=

(
∫

√
2K

fK(z) dz

)

x2n2 + O(n3/2). (7)
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Now we consider the case x > 1/2 (i.e., m2 > m1/2). In this case, f 1
√

m2
Km2

is nonzero

for all points in 1√
m2

Km1
. Thus the number of IRTs in this case equals

m2
2

(

∫

1
√

m2
Km1

f 1
√

m2
Km2

(z) dz

)

+ O(m
3/2
2 ) = m2

2

(

∫

√

m1

m2
K

fK(z) dz

)

+ O(m
3/2
2 )

=

(

∫

√
1

x
K

fK(z) dz

)

n2x2

(1 + x)2
+ O(n3/2) (8)

By Equation (2), we have that for t > 0,

∫

tK

fK(z) dz =2π

∫ t/
√

π

0

(

2

π
arccos(

√
2π

2
r) − r

√

2

π
− r2

)

r dr

=
1

2π

(

4t2 arccos(
t√
2
) + 2 arcsin(

t√
2
) − t(t2 + 1)

√
2 − t2

)

.

Therefore, putting all four cases together (i.e., expressions (3), (4), (5), and either (7) or
(8)), we obtain that the n2 coefficient of S△(A ∪ B) equals

1

4π(x + 1)2

(

8x arccos

√

x

2
+ 4 arcsin

√

x

2
+ (5π − 4)x2 + (3π − 4) − 2(x + 1)

√
2x − x2

)

if 0 < x ≤ 1/2, or

1

4π(x + 1)2

(

8x

(

arccos

√

x

2
+ arccos

√

1

2x

)

+ 4 arcsin

√

x

2
+ 4x2 arcsin

√

1

2x
+

(3π − 4)(x2 + 1) − 2(x + 1)
(√

2x − x2 +
√

2x − 1
))

if 1/2 < x < 1. Letting x vary from 0 to 1, it turns out that this coefficient is maximized
(see Figure 1) when x ≈ .0356067 (this corresponds to when the radius of B is approxi-
mately 18.87% of the radius of A). Letting x equal this value gives 0.433064 as a decimal
approximation to the maximum value attained by the n2 coefficient.

At this point, one might be tempted to further increase the quadratic coefficient by
placing a third set of lattice points arranged in a circle and centered on the circle formed
by B. It turns out that forming such a configuration does not improve the results in the
previous theorem. This is due to Lemma 1. More specifically, given our construction from
the previous theorem, there is no place to adjoin a point z to the center of A ∪B such that
z ∈ Λ or z ∈ Λ. Hence, if we were to add the point z to the center of A ∪ B, then any new
IRTs would have their right-angle vertex located at z with one π/4 vertex in A and the other
π/4 vertex in B. Doing so can produce at most 2m2 = 2xm1 ≈ .0712m1 new IRTs (recall
that x ≈ .0356066 in our construction). On the other hand, adding z to the perimeter of A,
gives us m1fK(1/

√
π) ≈ .1817m1 new IRTs.
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3 Upper Bound

We now turn our attention to finding an upper bound for S△(n)/n2. It is easy to see that
S△(n) ≤ n2 − n, since any pair of points can be the vertices of at most 6 IRTs. Our next
theorem improves this bound. The idea is to prove that there exists a point in P that does
not belong to many IRTs. First, we need the following definition.

For every z ∈ P , let R+
π/4(z, P ) and R−

π/4(z, P ) be the dilations of P , centered at z, by a

factor of
√

2 and 1/
√

2, respectively; followed by a π/4 counterclockwise rotation with center
z. Furthermore, let deg+

π/4(z) and deg−
π/4(z) be the number of isosceles right triangles zxy

with x, y ∈ P such that zxy is ordered in counterclockwise order, and zy, respectively zx, is
the hypotenuse of the triangle zxy.

Much like the case of degπ/2, deg+
π/4 and deg−

π/4 can be computed with the following
identities,

deg+
π/4 (z) =

∣

∣

∣
P ∩ R+

π/4(z, P )
∣

∣

∣
− 1 and deg−

π/4 (z) =
∣

∣

∣
P ∩ R−

π/4(z, P )
∣

∣

∣
− 1.

Theorem 4. For n ≥ 3,

S△(n) ≤
⌊

2

3
(n − 1)2 − 5

3

⌋

.

Proof. By induction on n. If n = 3, then S△(3) ≤ 1 = ⌊(2 · 4 − 5) /3⌋. Now suppose the
theorem holds for n = k. We must show this implies the theorem holds for n = k+1. Suppose
that there is a point z ∈ P such that degπ/2(z)+deg+

π/4(z)+deg−
π/4(z) ≤ ⌊(4n−5)/3⌋. Then

by induction,

S△(k + 1) ≤ degπ/2(z) + deg+
π/4(z) + deg−

π/4(z) + S△(k)

≤
⌊

4k − 1

3

⌋

+

⌊

2

3
(k − 1)2 − 5

3

⌋

=

⌊

2

3
k2 − 5

3

⌋

.

The last equality can be verified by considering the three possible residues of k when divided
by 3. Hence, our theorem is proved if we can find a point z ∈ P with the desired property.

Let x, y ∈ P be points such that x and y form the diameter of P . In other words, if
w ∈ P , then the distance from w to any other point in P is less than or equal to the distance
from x to y. We now prove that either x or y is a point with the desired property mentioned
above. We begin by analyzing deg−

π/4. We use the same notation from Theorem 1 in [1].

Define Nx = P ∩ R−
π/4(x, P )\{x} and Ny = P ∩ R−

π/4(y, P )\{y}. It follows from our

identities that, deg−
π/4(x) = |Nx| and deg−

π/4(y) = |Ny|. Furthermore, by the Inclusion-

Exclusion Principle for finite sets, we have |Nx|+ |Ny| = |Nx∪Ny|+ |Nx∩Ny|. We shall prove
by contradiction that |Nx ∩Ny| ≤ 1. Suppose that there are two points u, v ∈ Nx ∩Ny . This
means that there are points ux, vx, uy, vy ∈ P such that the triangles xuxu, xvxv, yuyu, yvyv
are IRTs oriented counterclockwise with right angle at either u or v.

But notice that the line segments uxuy and vxvy are simply the (π/2)-counterclockwise
rotations of xy about centers u and v respectively. Hence, uxuyvxvy is a parallelogram with
two sides having length xy as shown in Figure 2(a). This is a contradiction since one of
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Figure 2: Proof of Theorem 4.

the diagonals of the parallelogram is longer than any of it sides. Thus, |Nx ∩ Ny| ≤ 1.
Furthermore, x /∈ Ny and y /∈ Nx, so |Nx ∪ Ny| ≤ n − 2 and thus

deg−
π/4(x) + deg−

π/4(y) = |Nx ∪ Ny| + |Nx ∩ Ny| ≤ n − 2 + 1 = n − 1.

This also implies that
deg+

π/4(x) + deg+
π/4(y) ≤ n − 1,

since we can follow the exact same argument applied to the reflection of P about the line
xy.

We now look at degπ/2(x) and degπ/2(y). First we need the following lemma.

Lemma 2. For every p ∈ P , at most one of Rπ/2(x, p) or Rπ/2(y, p) belongs to P .

Proof. Let px = Rπ/2(x, p) and py = Rπ/2(y, p) (see Figure 2(b)). Note that the distance

pxpy is exactly the distance xy but scaled by
√

2. This contradicts the fact that xy is the
diameter of P .

Let us define a graph G with vertex set V (G) = P\{x, y} and where uv is an edge of G,
(i.e., uv ∈ E(G)) if and only if v = Rπ/2(x, u) or v = Rπ/2(y, u).

Lemma 3.

0 ≤ degπ/2(x) + degπ/2(y) − |E(G)| ≤ 1.

Proof. The left inequality follows from the fact each edge counts an IRT in either degπ/2(x)
or degπ/2(y) and possibly in both. However, if uv is an edge of G so that v = Rπ/2(x, u) and
u = Rπ/2(y, v), then xuyv is a square, so this can only happen for at most one edge.

Now, let degG(u) be the number of edges in E(G) incident to u. We prove the following
lemma.

Lemma 4. For every u ∈ V (G), degG(u) ≤ 2.

Proof. Suppose uv1 ∈ E(G), see Figure 3(a). Without loss of generality we can assume that
u = Rπ/2(y, v1). If v3 = Rπ/2(y, u) ∈ P , then we conclude that xv3 > xy or xv1 > xy,
because ∠xyv3 ≥ π/2 or ∠xyv1 ≥ π/2. This contradicts the fact that xy is the diameter of
P . Similarly, if v2 and v4 are defined as u = Rπ/2(x, v4) and v2 = Rπ/2(x, u), then at most
one of v2 or v4 can be in P .

9



Figure 3: Proof of Lemmas 4 and 5.

We still need one more lemma for our proof.

Lemma 5. All paths in G have length at most 2.

Proof. We prove this lemma by contradiction. Suppose we can have a path of length 3 or
more. To assist us, let us place our points on a cartesian coordinate system with our diameter
xy relabeled as the points (0, 0) and (r, 0), furthermore, assume p, q ≥ 0 and that the four
vertices of the path of length 3 are (p,−q), (q, p), (r − p, q − r), and (r − q, r − p). Our aim
is to show that the distance between (r− q, r− p) and (r− p, q− r) contradicts that r is the
diameter of P . Now, if paths of length 3 were possible, then the distance between every pair
of points in Figure 3(b) must be less than or equal to r. Since d((p,−q), (q, p)) ≤ r then
p2 + q2 ≤ r2/2.

Now let us analyze the square of the distance from (r− q, r−p) to (r−p, q− r). Because
2(p2 + q2) ≥ (p + q)2, it follows that

d2((r − q, r − p), (r − p, q − r)) = (−q + p)2 + (2r − p − q)2

= 4r2 − 4r(p + q) + 2(p2 + q2)

≥ 4r2 − 4
√

2r
√

p2 + q2 + 2(p2 + q2) =
(

2r −
√

2(p2 + q2)
)2

.

But
√

2(p2 + q2) ≤ r, so (2r −
√

2(p2 + q2)) ≥ r and thus

d2((r − q, r − p), (r − p, q − r)) ≥ r2.

Equality occur if and only if p = r/2 and q = r/2; otherwise, d((r − q, r − p), (r − p, q − r))
is strictly greater than r, contradicting the fact that the diameter of P is r. Therefore if
p 6= r/2 or q 6= r/2 then there is no path of length 3. In the case that p = r/2 and q = r/2 the
points (q, p) and (r−q, r−p) become the same and so do the points (p,−q) and (r−p, q−r).
Thus we are left with a path of length 1.
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It follows from Lemmas 4 and 5 that all paths of length 2 are disjoint. In other words,
G is the union of disjoint paths of length less than or equal to 2. Let a denote the number
of paths of length 2 and b denote the number of paths of length 1, then

|E(G)| = 2a + b and 3a + 2b ≤ n − 2.

Recall from Lemma 3 that either degπ/2(x) + degπ/2(y) = |E(G)| or degπ/2(x) + degπ/2(y) =
|E(G)| + 1. If degπ/2(x) + degπ/2(y) = |E(G)|, then

2 |E(G)| = 4a + 2b ≤ n − 2 + a ≤ n − 2 +
n − 2

3
,

so degπ/2(x)+degπ/2(y) = |E(G)| ≤ 2
3
(n − 2) . Moreover, if degπ/2(x)+degπ/2(y) = |E(G)|+

1, then b ≥ 1 and we get a minor improvement,

2 |E(G)| = 4a + 2b ≤ n − 2 + a ≤ n − 4 +
n − 2

3
,

so degπ/2(x) + degπ/2(y) = |E(G)| + 1 ≤ (2n − 7) /3 < 2
3
(n − 2).

We are now ready to put everything together. Between the two points x and y, we derived
the following bounds:

degπ/2(x) + degπ/2(y) ≤ 2

3
(n − 2),

deg+
π/4(x) + deg+

π/4(y) ≤ (n − 1), and

deg−
π/4(x) + deg−

π/4(y) ≤ (n − 1).

Because the degree of a point must take on an integer value, it must be the case that either
x or y satisfies degπ/2 + deg+

π/4 + deg−
π/4 ≤ ⌊(4n − 5)/3⌋.

4 Small Cases

In this section we determine the exact values of S△(n) when 3 ≤ n ≤ 9.

Theorem 5. For 3 ≤ n ≤ 9, S△(3) = 1, S△(4) = 4, S△(5) = 8, S△(6) = 11, S△(7) = 15,
S△(8) = 20, and S△(9) = 28.

Proof. We begin with n = 3. Since 3 points uniquely determine a triangle, and there is an
IRTwith 3 points (Figure 5(a)), this situation becomes trivial and we therefore conclude that
S△(3) = 1.

Now let n = 4. In Figure 5(b) we exhibit a point-set P such that S△(P ) = 4. This implies
that S△(4) ≥ 4. However, S△(4) is also bounded above by

(

4
3

)

= 4. Hence, S△(4) = 4.
To continue with the proof for the remaining values of n, we need the following two

lemmas.

Lemma 6. Suppose |P | = 4 and S△(P ) ≥ 2. The sets in Figure 5(b)–(e), not counting
symmetric repetitions, are the only possibilities for such a set P .
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n=3 n=4 n=5 n=6

n=7 n=8

n=9

Figure 4: Optimal sets achieving equality for S△(n).

Proof. Having S△(P ) ≥ 2 implies that we must always have more than one IRT in P .
Hence, we can begin with a single IRT and examine the possible ways of adding a point and
producing more IRTs. We accomplish this task in Figure 5(a). The 10 numbers in the figure
indicate the location of a point, and the total number of IRTs after its addition to the set
of black dots. All other locations not labeled with a number do not increase the number of
IRTs. Therefore, except for symmetries, all the possibilities for P are depicted in Figures
5(b)–(e).

Lemma 7. Let P be a finite set with |P | = n. Suppose that S△(A) ≤ b for all A ⊆ P with
|A| = k. Then

S△(P ) ≤
⌊

n (n − 1) (n − 2) b

k (k − 1) (k − 2)

⌋

.

Proof. Suppose that within P , every k-point configuration contains at most b IRTs. The
number of IRTs in P can then be counted by adding all the IRTs in every k-point subset
of P . However, in doing so, we end up counting a fixed IRT exactly

(

n−3
k−3

)

times. Because
S△(A) ≤ b we get,

(

n − 3

k − 3

)

S△(P ) =
∑

A⊆P
|A|=k

S△(A) ≤
(

n

k

)

b.

Notice that S△(P ) can only take on integer values so,

S△(P ) ≤
⌊

(

n
k

)

b
(

n−3
k−3

)

⌋

=

⌊

n (n − 1) (n − 2) b

k (k − 1) (k − 2)

⌋

.

Now suppose |P | = 5. If S△(A) ≤ 1 for all A ⊆ P with |A| = 4, then by Lemma 7,
S△(P ) ≤ 2. Otherwise, by Lemma 6, P must contain one of the 4 sets shown in Figures
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Figure 5: Proof of Theorem 5. Each circle with a number indicates the location of a point
and the total number of IRTs resulting from its addition to the base set of black dots.

13



5(b)–5(e). The result now follows by examining the possibilities for producing more IRTs by
placing a fifth point in the 4 distinct sets. In Figures 5(b), 5(c), 5(d), and 5(e) we accomplish
this task. In the same way as we did in Lemma 6, every number in a figure indicates the
location of a point, and the total number of IRTs after its addition to the set of black dots.
It follows that the maximum value achieved by placing a fifth point is 8 and so S△(5) = 8.
The point-set that uniquely achieves equality is shown in Figure 5(f). Moreover, there is
exactly one set P with S△(P ) = 6 (shown in Figure 5(g)), and two sets P with S△(P ) = 5
(Figures 5(h) and 5(i)).

Now suppose |P | = 6. If S△(A) ≤ 4 for all A ⊆ P with |A| = 5, then by Lemma 7,
S△(P ) ≤ 8. Otherwise, P must contain one of the sets in Figures 5(f)–5(i). We now check
all possibilities for adding more IRTs by joining a sixth point to our 4 distinct sets. This
is shown in Figures 5(f)–5(i). It follows that the maximum value achieved is 11 and so
S△(6) = 11. The point-set that uniquely achieves equality is shown in Figure 5(j). Also,
except for symmetries, there are exactly 3 sets P with S△(P ) = 10 (Figures 5(k)–5(m)) and
only one set P with S△(P ) = 9 (Figure 5(n)).

Now suppose |P | = 7. If S△(A) ≤ 8 for all A ⊆ P with |A| = 6, then by the Lemma
7, S△(P ) ≤ 14. Otherwise, P must contain one of the sets in Figures 5(j)–5(n). We now
check all possibilities for adding more IRTs by joining a seventh point to our 5 distinct
configurations. We complete this task in Figures 5(j)–5(n). Because the maximum value
achieved is 15, we deduce that S△(7) = 15. In this case, there are exactly two point-sets
that achieve 15 IRTs.

The proof for the values n = 8 and n = 9 follows along the same lines, but there are
many more intermediate sets to be considered. We omit the details. All optimal sets are
depicted in Figure 4.

Inspired by our method used to prove exact values of S△(n), a computer algorithm was
devised to construct the best 1-point extension of a given base set. This algorithm, together
with appropriate heuristic choices for some initial sets, lead to the construction of point sets
with many IRTs giving us our best lower bounds for S△(n) when 10 ≤ n ≤ 25. These lower
bounds are shown in Table 1 and the point-sets achieving them in Figure 6.

n 10 11 12 13 14 15 16 17
S△(n) ≥ 35 43 52 64 74 85 97 112

n 18 19 20 21 22 23 24 25
S△(n) ≥ 124 139 156 176 192 210 229 252

Table 1: Best lower bounds for S△(n).

Acknowledgements. We thank Virgilio Cerna who, as part of the CURM mini-grant that
supported this project, helped to implement the program that found the best lower bounds
for smaller values of n. We also thank an anonymous referee for some useful suggestions and
improvements to the presentation.
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Figure 6: Best constructions An for n ≤ 25. Each set An is obtained as the union of the
starting set (in white) and the points with label ≤ n. The value S△(An) is given by Table 1.
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