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Abstract

For n ≤ 27 we present exact values for the maximum number h(n) of halving
lines and h̃(n) of halving pseudolines, determined by n points in the plane. For
this range of values of n we also present exact values of the rectilinear cr(Kn)
and the pseudolinear c̃r(Kn) crossing numbers of the complete graph Kn. h̃(n)
and c̃r(Kn) are new for n ∈ {14, 16, 18, 20, 22, 23, 24, 25, 26, 27}, h(n) is new for n ∈
{16, 18, 20, 22, 23, 24, 25, 26, 27}, and cr(Kn) is new for n ∈ {20, 22, 23, 24, 25, 26, 27}.
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1 Introduction

Let S be an n-point set in R
2 in general position. A k-set of S is a set P

of k points in S that can be separated from S\P using a straight line. The
so called “k-set problem” asks for the maximum number of k-sets that an



n-element set can have. In a similar fashion we say that a directed segment
−−→s1s2 in S is a k-edge if there are exactly k points in S to the right side of
s1s2. It is easy to see that there is a 1-to-1 correspondence between k-sets
and (k − 1)-edges, so an equivalent problem is to find the maximum number
of (k − 1)-edges determined by n points in the plane. When n is even and
k = (n − 2)/2 the k-edges are called halving lines, that is, lines through two
points in S leaving (n − 2)/2 points of S on each side. When n is odd the
halving lines leave (n − 3)/2 and (n − 1)/2 points of S on each side.

An important open problem in discrete geometry is to find the maximum
number h(n) of halving lines that can be determined by n points in the plane.
This was first raised by Erdős, Lovász, Simmons, and Straus [11], [14]. An-
other important and related problem was proposed by Erdős and Guy: find
the minimum number of convex quadrilaterals in a set of n points in general
position. Equivalently, determine cr(Kn), the rectilinear crossing number of
Kn [10], that is, the smallest number of crossings in a drawing of the com-
plete graph Kn, in which every edge is drawn as a straight segment. Further
references and related problems can be found in [8].

All these problems can be formulated in the more general setting of general-
ized configurations of points [13]. A generalized configuration or a pseudocon-

figuration consists of a set of points in the plane together with an arrangement

of pseudolines, such that every pair of points has exactly one pseudoline pass-
ing through them. A pseudoline is a curve in P

2, the projective plane, whose
removal does not disconnect P

2. An arrangement of pseudolines is a collection
of pseudolines with the property that every two of them intersect each other ex-
actly once. In this new setting we can define by analogy k-pseudoedges, halving

pseudolines, and pseudolinear crossing number c̃r(Kn) of Kn. We denote by

h̃(n) the maximum number of halving pseudolines spanned by generalized con-
figurations of n points in the plane. We also let Nk(n) and N≤k(n) denote the
maximum number of (k−1)-pseudoedges, ≤ (k−1)-pseudoedges respectively,
determined by pseudoconfigurations of n points. Trivially, c̃r(Kn) ≤ cr(Kn)

and h(n) ≤ h̃(n).

Here we report improved lower bounds for h̃(n). This improvement is
enough to match the geometric constructions that serve as upper bounds in
the range n ∈ {14, 16, 18, 20, 22, 23, 24, 25, 26, 27}. We also obtain new lower
bounds for N≤⌊n/2⌋−1 (n). As a consequence we determine the exact values

of c̃r(Kn), cr(Kn), h̃(n), and h(n) for the same range. The new values are
summarized in Table 1. It is important to note that all of these bounds are
shown to be tight thanks to the remarkable (indeed, as we show, optimal)



geometric constructions obtained by Aichholzer et al. [4].

n 14 16 18 20 22 23 24 25 26 27

h(n) = h̃(n) 22 27 33 38 44 75 51 85 57 96

N≤⌊n/2⌋−1 (n) 69 93 120 152 187 178 225 215 268 255

cr (n) = c̃r (n) 324 603 1029 1657 2528 3077 3699 4430 5250 6180

Table 1
New exact values for h(n), h̃(n), cr(Kn), and c̃r(Kn).

Here is the previous history about the quest for (small values of) h(n).
For 2 ≤ n ≤ 8 h(n) is easily obtained, and since all generalized configurations

of points with n ≤ 8 are stretchable [12], then h(n) = h̃ (n) in this range.
Eppstein [9] found point sets with even 10 ≤ n ≤ 18 and a large number
of halving lines. In particular he matched the upper bound found by Stöckl
[16] for h̃ (10). Andrzejak et al. [6] proved h(12) = 18. Later Beygelzimer

and Radziszowski [7] extended this to h̃ (12) = 18 and they also proved that
h(14) = 22. With respect to the odd values, Aichholzer et al. [5] found tight
upper bounds for h (n) with n odd, 11 ≤ n ≤ 21.

Previous to this work, the exact value of cr(Kn) was known for n ≤ 19
and for n = 21 ([5]). For these values of n, it was recently proved that
c̃r(Kn) = cr(Kn) [3]. For general lower and upper bounds see [5], [3], and [2].

2 The Central Bound

In what follows Π denotes a circular sequence on n elements, that is, a doubly
infinite sequence (..., π−1, π0, π1, ...) of permutations on n elements, such that
any two consecutive permutations πi and πi+1 differ by a transposition τi of
neighboring elements, and such that for every j, πj is the reversed permutation
of πj+(n

2
). Goodman and Pollack [13] established a one-to-one correspondence

between circular sequences and generalized configurations of points. Thus we
say that a circular sequence Π is associated to a set of n points S. When Π
corresponds to a geometric drawing of Kn (i.e., each pseudoline is a straight
line) we say that Π is stretchable. In this case S is a set of n points in general
position in the plane. Any subsequence of Π consisting of

(
n
2

)
consecutive

permutations is an n-halfperiod. If τj occurs between elements in positions i
and i+1 we say that τj is an i-transposition. If i ≤ n/2 then any i-transposition
or (n − i)-transposition is called i-critical. If Π is a finite subsequence of Π



then Nk (Π) and N≤k (Π) denote the number of k-critical and (≤ k)-critical
transpositions in Π respectively. A k-transposition corresponds to a (k − 1)-
pseudoedge which also coincides with a (k − 1)-edge if Π is stretchable.

We make use of two known results (A in [1] and [15], B in [5] and [3]):

(A) c̃r(Π) =

⌊n/2⌋∑

k=1

(n − 2k − 1)Nk(Π) − (3/4)
(
n
3

)
+ (1/8)(1 + (−1)n+1)

(
n
2

)
.

(B) N≤k(Π) ≥ 3
(

k+1
2

)
+ 3

(
k+1−⌊n/3⌋

2

)
− max{0, (k − ⌊n/3⌋)(n − 3⌊n/3⌋)}.

Our main new tool is the following.

Theorem 2.1 Let Π be a circular sequence associated to a generalized con-

figuration of n points. Then

N⌊n/2⌋ (Π) ≤





⌊
1
2

(
n
2

)
− 1

2
N≤⌊n/2⌋−2 (Π)

⌋
, if n is even,

⌊
2
3

(
n
2

)
− 2

3
N≤⌊n/2⌋−2 (Π) + 1

3

⌋
, if n is odd.

Proof. For even n we prove that there must be at least one (n/2 − 1)-critical
transposition between any two consecutive n/2-transpositions τi and τj (i < j).
Suppose τi transposes a and b. Then before τj takes place, at least one element
a or b must leave the center (two middle positions, n/2 and n/2 + 1). This
corresponds to having at least one (n/2 − 1)-critical transposition between
τi and τj . In a given halfperiod the same holds for the last and first n/2-
transpositions. Thus Nn/2 (Π) ≤ Nn/2−1 (Π). Since N≤⌊n/2⌋ (Π) =

(
n
2

)
then

2N⌊n/2⌋ (Π) ≤
(

n
2

)
−N≤⌊n/2⌋−2 (Π) and the result follows.

For odd n, let τ ′
1, τ

′
2, ..., τ

′
w with w = N(n−3)/2 (Π) be the (n − 3) /2-critical

transpositions of a halfperiod Π ordered by their occurrence within Π. As-
sume without loss of generality that the first transposition of Π is τ ′

1. Let
bi be the number of (n − 1) /2-critical transpositions that occur after τ ′

i and
before τ ′

i+1 (or the end of the halfperiod if i = w). Note that bi ≤ 3 since the
three elements in the center (that is, those elements in the middle three posi-
tions (n ± 1) /2 and (n + 3) /2) remain in the center between two consecutive
(n − 3) /2-critical transpositions. We prove that if bi = bj = 3 for some i < j
and no other b in between equals 3, then there is some l between i and j such
that bl ≤ 1. Thus either at most one bi = 3 or the average of b1, b2, ..., bw is
≤ 2. Thus N(n−1)/2 (Π) =

∑w
i=1 bi ≤ 2w + 1 = 2N(n−3)/2 (Π) + 1.

Now note that j 6= i + 1 since all three elements in the center were trans-
posed between τ ′

i and τ ′
i+1 and two of them remain in the center between τi+1

and τi+2 (or the end of Π). That is, bi+1 ≤ 2. Assume by way of contradiction



that bl = 2 for all i < l < j. One of the three transpositions after τ ′
j does

not involve the new element brought to the center by τ ′
j . Thus this trans-

position can take place right before τ ′
j without modifying N≤k (Π) (the other

two transpositions switched order). But now bj−1 = 3, i.e., the gap between
“threes” was reduced. We can do the same until bi+1 = 3 which is impossible.
Finally since N≤⌊n/2⌋ (Π) =

(
n
2

)
then 3N⌊n/2⌋ (Π) ≤ 2

(
n
2

)
− 2N≤⌊n/2⌋−2 (Π) + 1

and the result follows. 2

3 New exact values of h(n), h̃(n), cr(Kn), c̃r(Kn)

Theorem 1 gives a new upper bound for h̃ (n) if we use the bound (B) for
N≤⌊n/2⌋−2 (Π). The numerical values of this bound in our range of interest
are shown in Table 1. From Theorem 1 and the fact that N≤⌊n/2⌋−1 (Π) =(

n
2

)
−N⌊n/2⌋ (Π) we obtain that N≤⌊n/2⌋−1 (Π) ≥

⌈
1
2

(
n
2

)
+ 1

2
N≤⌊n/2⌋−2 (Π)

⌉
if n

is even, and N≤⌊n/2⌋−1 (Π) ≥
⌈

1
3

(
n
2

)
+ 2

3
N≤⌊n/2⌋−2 (Π) − 1

3

⌉
if n is odd. Then,

by applying the bound in (B) for N≤⌊n/2⌋−2 (Π), we get for n ≥ 10

N≤⌊n/2⌋−1 (n) ≥






(
n
2

)
−

⌊
1
24

n(n + 30) − 3
⌋

if n is even,
(

n
2

)
−

⌊
1
18

(n − 3)(n + 45) + 1
9

⌋
if n is odd.

This lower bound is at least as good as (B) with k = ⌊n/2⌋ − 1 for all even
n ≥ 10 and all odd n ≥ 21. In Table 1 we show the bounds obtained for
our range of n values. We also calculate a new lower bound for c̃r(Kn) using
(A) with N⌊n/2⌋ (n) =

(
n
2

)
, the previous bound for N≤⌊n/2⌋−1 (n) , and (B) for

k ≤ ⌊n/2⌋ − 2. All the bounds shown in Table 1 are attained by Aichholzer’s
et al. constructions [4], and thus Table 1 actually shows the exact values of

h̃ (n), h (n), N≤⌊n/2⌋−1 (n), c̃r(Kn), and cr(Kn) for n in the specified range.
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