On $\leq k$-edges, crossings, and halving lines of geometric drawings of K_{n}

Bernardo M. Ábrego ${ }^{1}$, Mario Cetina ${ }^{2}$,
Silvia Fernández-Merchant ${ }^{1}$, Jesús Leaños ${ }^{3}$, Gelasio Salazar ${ }^{4 *}$
${ }^{1}$ Department of Mathematics, California State University, Northridge. \{bernardo.abrego, silvia.fernandez\}@csun.edu
${ }^{2}$ Instituto Tecnológico de San Luis Potosí. mario.cetina@itslp.edu.mx
${ }^{3}$ Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas.
jleanos@mate.reduaz.mx
${ }^{4}$ Instituto de Física, Universidad Autónoma de San Luis Potosí.
gsalazar@ifisica.uaslp.mx

Abstract

Let P be a set of points in general position in the plane. Join all pairs of points in P with straight line segments. The number of segment-crossings in such a drawing, denoted by $\operatorname{cr}(P)$, is the rectilinear crossing number of P. A halving line of P is a line passing though two points of P that divides the rest of the points of P in (almost) half. The number of halving lines of P is denoted by $h(P)$. Similarly, a k edge, $0 \leq k \leq n / 2-1$, is a line passing through two points of P and leaving exactly k points of P on one side. The number of $(\leq k)$-edges of P is denoted by $E_{\leq k}(P)$. Let $\overline{\operatorname{cr}}(n), h(n)$, and $E_{\leq k}(n)$ denote the minimum of $\operatorname{cr}(P)$, the maximum of $h(\bar{P})$, and the minimum of $E_{\leq k}(\bar{P})$, respectively, over all sets P of n points in general position in the plane. We show that the previously best known lower bound on $E_{\leq k}(n)$ is tight for $k<\lceil(4 n-2) / 9\rceil$ and improve it for all $k \geq\lceil(4 n-2) / 9\rceil$. This in turn improves the lower bound on $\overline{\operatorname{cr}}(n)$ from $0.37968\binom{n}{4}+\Theta\left(n^{3}\right)$ to $\frac{277}{729}\binom{n}{4}+\Theta\left(n^{3}\right) \geq 0.37997\binom{n}{4}+\Theta\left(n^{3}\right)$. We also give the exact values of $\overline{\operatorname{cr}}(n)$ and $h(n)$ for all $n \leq 27$. Exact values were known only for $n \leq 18$ and odd $n \leq 21$ for the crossing number, and for $n \leq 14$ and odd $n \leq 21$ for halving lines. 2010 AMS Subject Classification: Primary 52C30, Secondary 52C10, 52C45, 05C62, 68R10, 60D05, and 52A22. Keywords: k-edges, k-sets, Halving lines, Rectilinear crossing numbers, Allowable sequences, Geometric drawings.

1 Introduction

We consider three important well-known problems in Combinatorial Geometry: the rectilinear crossing number, the maximum number of halving lines, and the minimum number of

[^0]$(\leq k)$-edges of complete geometric graphs on n vertices. All point sets in this paper are in the plane, finite, and in general position.

Let P be a finite set of points in general position in the plane. The rectilinear crossing number of P, denoted by $\operatorname{cr}(P)$, is the number of crossings obtained when all straight line segments joining pairs of points in P are drawn. (A crossing is the intersection of two segments in their interior.) The rectilinear crossing number of n is the minimum number of crossings determined by any set of n points, i.e., $\overline{\operatorname{cr}}(n)=\min \{\operatorname{cr}(P):|P|=n\}$. The problem of determining $\overline{\operatorname{cr}}(n)$ for each n was posed by Erdős and Guy in the early seventies [EG73], Guy71. This is equivalent to finding the minimum number of convex quadrilaterals determined by n points, as every pair of crossing segments bijectively corresponds to the diagonals of a convex quadrilateral.

A halving line of P is a line passing through two points of P and dividing the rest in almost half. So when P has n points and n is even, a halving line of P leaves $n / 2-1$ points of P on each side; whereas when n is odd, a halving line leaves $(n-3) / 2$ points on one side and $(n-1) / 2$ on the other. The number of halving lines of P is denoted by $h(P)$. Generalizing a halving line, a k-edge of P, with $0 \leq k \leq n / 2-1$, is a line through two points of P leaving exactly k points on one side. The number of k-edges of P is denoted by $E_{k}(P)$. Since a halving line is a $(\lfloor n / 2\rfloor-1)$-edge, then $E_{\lfloor n / 2\rfloor-1}(P)=h(P)$. Similarly, for $0 \leq k \leq n / 2-1$, $E_{\leq k}(P)$ and $E_{\geq k}(P)$ denote the number of $(\leq k)$-edges and $(\geq k)$-edges of P, respectively. That is, $E_{\leq k}(P)=\sum_{j=0}^{k} E_{j}(P)$ and $E_{\geq k}(P)=\sum_{j=k}^{\lfloor n / 2\rfloor-1} E_{j}(P)=\binom{n}{2}-\sum_{j=0}^{k-1} E_{j}(P)$. Let $h(n)$ and $E_{\leq k}(n)$ be the maximum of $h(P)$ and the minimum of $E_{\leq k}(P)$, respectively, over all sets P of n points. A concept closely related to k-edges is that of k-sets; a k-set of P is a set Q that can be separated from $P \backslash Q$ with a straight line. Rotating this separating line clockwise until it hits a point on each side yields a $(k-1)$-edge, and it turns out that this association is bijective. Thus the number of k-sets of P is equal to the number of ($k-1$)-edges of P. As a consequence, any of the results obtained here for k-edges can be directly translated into equivalent results for $(k+1)$-sets. Erdős, Lovász, Simmons, and Straus [EL*73], Lov71] first introduced the concepts of halving lines, k-sets, and k-edges.

Since the introduction of these parameters back in the early 1970s, the determination (or estimation) of $\overline{\operatorname{cr}}(n), h(n)$, and $E_{\leq k}(n)$ have become classical problems in combinatorial geometry. General bounds are known but exact values have only been found for small n. The best known general bounds for the halving lines are $\Omega\left(n e^{c \sqrt{\log n}}\right) \leq h(n) \leq O\left(n^{4 / 3}\right)$, due to Tóth Tó01] and Dey Dey98, respectively. The previously best asymptotic bounds for the crossing number are

$$
\begin{equation*}
0.3792\binom{n}{4}+\Theta\left(n^{3}\right) \leq \overline{\operatorname{cr}}(n) \leq 0.380488\binom{n}{4}+\Theta\left(n^{3}\right) \tag{1}
\end{equation*}
$$

The lower bound is due to Aichholzer et al. $\mathrm{AG}^{*} 07 \mathrm{~B}$] and it follows from Inequality (2) as we indicate below. The upper bound follows from a recursive construction devised by Ábrego and Fernández-Merchant AF07 using the a suitable initial construction found by the authors in $\left\lfloor\mathrm{AC}^{*} 10\right]$. The best lower bound for the minimum number of $(\leq k)$-edges is

$$
\begin{equation*}
E_{\leq k}(n) \geq 3\binom{k+2}{2}+3\binom{k+2-\lfloor n / 3\rfloor}{ 2}-\max \{0,(k+1-\lfloor n / 3\rfloor)(n-3\lfloor n / 3\rfloor)\}, \tag{2}
\end{equation*}
$$

due to Aichholzer et al. $\left.\mathrm{AG}^{*} 07 \mathrm{~B}\right]$. Further references and related problems can be found in BMP06.

The last two problems are naturally related, and their connection to the first problem is shown by the following identity, independently proved by Lóvasz et al. [LV*04 and Ábrego and Fernández-Merchant AF05. For any set P of n points,

$$
\begin{align*}
& \operatorname{cr}(P)=3\binom{n}{4}-\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-k-2) E_{k}(P), \text { or equivalently } \\
& \operatorname{cr}(P)=\sum_{k=0}^{\lfloor n / 2\rfloor-2}(n-2 k-3) E_{\leq k}(P)-\frac{3}{4}\binom{n}{3}+\left(1+(-1)^{n+1}\right) \frac{1}{8}\binom{n}{2} . \tag{3}
\end{align*}
$$

Hence, lower bounds on $E_{\leq k}(n)$ give lower bounds on $\overline{\operatorname{cr}}(n)$.
The majority of our results (all non-constructive parts) are proved in the more general context of generalized configurations of points, where the points in P are joined by pseudosegments rather than straight line segments. Goodman and Pollack GP80 established a correspondence between the set of generalized configurations of points and what they called allowable sequences. In Section 2, we define allowable sequences, introduce the necessary notation to state the three problems above in the context of allowable sequences, and include a summary of results for these problems in both, the geometric and the allowable sequence context.

	n	14	16	18	20	22	23	24	25	26
$h(n)=\widetilde{h}(n)$	22^{*}	27	33	38	44	75	51	85	57	96
$\overline{\operatorname{cr}}(n)=\widetilde{\operatorname{cr}}(n)$	324^{*}	603^{*}	1029^{*}	1657	2528	3077	3699	4430	5250	6180

Table 1: New exact values. The * values were only known in the rectilinear case.
The main result in this paper is Theorem 1 in Section 3, which bounds $E_{\geq k}(P)$ by a function of $E_{k-1}(P)$. This result has the following important consequences.

1. In Section 4, we find exact values of $\overline{\operatorname{cr}}(n)$ and $h(n)$ for $n \leq 27$. Exact values were only known for $n \leq 18$ and odd $n \leq 21$ in the case of $\overline{\operatorname{cr}}(n)$, and for $n \leq 14$ and odd $n \leq 21$ in the case of $h(n)$. (See Table 1.) We also show that the same values are achieved for the more general case of the pseudolinear crossing number $\widetilde{c r}(n)$ and the maximum number of halving pseudolines $\widetilde{h}(n)$. (See Section 2 for the definitions.)
2. Theorem 2 in Section 5 improves the lower bound in Inequality (2) for $k \geq\lceil(4 n-11) / 9\rceil$. It gives a recursive lower bound whose asymptotic value is given by

$$
E_{\leq k}(n) \geq\binom{ n}{2}-\frac{1}{9} \sqrt{1-\frac{2 k+2}{n}}\left(5 n^{2}+19 n-31\right)
$$

as shown in Corollary 3.
3. Theorem 3 in Section 6 improves the lower bound in Inequality (1) to

$$
\overline{\operatorname{cr}}(n) \geq \frac{277}{729}\binom{n}{4}+\Theta\left(n^{3}\right) \geq 0.37997\binom{n}{4}+\Theta\left(n^{3}\right) .
$$

In Section 7, and to complement item 2 above, we show that Inequality (22) is tight for $k<\lceil(4 n-11) / 9\rceil$. More precisely, we construct sets of points simultaneously achieving equality in Inequality (22) for all $k<\lceil(4 n-11) / 9\rceil$.

Several results of this paper appeared (without proofs) in the conference proceedings of LAGOS'07 $\mathrm{AF}^{*} 08 \mathrm{~A}, \mathrm{AF}^{*} 08 \mathrm{~B}$].

2 Allowable sequences and generalized configurations of points

Any set P of n points in the plane can be encoded by a sequence of permutations of the set $[n]=\{1,2, \ldots, n\}$ as follows. Consider a directed line l. Orthogonally project P onto l and label the points of P from 1 to n according to their order in l. In this order, the identity permutation $(1,2, \ldots, n)$, is the first permutation of our sequence. Note that l can be chosen so that none of the projections overlap. Continuously rotate l counterclockwise. The order of the projections of P onto l changes every time two projections overlap, that is, every time a line through two points of P becomes perpendicular to l. Each time this happens, a new permutation is recorded as part of our sequence. After a 180°-rotation of l we obtain a sequence of $\binom{n}{2}+1$ permutations such that the first permutation $(1,2, \ldots, n)$ is the identity, the last permutation $(n, n-1, \ldots, 2,1)$ is the reverse of the identity, any two consecutive permutations differ by a transposition of adjacent elements, and any pair of points (labels $1, \ldots, n$) transpose exactly once. This sequence is known as a halfperiod of the circular sequence associated to P. The circular sequence of P is then a doubly infinite sequence of permutations obtained by rotating l indefinitely in both directions.

As an abstract generalization of a circular sequence, a simple allowable sequence on $[n]$ is a doubly infinite sequence $\Pi=\left(\ldots, \pi_{-1}, \pi_{0}, \pi_{1}, \ldots\right)$ of permutations of $[n]$, such that any two consecutive permutations π_{i} and π_{i+1} differ by a transposition $\tau\left(\pi_{i}\right)$ of neighboring elements, and such that for every j, π_{j} is the reverse permutation of $\pi_{j+\binom{n}{2}}$. A halfperiod of Π is a sequence of $\binom{n}{2}+1$ consecutive permutations of $[n]$. As before, any halfperiod of Π uniquely determines Π and all properties for halfperiods mentioned above still hold. Moreover, the halfperiod $\pi=\left(\pi_{i}, \pi_{i+1}, \ldots, \pi_{i+\binom{n}{2}}\right)$ is completely determined by the transpositions $\tau\left(\pi_{i}\right), \tau\left(\pi_{i+1}\right), \ldots, \tau\left(\pi_{i+\binom{n}{2}-1}\right)$. Note that the sequence $\left(\ldots, \tau\left(\pi_{-1}\right), \tau\left(\pi_{0}\right), \tau\left(\pi_{1}\right) \ldots\right)$ is $\binom{n}{2}$-periodic. Thus we indistinctly refer to π as a sequence of permutations or as a sequence of (suitable) transpositions. Allowable sequences that are the circular sequence of a set of points are called stretchable.

A pseudoline is a curve in \mathbb{P}^{2}, the projective plane, whose removal does not disconnect \mathbb{P}^{2}. Alternatively, a pseudoline is a simple curve in the plane that extends infinitely in both directions. A simple generalized configuration of points consists of a set of $\binom{n}{2}$ pseudolines and n points in the plane such that each pseudoline passes through exactly two points, and any two pseudolines intersect exactly once.

Circular and allowable sequences were first introduced by Goodman and Pollack GP80. They proved that not every allowable sequence is stretchable and established a correspondence between allowable sequences and generalized configurations of points.

The three problems at hand can be extended to generalized configurations of points, or equivalently, to simple allowable sequences. In this new setting, a transposition of two points in positions k and $k+1$, or $n-k$ and $n-k+1$ in a simple allowable sequence Π corresponds to a $(k-1)$-edge. We say that such transposition is a k-transposition, or respectively, a $(n-k)$-transposition, and if $1 \leq k \leq n / 2$ all these transpositions are called k-critical. Therefore $E_{k}(\Pi), E_{\leq k}(\Pi)$, and $E_{\geq k}(\Pi)$ correspond to the number of $(k+1)$ critical, $(\leq k+1)$-critical, and $(\geq k+1)$-critical transpositions in any halfperiod of Π. A halving line of Π is a $\lfloor n / 2\rfloor$-transposition, and thus $h(\Pi)=E_{\lfloor n / 2\rfloor-1}(\Pi)$. Identity (3)), which relates the number of k-edges to the crossing number, was originally proved for allowable sequences. In this setting, a pseudosegment is the segment of a pseudoline joining two points in a generalized configuration of points, and $\operatorname{cr}(\Pi)$ is the number of pseudosegment-crossings in the generalized configuration of points that corresponds to the allowable sequence Π. All these definitions and functions coincide with their original counterparts for P when Π is the circular sequence of P. However, when $\overline{\operatorname{cr}}(n), h(n)$, and $E_{\leq k}(n)$ are minimized or maximized over all allowable sequences on $[n]$ rather than over all sets of n points, the corresponding quantities may change and therefore we use the notation $\widetilde{c r}(n), \widetilde{h}(n)$, and $\widetilde{E}_{\leq k}(n)$. Because n-point sets correspond to the stretchable simple allowable sequences on $[n]$, it follows that $\widetilde{\operatorname{cr}}(n) \leq \overline{\mathrm{cr}}(n), \widetilde{h}(n) \geq h(n)$, and $\widetilde{E}_{\leq k}(n) \leq E_{\leq k}(n)$. Tamaki and Tokuyama TT02 extended Dey's upper bound for allowable sequences to $\widetilde{h}(n)=O\left(n^{4 / 3}\right)$. Ábrego et al. AB*06] proved that the lower bound for $E_{\leq k}(n)$ in Inequality (2) is also a lower bound on $\widetilde{E}_{\leq k}(n)$. They used this bound to extend (and even slightly improve) the corresponding lower bound on $\overline{\mathrm{cr}}(n)$ to $\widetilde{\mathrm{cr}}(n)$.

Our main result, Theorem 1 in Section 3, concentrates on the central behavior of allowable sequences. We bound $E_{\geq k}(\Pi)$ by a function of $E_{k-1}(\Pi)$. As a consequence, we improve (or match) the upper bounds on $\widetilde{h}(n)$ for $n \leq 27$, and thus the lower bounds on $\widetilde{c r}(n)$ in the same range. This is enough to match the corresponding best known geometric constructions [A] for $h(n)$ and $\overline{\operatorname{cr}}(n)$. This shows that for all $n \leq 27, h(n)=h(n)$ and $\widetilde{\operatorname{cr}}(n)=\overline{\operatorname{cr}}(n)$ whose exact values are summarized in Table 1 .

3 The Central Theorem

In this section, we present our main theorem. Given a halfperiod $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots, \pi_{\binom{n}{2}}\right)$ of an allowable sequence and an integer $1 \leq k<n / 2$, the k-center of the permutation π_{j}, denoted by $C\left(k, \pi_{j}\right)$, is the set of elements in the middle $n-2 k$ positions of π_{j}. Let L_{0}, C_{0}, and R_{0} be the set of elements in the first k, middle $n-2 k$, and last k positions, respectively, of the permutation π_{0}. Define

$$
s(k, \pi)=\min \left\{\left|C_{0} \cap C\left(k, \pi_{i}\right)\right|: 0 \leq i \leq\binom{ n}{2}\right\} .
$$

Note that $s(k, \pi) \leq n-2 k-1$ because at least one of the $n-2 k$ elements of C_{0} must leave the k-center.

Theorem 1. Let Π be an allowable sequence on $[n]$ and π any halfperiod of Π. If $s=s(k, \pi)$, then

$$
E_{\geq k}(\Pi) \leq(n-2 k-1) E_{k-1}(\Pi)-\frac{s}{2}\left(E_{k-1}(\Pi)-n+1\right) .
$$

Proof. For presentation purposes, we divide this proof into subsections.
Let Π be an allowable sequence on $[n]$ and $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots, \pi_{\binom{n}{2}}\right)$ any halfperiod of Π, $s=s(k, \pi)$, and $K=E_{k-1}(\pi)$.

Suppose that $\pi_{i_{1}}, \pi_{i_{2}}, \ldots, \pi_{i_{K}}$ is the subsequence of permutations in π obtained when the k-critical transpositions $\tau\left(\pi_{i_{1}}\right), \tau\left(\pi_{i_{2}}\right), \ldots, \tau\left(\pi_{i_{K}}\right)$ of π occur (in this order). For simplicity we write τ_{j} instead of $\tau\left(\pi_{i_{j}}\right)$. These permutations partition π into $K+1$ parts $B_{0}(\pi), B_{1}(\pi)$, $B_{2}(\pi), \ldots, B_{K}(\pi)$ called blocks, where $B_{j}(\pi)=\left\{\pi_{l}: i_{j} \leq l<i_{j+1}\right\}$ for $1 \leq j \leq K-1$, $B_{0}(\pi)=\left\{\pi_{l}: 0 \leq l<i_{1}\right\}$, and $B_{K}(\pi)=\left\{\pi_{l}: i_{K} \leq l \leq\binom{ n}{2}\right\}$. Denote by p_{j} the point that enters the k-center of $\pi_{i_{j}}$ with τ_{j}. We say that a $(\geq k+1)$-critical transposition in $B_{j}(\pi), 1 \leq j \leq K$, is an essential transposition if it involves p_{j} or if it occurs before τ_{1}, and a nonessential transposition otherwise.

Figure 1: Classification of essential k-critical transpositions.

Rearrangement of π

We claim that, to bound $E_{\geq k}(\Pi)$, we can assume that all ($\geq k+1$)-critical transpositions of π are essential transpositions. To show this, in case π has nonessential transpositions, we modify π so that the obtained halfperiod λ satisfies $E_{j}(\pi)=E_{j}(\lambda)$ for all $j<k$, and thus $E_{\geq k}(\pi)=E_{\geq k}(\lambda)$; and either λ has only essential transpositions or the last nonessential transposition of λ occurs in an earlier permutation than the last nonessential transposition of π. Applying this procedure enough times, we end with a halfperiod λ all of whose $(\geq k+1)$ critical transpositions are essential and such that $E_{j}(\pi)=E_{j}(\lambda)$ for all $j \leq k$, and thus $E_{\geq k}(\pi)=E_{\geq k}(\lambda)$.

This is how λ is constructed. Suppose $B_{j}(\pi)$ is the last block of π that contains nonessential transpositions. Define λ as the halfperiod that coincides with π everywhere except for the $(\geq k+1)$-transpositions in $B_{j}(\pi)$. All nonessential transpositions in $B_{j}(\pi)$ take place right before τ_{j} in λ, and right after τ_{j} occurs, all essential transpositions in $B_{j}(\pi)$ occur consecutively in $B_{j}(\lambda)$ but probably in a different order than in $B_{j}(\pi)$, so that the final position of p_{j} is the same in $B_{j}(\pi)$ and $B_{j}(\lambda)$. Note that in fact the last permutations of the blocks $B_{j}(\pi)$ and $B_{j}(\lambda)$ are equal.

Classification of k-critical transpositions

From now on, we assume that π only has essential transpositions. We classify the k-critical transpositions as follows (see Figure (1): τ_{j} is an arriving transposition if $p_{j} \in C_{0}$. An arriving transposition is m-augmenting if it increments the number of elements in C_{0} in the k-center from $m-1$ to m, and it is neutral otherwise. We say that τ_{j} is a returning transposition if it is a k-transposition and $p_{j} \in R_{0}$, or if it is an $(n-k)$-transposition and $p_{j} \in L_{0}$. That is, p_{i} is "getting back" to its starting region. Similarly, τ_{j} is a departing transposition if it is a k-transposition and $p_{j} \in L_{0}$, or if it is an $(n-k)$-transposition and $p_{j} \in R_{0}$. That is, p_{j} is "getting away" from its original region. We say that a departing transposition τ_{j} is a cutting transposition, if τ_{j} is a k-transposition and the next k-critical transposition that involves p_{j} is an $(n-k)$-transposition; or if τ_{i} is an $(n-k)$-transposition and the next k-critical transposition that involves p_{j} is a k-transposition. All other departing transpositions are called stalling.

Finally, we define the weight of a k-critical transposition τ_{j}, denoted by $w\left(\tau_{j}\right)$, as the number of $(\geq k+1)$-critical transpositions in $B_{j}(\pi)$ that are not between two elements of C_{0}. Transpositions with weight at most $n-2 k-1-s$ are called light. All other transpositions are heavy.

Let $A, N, R, C, S_{\text {light }}$, and $S_{\text {heavy }}$ be the number of augmenting, neutral, returning, cutting, light stalling, and heavy stalling transpositions, respectively. Then $K=A+N+R+C+$ $S_{\text {light }}+S_{\text {heavy }}$.

Bounding $E_{\geq k}(\Pi)$

Observe that the k-center of all permutations in $B_{0}(\pi)$ remains unchanged. It follows that all $(\geq k+1)$-critical transpositions of $B_{0}(\pi)$ are between elements of C_{0}. Thus $\sum_{j=1}^{K} w\left(\tau_{j}\right)$ counts all $(\geq k+1)$-critical transpositions except those between two elements of C_{0}. There are $\binom{n-2 k}{2}$ transpositions between elements of C_{0}, but each neutral transposition corresponds to a k-critical (not ($\geq k+1$)-critical) transposition between two elements of C_{0}. Thus

$$
\begin{equation*}
E_{\geq k}(\Pi) \leq\binom{ n-2 k}{2}-N+\sum_{j=1}^{K} w\left(\tau_{j}\right) \tag{4}
\end{equation*}
$$

Bounds for the weight of a k-critical transposition

We bound the weight of a transposition depending on its class (departing, returning, etc.), as well as the number of transpositions within a class, if necessary. For $j \geq 1$ all $(\geq k+1)$ critical transpositions in $B_{j}(\pi)$ involve p_{j} and thus $w\left(\tau_{j}\right) \leq n-2 k-1$. However, since the
weight of τ_{j} does not count transpositions between two elements of C_{0}, and there are always at least s elements of C_{0} in the k-center, then $w\left(\tau_{j}\right) \leq n-2 k-s$ whenever τ_{j} is arriving (because $p_{j} \in C_{0}$). Moreover, if τ_{j} is m-augmenting, then $w\left(\tau_{j}\right) \leq n-2 k-m$. If τ_{j} is a returning transposition, then p_{j} has already been transposed with all the elements of C_{0} that are in the k-center of $\pi_{i_{j}}$. Since there are at least s such elements, then $w\left(\tau_{j}\right) \leq n-2 k-1-s$. Summarizing,

$$
w\left(\tau_{j}\right) \leq \begin{cases}n-2 k-1 & \text { for all } \tau_{j}, \tag{5}\\ n-2 k-s, & \text { if } \tau_{j} \text { is neutral, } \\ n-2 k-m, & \text { if } \tau_{j} \text { is } m \text {-augmenting } \\ n-2 k-1-s, & \text { if } \tau_{j} \text { is light stalling or returning. }\end{cases}
$$

Bounding C

We bound the number of cutting transpositions. Since the first (last) k elements of π_{0} are the last (first) elements of $\pi_{\binom{n}{2}}$, then the $2 k$ elements not in C_{0} must participate in at least one cutting transposition. That is, $C \geq 2 k$. Note that, if $p \notin C_{0}$ participates in $c \geq 2$ cutting transpositions, then there must be at least $c-1$ returning transpositions of p. In other words, there must be at least $C-2 k \geq 0$ returning transpositions. There are C cutting transpositions and at least $n-2 k-s$ arriving transpositions (at least one m-augmenting arriving transposition for each $s+1 \leq m \leq n-2 k)$. Then $K-C-(n-2 k-s)$ counts all other k-critical transpositions, including in particular all returning transpositions. Thus $K-C-(n-2 k-s) \geq C-2 k$, that is,

$$
\begin{equation*}
2 C \leq 4 k+K-n+s \tag{6}
\end{equation*}
$$

Augmenting and heavy stalling transpositions

We keep track of the augmenting and heavy stalling transpositions together. To do this, we consider the bipartite graph G whose vertices are the augmenting and the heavy stalling transpositions. The augmenting transposition τ_{l} is adjacent in G to the heavy stalling transposition τ_{j} if $j<l, p_{j}$ is in the k-center of all permutations in blocks B_{j} to B_{l}, one transposition from τ_{j} and τ_{l} is a k-transposition and the other is an $(n-k)$-transposition, and p_{l} does not swap with p_{j} in $B_{l}(\pi)$. We bound the degree of a vertex in G.

Let τ_{j} be a heavy stalling transposition. If $p_{j} \in L_{0}$ (the case $p_{j} \in R_{0}$ is equivalent), then τ_{j} is a k-transposition. Because p_{j} moves to the right exactly $w\left(\tau_{j}\right)>n-2 k-1-s$ positions within $B_{j}(\pi)$, it follows that the k-center right before τ_{j+1} occurs (i.e., the k-center of $\pi_{i_{j+1}-1}$) has at most $n-2 k-1-w\left(\tau_{j}\right)<s$ points of C_{0} to the right of p_{j}. Also, since τ_{j} is stalling, the next time that p_{j} leaves the k-center is by a k-transposition τ_{j+a}. This means that the k-center right before τ_{j+a} occurs (i.e., the k-center of $\pi_{i_{j+a}-1}$) has at least s points of C_{0} to the right of p_{j}. Thus, between τ_{j} and τ_{j+a} there must be at least $s-\left(n-2 k-1-w\left(\tau_{j}\right)\right)$ arriving $(n-k)$-transpositions τ_{l} such that p_{l} remains to the right of p_{j} in $B_{l}(\pi)$, i.e., p_{l} does not swap with p_{j} in $B_{l}(\pi)$. These transpositions are adjacent to τ_{j} and thus the degree of τ_{j} in G is at least $w\left(\tau_{j}\right)-(n-2 k-1-s)$. Hence,

$$
|E(G)| \geq \sum_{\tau_{j} \text { heavy stalling }}\left(w\left(\tau_{j}\right)-(n-2 k-1-s)\right)
$$

where $E(G)$ is the set of edges of G.
Let τ_{l} be an m-augmenting transposition. Since $p_{l} \in C_{0}$, and weights do not count transpositions between two elements of C_{0}, then at most $n-2 k-m-w\left(\tau_{l}\right)$ points in $L_{0} \cup R_{0}$ do not swap with p_{l} in $B_{l}(\pi)$. Only these points are possible p_{j} s such that τ_{j} is adjacent to τ_{l}. Thus the degree of τ_{l} in G is at most $n-2 k-m-w\left(\tau_{l}\right) \leq n-2 k-1-s-w\left(\tau_{l}\right)$.

Note that there is at least one m-augmenting transposition for each $s+1 \leq m \leq n-2 k$. This is because the k-center of at least one permutation of π contains exactly s elements of C_{0} (by definition of s), and the k-center of $\pi_{\binom{n}{2}}$ contains exactly $n-2 k$ elements of C_{0} (since it coincides with C_{0}). Then the number of elements in the k-center must be eventually incremented from s to $n-2 k$. For each $s+1 \leq m \leq n-2 k$, we use $n-2 k-m-w\left(\tau_{l}\right)$ to bound the degree of one m-augmenting transposition. For all other augmenting transpositions we use the bound $n-2 k-1-s-w\left(\tau_{l}\right)$. Hence

$$
\begin{aligned}
|E(G)| & \leq \sum_{\tau_{j} \text { augmenting }}\left((n-2 k-1-s)-w\left(\tau_{j}\right)\right)-\sum_{m=s+1}^{n-2 k}(m-s-1) \\
& =\sum_{\tau_{j} \text { augmenting }}\left((n-2 k-1-s)-w\left(\tau_{j}\right)\right)-\binom{n-2 k-s}{2} .
\end{aligned}
$$

The previous two inequalities imply that

$$
\begin{equation*}
\sum_{\tau_{j} \text { augmenting }} w\left(\tau_{j}\right)+\sum_{\tau_{j} \text { heavy stalling }} w\left(\tau_{j}\right) \leq(n-2 k-1-s)\left(A+S_{\text {heavy }}\right)-\binom{n-2 k-s}{2} \tag{7}
\end{equation*}
$$

Final calculations

We use inequalities (5) and (7) to bound $\sum_{i=1}^{K} w\left(\tau_{i}\right)-N$.

$$
\begin{aligned}
\sum_{j=1}^{K} w\left(\tau_{j}\right)-N & =\sum_{\tau_{j} \text { cutting }} w\left(\tau_{j}\right)+\sum_{\tau_{j} \text { augmenting }} w\left(\tau_{j}\right)+\sum_{\tau_{j} \text { heavy stalling }} w\left(\tau_{j}\right) \\
& +\sum_{\tau_{j} \text { light stalling }} w\left(\tau_{j}\right)+\sum_{\tau_{j} \text { returning }} w\left(\tau_{j}\right)+\sum_{\tau_{j} \text { neutral }} w\left(\tau_{j}\right)-N \\
& \leq(n-2 k-1) C+(n-2 k-1-s)\left(A+S_{\text {heavy }}\right)-\binom{n-2 k-s}{2} \\
& +(n-2 k-1-s)\left(S_{\text {light }}+R\right)+(n-2 k-s) N-N \\
& \leq s C+(n-2 k-1-s) K-\binom{n-2 k-s}{2} .
\end{aligned}
$$

By Inequality (4),

$$
\begin{aligned}
E_{\geq k}(\Pi) & \leq\binom{ n-2 k}{2}-\binom{n-2 k-s}{2}+s C+(n-2 k-1-s) K \\
& =(n-2 k-1) K-\frac{s}{2}(2 K-2 n+4 k+1+s-2 C) .
\end{aligned}
$$

Finally, by Inequality (6),

$$
E_{\geq k}(\Pi) \leq(n-2 k-1) K-\frac{s}{2}(K-n+1) .
$$

4 New exact values for $n \leq 27$

In this section, we give exact values of $h(n)$ and $\widetilde{h}(n)$ for $n \leq 27$. We start by stating a relaxed version of Theorem 1, which we use in the special case when $k=\lfloor n / 2\rfloor-1$.

Corollary 1. Let Π be a simple allowable sequence on $[n]$ and π any halfperiod of Π. If $s=s(k, \pi)$, then

$$
E_{\geq k}(\Pi) \leq(n-2 k-1) E_{k-1}(\Pi)+\binom{s}{2} \leq(n-2 k-1) E_{k-1}(\Pi)+\binom{n-2 k-1}{2} .
$$

Proof. There are at least $n-2 k-s$ elements of C_{0} that leave the k-center, so there are at least $n-2 k-s$ arriving transpositions. In addition, there are at least $2 k$ departing transpositions, one per element not in C_{0}. It follows that $E_{k-1}(\Pi) \geq 2 k+(n-2 k-s)=n-s$. The first inequality now follows directly from Theorem 1. Finally, $s \leq n-2 k-1$ for all halfperiods of Π which yields the second inequality. Another consequence is that $E_{k-1}(\Pi) \geq n-s \geq 2 k+1$, which is in fact the minimum possible value of E_{k-1} (cf. [LV*04]).

The previous corollary implies the following result for halving lines.
Corollary 2. If Π is a simple allowable sequence on $[n]$ and $n \geq 8$, then

$$
h(\Pi) \leq \begin{cases}\left\lfloor\frac{1}{24} n(n+30)-3\right\rfloor & \text { if } n \text { is even } \\ \left\lfloor\frac{1}{18}(n-3)(n+45)+\frac{1}{9}\right\rfloor & \text { if } n \text { is odd }\end{cases}
$$

Proof. If $k=\lfloor n / 2\rfloor-1$ on Corollary 1, then $E_{\geq\lfloor n / 2\rfloor-1}(\Pi)=h(\Pi)$ and thus $h(\Pi) \leq(n-$ $2\lfloor n / 2\rfloor+1) E_{\geq\lfloor n / 2\rfloor-2}(\Pi)+\binom{n-2\lfloor n / 2\rfloor+1}{2}$, that is,

$$
h(\Pi) \leq \begin{cases}E_{n / 2-2}(\Pi) & \text { if } n \text { is even } \\ 2 E_{(n-1) / 2-2}(\Pi)+1 & \text { if } n \text { is odd }\end{cases}
$$

Moreover, because $E_{\leq\lfloor n / 2\rfloor-3}(\Pi)+E_{\lfloor n / 2\rfloor-2}(\Pi)+h(\Pi)=\binom{n}{2}$, it follows that

$$
h(\Pi) \leq \begin{cases}\left\lfloor\frac{1}{2}\binom{n}{2}-\frac{1}{2} E_{\leq n / 2-3}(\Pi)\right\rfloor & \text { if } n \text { is even }, \\ \left\lfloor\frac{2}{3}\binom{n}{2}-\frac{2}{3} E_{\leq(n-1) / 2-3}(\Pi)+\frac{1}{3}\right\rfloor & \text { if } n \text { is odd. }\end{cases}
$$

The bound in Inequality (2) is also valid in the more general context of allowable sequences [AB*06]. Using this bound for $E_{\leq k}(\Pi)$ when $k=\lfloor n / 2\rfloor-3$, and considering all residue classes of n modulo 18 with $n \geq 8$, it follows that $\left\lfloor\frac{1}{2}\binom{n}{2}-\frac{1}{2} E_{\leq n / 2-3}(\Pi)\right\rfloor \leq\lfloor n(n+30) / 24-3\rfloor$ when n is even, and $\left\lfloor\frac{2}{3}\binom{n}{2}-\frac{2}{3} E_{\leq(n-1) / 2-3}(\Pi)+\frac{1}{3}\right\rfloor \leq\lfloor(n-3)(n+45) / 18+1 / 9\rfloor$ when n is odd.

Because $h(n) \leq c n^{4 / 3}$, the inequality in Corollary 2 is only useful for small values of n. However, even with the current best constant $c=(31287 / 8192)^{1 / 3}<1.5721$ [AA*98, $\mathrm{PR}^{*} 06$], our bound is better when n is even in the range $8 \leq n \leq 184$.

The exact values of $h(n)$ were previously known only for even $n \leq 14$ or odd $n \leq 21$ AA*98, BR02]. The exact values of $\overline{\mathrm{cr}}(n)$ were previously known only for even $n \leq 18$ or odd $n \leq 21$ AG*07B]. The values in Table 1 correspond to the upper bounds obtained by Corollary 2 when n is even, $14 \leq n \leq 26$ or n is odd, $23 \leq n \leq 27$. We also obtained new lower bounds for $\widetilde{c r}(n)$ in this range of values of n. The identity $E_{\leq\lfloor n / 2\rfloor-2}(\Pi)=\binom{n}{2}-h(\Pi)$ together with Corollary 2 give a new lower bound for $E_{\leq\lfloor n / 2\rfloor-2}(\bar{\Pi})$. Using this bound for $k=\lfloor n / 2\rfloor-2$ and the bound in Inequality (2) for $k \leq\lfloor n / 2\rfloor-3$ in Identity (3) yields the values in Table 1 for $\widetilde{c r}(n)$. For example, if $n=24$ then $E_{\leq 10}(\Pi)=\binom{24}{2}-h(24) \geq$ $276-51=225$ and by Inequality (21), the vector $\left(E_{\leq 0}(\Pi), E_{\leq 1}(\Pi), E_{\leq 2}(\Pi), \ldots, E_{\leq 9}(\Pi)\right)$ is bounded below entry-wise by $(3,9,18,30,45,63,84,108,138,174)$, so Identity (3) implies that $\widetilde{\operatorname{cr}}(24)=\sum_{k=0}^{10}(21-2 k) E_{\leq k}(\Pi)-\frac{3}{4}\binom{24}{3} \geq 3699$.

All the bounds shown in Table 1 are attained by Aichholzer's et al. constructions A, and thus Table 1 actually shows the exact values of $\widetilde{h}(n), h(n), \widetilde{\operatorname{cr}}(n)$, and $\overline{\operatorname{cr}}(n)$ for n in the specified range.

For $28 \leq n \leq 33$, Table 2 shows the new reduced gap between the lower and upper bounds of $h(n)$ and $\widetilde{h}(n)$.

n	28	29	30	31	32	33
$h(n) \geq$	63	105	69	115	73	126
$\widetilde{h}(n) \leq$	64	107	72	118	79	130

Table 2: Updated bounds for $28 \leq n \leq 33$

5 New lower bound for the number of $(\leq k)$-edges

In this section, we obtain a new lower bound for the number of $\leq k$-edges. Our emphasis is on finding the best possible asymptotic result as well as the best bounds that apply to the small values of n for which the exact value is unknown. Theorem 2 provides the exact result that can be applied to small values of n, whereas Corollary 3 is suitable enough to give the best asymptotic behavior.

Let $m=\lceil(4 n-11) / 9\rceil$. For each n, define the following recursive sequence.

$$
\begin{aligned}
u_{m-1} & =3\binom{m+1}{2}+3\binom{m+1-\lfloor n / 3\rfloor}{ 2}-3\left(m-\left\lfloor\frac{n}{3}\right\rfloor\right)\left(\frac{n}{3}-\left\lfloor\frac{n}{3}\right\rfloor\right) \text { and } \\
u_{k} & =\left\lceil\frac{1}{n-2 k-2}\left(\binom{n}{2}+(n-2 k-3) u_{k-1}\right)\right] \text { for } k \geq m
\end{aligned}
$$

The following is the new lower bound on $E_{\leq k}(n)$. It follows from Theorem 1 ,

Theorem 2. For any n and k such that $m-1 \leq k \leq(n-3) / 2$,

$$
E_{\leq k}(n) \geq u_{k} .
$$

Proof. We need the following two lemmas to estimate the growth of the sequence u_{k} with respect to n and k. For presentation purposes, we defer their proofs to the end of the section.
Lemma 1. For any k such that $m-1 \leq k \leq(n-5) / 2$,

$$
\begin{equation*}
3 \sqrt{1-\frac{2 k+9 / 2}{n}}<\frac{\binom{n}{2}-u_{k}}{\binom{n}{2}-u_{m-1}} \leq 3 \sqrt{1-\frac{2 k+2}{n}} . \tag{8}
\end{equation*}
$$

Lemma 2. For any k such that $m \leq k \leq(n-5) / 2$,

$$
3 \sqrt{1-\frac{2 k+9 / 2}{n}}\left(\binom{n}{2}-u_{m-1}\right) \geq(n-1)(n-2 k-3) .
$$

We prove the stronger statement $\widetilde{E}_{\leq k}(n) \geq u_{k}$. Let Π be an allowable sequence on $[n]$ and π any of its halfperiods. We proceed by induction on k. If $k=m-1$ the result holds by Inequality (21), proved in the more general context of allowable sequences $\mathrm{AB}^{*} 06$. Assume that $k \geq m$ and $E_{\leq k-1}(\Pi) \geq u_{k-1}$. Let $s=s(k+1, \pi)$; by Theorem ,

$$
E_{\geq k+1}(\Pi) \leq(n-2 k-3) E_{k}(\Pi)-\frac{s}{2}\left(E_{k}(\Pi)-(n-1)\right) .
$$

If $s=0$ or $E_{k}(\Pi) \geq n-1$, then $E_{\geq k+1}(\Pi) \leq(n-2 k-3) E_{k}(\Pi)$. Thus

$$
\binom{n}{2}-E_{\leq k}(\Pi) \leq(n-2 k-3)\left(E_{\leq k}(\Pi)-E_{\leq k-1}(\Pi)\right),
$$

and by induction

$$
\begin{aligned}
E_{\leq k}(\Pi) & \geq \frac{1}{n-2 k-2}\left(\binom{n}{2}+(n-2 k-3) E_{\leq k-1}(\Pi)\right) \\
& \geq \frac{1}{n-2 k-2}\left(\binom{n}{2}+(n-2 k-3) u_{k-1}\right),
\end{aligned}
$$

which implies that $E_{\leq k}(\Pi) \geq u_{k}$ by definition of u_{k}. Now assume $s>0$ and $E_{k}(\Pi)<n-1$. Because $E_{k}(\Pi) \geq 2 k+3$ (see the proof of Corollary (1), it follows that $k \leq(n-5) / 2$. By Theorem 1,

$$
\begin{aligned}
E_{\geq k+1}(\Pi) & \leq(n-2 k-3) E_{k}(\Pi)-\frac{s}{2}\left(E_{k}(\Pi)-(n-1)\right) \\
& =\left(n-2 k-3-\frac{s}{2}\right) E_{k}(\Pi)+\frac{s}{2}(n-1) .
\end{aligned}
$$

Recall that $s=s(k+1, \pi) \leq n-2 k-3$. Because $E_{k}(\Pi)<n-1$, it follows that

$$
\begin{aligned}
E_{\geq k+1}(\Pi) & \leq\left(n-2 k-3-\frac{s}{2}\right)(n-1)+\frac{s}{2}(n-1) \\
& =(n-1)(n-2 k-3) .
\end{aligned}
$$

Therefore

$$
E_{\leq k}(\Pi)=\binom{n}{2}-E_{\geq k+1}(\Pi) \geq\binom{ n}{2}-(n-1)(n-2 k-3) .
$$

By Lemma 2,

$$
E_{\leq k}(\Pi) \geq\binom{ n}{2}-3 \sqrt{1-\frac{2 k+9 / 2}{n}}\left(\binom{n}{2}-u_{m-1}\right)
$$

$\underset{\sim}{\text { and }}$ by Lemma $E_{\leq k}(\Pi) \geq u_{k}$ for all allowable sequences Π on $[n]$. Therefore $E_{\leq k}(n) \geq$ $\widetilde{E}_{\leq k}(n) \geq u_{k}$.
Corollary 3. For any n and k such that $m-1 \leq k \leq(n-2) / 2$,

$$
E_{\leq k}(n) \geq\binom{ n}{2}-\frac{1}{9} \sqrt{1-\frac{2 k+2}{n}}\left(5 n^{2}+19 n-31\right) .
$$

Proof. Let Π be an allowable sequence on $[n]$. If $k=\lfloor n / 2\rfloor-1$, then $E_{\leq\lfloor n / 2\rfloor-1}(\Pi)=\binom{n}{2}$. For $k<\lfloor n / 2\rfloor-1$, it follows that $n \geq 3$ and from Theorem 2 and Lemma 1,

$$
E_{\leq k}(\Pi) \geq u_{k} \geq\binom{ n}{2}-3 \sqrt{1-\frac{2 k+2}{n}}\left(\binom{n}{2}-u_{m-1}\right) .
$$

Considering the possible residues of n modulo 9 , it can be verified that for $n \geq 3$,

$$
u_{m-1} \geq \frac{17}{54} n^{2}-\frac{65}{54} n+\frac{31}{27}(\text { equality if } n \equiv 3(\bmod 9)) .
$$

Therefore $E_{\leq k}(n) \geq \widetilde{E}_{\leq k}(n) \geq\binom{ n}{2}-\frac{1}{9} \sqrt{1-\frac{2 k+2}{n}}\left(5 n^{2}+19 n-31\right)$.

Proofs of the Lemmas

Proof of Lemma 1. The integer range $[m-1,(n-5) / 2$] is empty for $n \leq 5$. Assume $n \geq 6$ and proceed by induction on k. If $k=m-1$, then $3 \sqrt{1-(2 m+5 / 2) / n} \leq 1 \leq 3 \sqrt{1-2 m / n}$ is equivalent to $\lceil(4 n-11) / 9\rceil \leq 4 n / 9 \leq\lceil(4 n-11) / 9\rceil+5 / 4$ which holds in general. Assume that $k \geq m$ and that (8) holds for $k-1$. From the definition of u_{k} and the induction hypothesis,

$$
\begin{aligned}
\binom{n}{2}-u_{k} & \leq\binom{ n}{2}-\frac{1}{n-2 k-2}\left(\binom{n}{2}+(n-2 k-3) u_{k-1}\right) \\
& =\frac{n-2 k-3}{n-2 k-2}\left(\binom{n}{2}-u_{k-1}\right) \leq 3\left(\binom{n}{2}-u_{m-1}\right) \frac{n-2 k-3}{n-2 k-2} \sqrt{1-\frac{2 k}{n}}
\end{aligned}
$$

and $(n-2 k-3) \sqrt{1-2 k / n} /(n-2 k-2) \leq \sqrt{1-(2 k+2) / n}$ because $k \leq(n-5) / 2$, which proves the second inequality in (8). Similarly, from the definition of u_{k} and the induction hypothesis,

$$
\begin{aligned}
\binom{n}{2}-u_{k} & \geq\binom{ n}{2}-\frac{1}{n-2 k-2}\left(\binom{n}{2}+(n-2 k-3) u_{k-1}\right)-1 \\
& =\frac{n-2 k-3}{n-2 k-2}\left(\binom{n}{2}-u_{k-1}\right)-1 \geq 3\left(\binom{n}{2}-u_{m-1}\right) \frac{n-2 k-3}{n-2 k-2} \sqrt{1-\frac{2 k+5 / 2}{n}}-1 .
\end{aligned}
$$

Hence, to prove the second inequality in (8), it is enough to show that $\left.3\binom{n}{2}-u_{m-1}\right) d>1$, where

$$
\begin{equation*}
d=\frac{n-2 k-3}{n-2 k-2} \sqrt{1-\frac{2 k+5 / 2}{n}}-\sqrt{1-\frac{2 k+9 / 2}{n}} \tag{9}
\end{equation*}
$$

is always positive because $k \leq(n-5) / 2$. First note that

$$
u_{m-1} \leq 3\binom{m+1}{2}+3\binom{m+1-\lfloor n / 3\rfloor}{ 2} \leq 3\binom{(4 n+6) / 9}{2}+3\binom{(n+10) / 9}{2}
$$

which implies that

$$
\begin{equation*}
3\left(\binom{n}{2}-u_{m-1}\right) \geq \frac{1}{9}\left(5 n^{2}-25 n+4\right) . \tag{10}
\end{equation*}
$$

Multiplying the easily-verified inequality

$$
1>\frac{(n-2 k-3) \sqrt{n-2 k-5 / 2}+(n-2 k-2) \sqrt{n-2 k-9 / 2}}{(2 n-4 k-5) \sqrt{n-2 k-5 / 2}}
$$

by Identity (9), yields

$$
\begin{aligned}
d & >\frac{n-2 k-9 / 4}{(n-2 k-2)^{2} \sqrt{n(n-2 k-5 / 2)}} \cdot \frac{2 n-4 k-4}{2 n-4 k-5} \\
& >\frac{n-2 k-9 / 4}{(n-2 k-2)^{2} \sqrt{n(n-2 k-5 / 2)}} \\
& =\left(1-\frac{1}{4(n-2 k-2)}\right) \frac{1}{(n-2 k-2) \sqrt{n(n-2 k-2-1 / 2)}}
\end{aligned}
$$

Since $(4 n-11) / 9 \leq k \leq(n-5) / 2$, then $3 \leq n-2 k-2 \leq(n+4) / 9$. Thus

$$
d>\left(1-\frac{1}{12}\right) \frac{27}{(n+4) \sqrt{n(n-1 / 2)}}=\frac{99}{4(n+4) \sqrt{n(n-1 / 2)}}
$$

This inequality, together with Inequality (10), imply that for all $n \geq 6$,

$$
3\left(\binom{n}{2}-u_{m-1}\right) d>\frac{11}{4}\left(\frac{5 n^{2}-25 n+4}{(n+4) \sqrt{n(n-1 / 2)}}\right)>1 .
$$

Proof of Lemma园. For each $n \leq 40$ the integer range $[m,(n-5) / 2]$ is either empty or contains only $k=\lfloor(n-5) / 2\rfloor$. For these cases, the inequality can easily be verified. Assume $n \geq 41$, it follows from Inequality (10) that

$$
9\left(1-\frac{2 k+9 / 2}{n}\right)\left(\binom{n}{2}-u_{m-1}\right)^{2} \geq \frac{(n-2 k-9 / 2)\left(5 n^{2}-25 n+4\right)^{2}}{81 n}
$$

Since $k \leq(n-5) / 2$, then

$$
n-2 k-9 / 2 \geq \frac{(n-2 k-3)^{2}}{n-2 k+3} .
$$

Also $k \geq m \geq(4 n-11) / 9$ implies $n-2 k+3 \leq(n+49) / 9$ and thus

$$
\frac{(n-2 k-9 / 2)\left(5 n^{2}-25 n+4\right)^{2}}{81 n} \geq \frac{(n-2 k-3)^{2}\left(5 n^{2}-25 n+4\right)^{2}}{9 n(n+49)}
$$

Finally, for $n \geq 41$,

$$
\frac{\left(5 n^{2}-25 n+4\right)^{2}}{9 n(n+49)} \geq(n-1)^{2}
$$

and consequently

$$
9\left(1-\frac{2 k+9 / 2}{n}\right)\left(\binom{n}{2}-u_{m-1}\right)^{2} \geq(n-1)^{2}(n-2 k-3)^{2} .
$$

6 New lower bound on $\overline{\operatorname{cr}}(n)$

In this section, we use Corollary 3 to get the following new lower bound on $\overline{\operatorname{cr}}(n)$.
Theorem 3. $\overline{\operatorname{cr}}(n) \geq \frac{277}{729}\binom{n}{4}+\Theta\left(n^{3}\right)>0.379972\binom{n}{4}+\Theta\left(n^{3}\right)$.
Proof. We actually prove that the right hand side is a lower bound on $\widetilde{c r}(n)$. According to (3), if Π is an awollable sequence on $[n]$, then

$$
\operatorname{cr}(\Pi)=\binom{n}{4}\left(24 \sum_{k=0}^{\lfloor n / 2\rfloor-1} \frac{1}{n}\left(1-\frac{2 k}{n}\right) \frac{E_{\leq k}(\Pi)}{n^{2}}\right)+\Theta\left(n^{3}\right) .
$$

Using Inequality (2) for $0 \leq k \leq m-1$ gives

$$
\frac{E_{\leq k}(\Pi)}{n^{2}} \geq \frac{3}{2}\left(\frac{k}{n}\right)^{2}+\frac{3}{2} \max \left(0, \frac{k}{n}-\frac{1}{3}\right)^{2}-\Theta\left(\frac{1}{n}\right)
$$

Similarly, if $m \leq k \leq\lfloor n / 2\rfloor-1$, then by Corollary 3,

$$
\frac{E_{\leq k}(\Pi)}{n^{2}} \geq \frac{1}{2}-\frac{5}{9} \sqrt{1-\frac{2 k}{n}}+\Theta\left(\frac{1}{n}\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{cr}(\Pi) & \geq\binom{ n}{4}\left(24 \int_{0}^{4 / 9} \frac{3}{2}(1-2 x)\left(x^{2}+\max \left(0, x-\frac{1}{3}\right)^{2}\right) d x\right) \\
& +\binom{n}{4}\left(24 \int_{4 / 9}^{1 / 2}(1-2 x)\left(\frac{1}{2}-\frac{5}{9} \sqrt{1-2 x}\right) d x\right)+\Theta\left(n^{3}\right) \\
& \geq\binom{ n}{4}\left(\frac{86}{243}+\frac{19}{729}\right)+\Theta\left(n^{3}\right)=\frac{277}{729}\binom{n}{4}+\Theta\left(n^{3}\right) .
\end{aligned}
$$

The following is the list of best lower bounds for $\widetilde{c r}(n)$ in the range $28 \leq n \leq 99$ that follow from using Identity (3) with the bound in either Inequality (2) or the new bound from Theorem 2.

n	$\widetilde{\mathrm{cr}}(n) \geq$	n	$\widetilde{\operatorname{cr}}(n) \geq$	n	$\widetilde{\mathrm{cr}}(n) \geq$						
28	7233	40	33048	52	99073	64	234223	76	475305	88	866947
29	8421	41	36674	53	107251	65	249732	77	501531	89	907990
30	9723	42	40561	54	115878	66	265888	78	528738	90	950372
31	11207	43	44796	55	125087	67	282974	79	557191	91	994394
32	12830	44	49324	56	134798	68	300767	80	586684	92	1039840
33	14626	45	54181	57	145030	69	319389	81	617310	93	1086725
34	16613	46	59410	58	155900	70	338913	82	649190	94	1135377
35	18796	47	65015	59	167344	71	359311	83	682308	95	1185551
36	21164	48	70948	60	179354	72	380531	84	716507	96	1237263
37	23785	49	77362	61	192095	73	402798	85	752217	97	1290844
38	26621	50	84146	62	205437	74	425980	86	789077	98	1346029
39	29691	51	91374	63	219457	75	450078	87	827289	99	1402932

7 A point-set with few $(\leq k)$-edges for every $k \leq 4 n / 9-1$

Combining Inequality (2) and Theorem 2, we obtain the best known lower bound for $E_{\leq k}(n)$. If n is a multiple of 9 and $k \leq(4 n / 9)-1$, then this bound reads

$$
E_{\leq k}(n) \geq \begin{cases}3\binom{k+2}{2} & \text { if } 0 \leq k \leq n / 3-1 \tag{11}\\ 3\binom{k+2}{2}+3\binom{k-n / 3+2}{2} & \text { if } n / 3 \leq k \leq 4 n / 9-2 \\ 3\binom{(4 n / 9-1)+2}{2}+3\binom{4 n / 9-1)-n / 3+2}{2}+3 & \text { if } k=4 n / 9-1\end{cases}
$$

Our aim in this section is to show that this bound is tight for $n \geq 27$. This improves on the construction in $\left.A G^{*} 07 \mathrm{~A}\right]$, where tightness for Inequality (11) is proved for $k \leq(5 n / 12)$.

We recursively construct, for each integer $r \geq 3$, a $9 r$-point set S_{r} such that for every $k \leq(4 n / 9)-1, E_{\leq k}\left(S_{r}\right)$ equals the right hand side of (11).

Constructing the sets S_{r}

If a and b are distinct points, then $\ell(a b)$ denotes the line spanned by a and b, and $\overline{a b}$ denotes the closed line segment with endpoints a and b, directed from a towards b. Let θ denote the clockwise rotation by an angle of $2 \pi / 3$ around the origin. At this point the reader may want to take a sneak preview at Figure 2, where S_{3} is sketched.

For each $r \geq 3$ the set S_{r} is naturally partitioned into nine sets of size $r: A_{r}=\left\{a_{1}, \ldots, a_{r}\right\}$, $A_{r}^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{r}^{\prime}\right\}, A_{r}^{\prime \prime}$, and their respective $2 \pi / 3$ and $4 \pi / 3$ rotations around the origin. The elements of $A_{r}^{\prime \prime}$ are not labeled because they change in each iteration. For $i=1, \ldots, r$, we let $b_{i}=\theta\left(a_{i}\right), b_{i}^{\prime}=\theta\left(a_{i}^{\prime}\right), c_{i}=\theta^{2}\left(a_{i}\right)$, and $c_{i}^{\prime}=\theta^{2}\left(a_{i}\right)$. Thus if we let $B_{r}=\left\{b_{1}, \ldots, b_{r}\right\}$, $B_{r}^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{r}^{\prime}\right\}, B_{r}^{\prime \prime}=\theta\left(A_{r}^{\prime \prime}\right), C_{r}=\left\{c_{1}, \ldots, c_{r}\right\}, C_{r}^{\prime}=\left\{c_{1}^{\prime}, \ldots, c_{r}^{\prime}\right\}$, and $C_{r}^{\prime \prime}=\theta^{2}\left(A_{r}^{\prime \prime}\right)$,
then we obtain $B_{r} \cup B_{r}^{\prime} \cup B_{r}^{\prime \prime}$ (respectively, $C_{r} \cup C_{r}^{\prime} \cup C_{r}^{\prime \prime}$) by applying θ (respectively, θ^{2}) to $A_{r} \cup A_{r}^{\prime} \cup A_{r}^{\prime \prime}$. We refer to this property as the 3 -symmetry of S_{r}.

As we mentioned before, the construction of the sets S_{r} is recursive. For $r \geq 3$, we obtain A_{r+1} and A_{r+1}^{\prime} by adding suitable points a_{r+1} to A_{r} and a_{r+1}^{\prime} to A_{r}^{\prime}. Keeping 3-symmetry, this determines $B_{r+1}, B_{r+1}^{\prime}, C_{r+1}$, and C_{r+1}^{\prime}. However, the set $A_{r+1}^{\prime \prime}$ is not obtained by adding a point to $A_{r}^{\prime \prime}$, but instead is defined in terms of $B_{r+1}, B_{r+1}^{\prime}, C_{r+1}$, and C_{r+1}^{\prime}; this explains why we have not listed the elements in $A_{r}^{\prime \prime}, B_{r}^{\prime \prime}$, and $C_{r}^{\prime \prime}$.

Before moving on with the construction, we remark that the sets S_{r} contain subsets of more than two collinear points. As it will become clear from the construction, the points can be slightly perturbed to general position, so that the number of $(\leq k)$-edges remains unchanged for every $k \leq 4 n / 9-1$.

Figure 2: The 27-point set S_{3}. The points $a_{\infty}, a_{\infty}^{\prime}, b_{\infty}, b_{\infty}^{\prime}, c_{\infty}$, and c_{∞}^{\prime} do not belong to S_{3}.

We start by describing S_{3}, see Figure [2, First we explicitly fix A_{3} and $A_{3}^{\prime}: a_{1}=$ $(-700,-50), a_{2}=(-410,150), a_{3}=(-436,144), a_{1}^{\prime}=(-1300,20), a_{2}^{\prime}=(-1200,-10)$,
and $a_{3}^{\prime}=(-1170,-14)$. Thus $B_{3}, B_{3}^{\prime}, C_{3}$, and C_{3}^{\prime} also get determined. For the points in $A_{3}^{\prime \prime}$ we do not give their exact coordinates, instead we simply ask that they satisfy the following: all the points in $A_{3}^{\prime \prime}$ lie on the x-axis, and are sufficiently far to the left of $A_{3} \cup A_{3}^{\prime}$ so that if a line ℓ_{1} passes through a point in $A_{3}^{\prime \prime}$ and a point in $S_{3} \backslash\left(B_{3}^{\prime \prime} \cup C_{3}^{\prime \prime}\right)$, and a line ℓ_{2} passes through two points in $S_{3} \backslash A_{3}^{\prime \prime}$, then the slope of ℓ_{1} is smaller in absolute value than the slope of ℓ_{2}, i.e., ℓ_{1} is closer (in slope) to a horizontal line, than ℓ_{2}.

Figure 3: b_{r+1} is placed in between b_{r} and b_{∞}, above the line $\ell\left(a_{r}^{\prime} a_{2}\right)$.

We need to define six auxiliary points not in $S_{r}: a_{\infty}=\ell\left(a_{2} a_{3}\right) \cap \ell\left(c_{2} c_{3}\right)$ and $a_{\infty}^{\prime}=$ $\ell\left(a_{2}^{\prime} a_{3}^{\prime}\right) \cap \ell\left(a_{2} a_{3}\right)$. As expected, let $b_{\infty}=\theta\left(a_{\infty}\right), c_{\infty}=\theta^{2}\left(a_{\infty}\right), b_{\infty}^{\prime}=\theta\left(a_{\infty}^{\prime}\right)$, and $c_{\infty}^{\prime}=\theta^{2}\left(a_{\infty}^{\prime}\right)$.

We now describe how to get S_{r+1} from S_{r}. The crucial step is to define the points b_{r+1} and a_{r+1}^{\prime} to be added to B_{r} and A_{r}^{\prime} to obtain B_{r+1} and A_{r+1}^{\prime}, respectively. Then we construct $A_{r+1}^{\prime \prime}$ and applying θ and θ^{2} to $B_{r+1}, A_{r+1}^{\prime}$, and $A_{r+1}^{\prime \prime}$, we obtain the rest of S_{r+1}.

Suppose that for some $r \geq 3$, the set S_{r} has been constructed so that the following properties hold for $t=r$ (this is clearly true for the base case $r=3$):
(I) The points a_{2}, \ldots, a_{t} appear in this order along $\overline{a_{2} a_{\infty}}$.
(II) The points $a_{2}^{\prime}, \ldots, a_{t}^{\prime}$ appear in this order along $\overline{a_{2}^{\prime} a_{\infty}^{\prime}}$.
(III) For all $i=2, \ldots, t-1$ and $j=2, \ldots, t, \ell\left(a_{i}^{\prime} a_{j}\right)$ intersects the interior of $\overline{b_{i} b_{i+1}}$.
(IV) For all $j=2, \ldots, t, \ell\left(a_{t}^{\prime} a_{j}\right)$ intersects the interior of $\overline{b_{t} b_{\infty}}$.

Now we add b_{r+1} and a_{r+1}^{\prime}. Place b_{r+1} anywhere on the open line segment determined by b_{∞} and the intersection point of $\ell\left(a_{r}^{\prime} a_{2}\right)$ with $\overline{b_{r} b_{\infty}}$. (The existence of this intersection point is
guaranteed by (IV), see Figure 3). Place a_{r+1}^{\prime} anywhere on the open line segment determined by a_{∞}^{\prime} and the intersection point of $\ell\left(b_{r+1} a_{\infty}\right)$ with $\overline{a_{r}^{\prime} a_{\infty}^{\prime}}$. (This intersection exists because $a_{\infty}^{\prime}, a_{\infty}, a_{2}$, and b_{∞} are collinear and appear in this order along $\ell\left(a_{\infty}^{\prime} b_{\infty}\right)$, the line $\ell\left(a_{\infty}^{\prime} b_{\infty}\right)$ separates b_{r+1} from a_{r}^{\prime}, and the line $\ell\left(a_{r}^{\prime} a_{2}\right)$ separates b_{r+1} from a_{∞}, see Figure (4). Thus B_{r+1} and A_{r+1}^{\prime} and consequently $A_{r+1}, C_{r+1}, B_{r+1}^{\prime}$, and C_{r+1}^{\prime}, are defined. It is straightforward to check that (I)-(IV) hold for $t=r+1$.

Figure 4: a_{r+1}^{\prime} is placed in between a_{r}^{\prime} and a_{∞}^{\prime}, below the line $\ell\left(a_{\infty} b_{r+1}\right)$.

It only remains to describe how to construct $A_{r+1}^{\prime \prime}$. As we mentioned above, this set is not a superset of $A_{r}^{\prime \prime}$, instead it gets defined analogously to $A_{3}^{\prime \prime}$: we let the points in $A_{r+1}^{\prime \prime}$ lie on the x-axis, and sufficiently far to the left of $A_{r+1} \cup A_{r+1}^{\prime}$, so that if ℓ_{1} passes through a point in $A_{r+1}^{\prime \prime}$ and through a point in $S_{r+1} \backslash\left(B_{r+1}^{\prime \prime} \cup C_{r+1}^{\prime \prime}\right)$, and ℓ_{2} spans two points in $S_{r+1} \backslash A_{r+1}^{\prime \prime}$, then the slope of ℓ_{1} is smaller in absolute value than the slope of ℓ_{2}.

Calculating $E_{\leq k}\left(S_{r}\right)$

We fix $r \geq 3$, and proceed to determine $E_{\leq k}\left(S_{r}\right)$ for each $k, 0 \leq k \leq 4 r-1$. It is now convenient to label the elements of $A_{r}^{\prime \prime}, B_{r}^{\prime \prime}$, and $C_{r}^{\prime \prime}$. Let $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{r}^{\prime \prime}$ be the elements of $A_{r}^{\prime \prime}$, ordered as they appear from left to right along the negative x-axis. As expected, let $b_{i}^{\prime \prime}=\theta\left(a_{i}^{\prime \prime}\right)$ and $c_{i}^{\prime \prime}=\theta^{2}\left(a_{i}^{\prime \prime}\right)$, for $i=1, \ldots, r$.

We call a k-edge bichromatic if it joins two points with different label letters (i.e., if it is of the form $a b, b c$, or $a c$); otherwise, a k-edge is monochromatic. A monochromatic edge is of type $a a$ if it is of the form $\ell\left(a_{i} a_{j}\right)$ for some integers i, j; edges of types $a a^{\prime}, a a^{\prime \prime}, a^{\prime} a^{\prime}, a^{\prime} a^{\prime \prime}, a^{\prime \prime} a^{\prime \prime}$ (and their counterparts for b and c) are similarly defined. Finally, we say that an edge of any of the types $a a, a a^{\prime}, a a^{\prime \prime}, a^{\prime} a^{\prime}, a^{\prime} a^{\prime \prime}$, or $a^{\prime \prime} a^{\prime \prime}$ is of type \mathbf{A}; edges of types \mathbf{B} and \mathbf{C} are similarly defined. We let $E_{\leq k}^{\text {bic }}$ (respectively, $E_{\leq k}^{\text {mono }}$) stand for the number of bichromatic (respectively, monochromatic) ($\leq k$)-edges, so that $E_{\leq k}\left(S_{r}\right)=E_{\leq k}^{\text {bic }}\left(S_{r}\right)+E_{\leq k}^{\text {mono }}\left(S_{r}\right)$.

We say that a finite point set P is 3-decomposable if it can be partitioned into three equal-size sets \bar{A}, \bar{B}, and \bar{C} satisfying the following: there is a triangle T enclosing P such that the orthogonal projections of P onto the three sides of T show \bar{A} between \bar{B} and \bar{C} on one side, \bar{B} between \bar{A} and \bar{C} on another side, and \bar{C} between \bar{A} and \bar{B} on the third side (see $\left[\mathrm{AC}^{*} 10\right]$). We say that $\{\bar{A}, \bar{B}, \bar{C}\}$ is a 3 -decomposition of P. It is easy to see that if we let $\bar{A}:=A_{r} \cup A_{r}^{\prime} \cup A_{r}^{\prime \prime}, \bar{B}:=B_{r} \cup B_{r}^{\prime} \cup B_{r}^{\prime \prime}$, and $\bar{C}:=C_{r} \cup C_{r}^{\prime} \cup C_{r}^{\prime \prime}$, then $\{\bar{A}, \bar{B}, \bar{C}\}$ is a 3-decomposition of S_{r} : indeed, it suffices to take an enclosing triangle of S_{r} with one side orthogonal to the line spanned by the points in $A^{\prime \prime}$, one side orthogonal to the line spanned by the points in $B^{\prime \prime}$, and one side orthogonal to the line spanned by the points in $C^{\prime \prime}$. Thus, it follows from Claim 1 in $\left[\mathrm{AC}^{*} 10\right]$ (where it is proved in the more general setting of allowable sequences) that

$$
E_{\leq k}^{\text {bic }}\left(S_{r}\right)= \begin{cases}3\binom{k+2}{2}, & \text { if } 0 \leq k \leq 3 r-1 \tag{12}\\ 3\binom{3 r+1}{2}+(k-3 r+1) 9 r, & \text { if } 3 r \leq k \leq 4 r-1\end{cases}
$$

We now count the monochromatic $(\leq k)$-edges. By 3 -symmetry, it suffices to focus on those of type \mathbf{A}.

It is readily checked that for all i and j distinct integers, $\ell\left(a_{i} a_{j}\right), \ell\left(a_{i}^{\prime} a_{j}^{\prime}\right)$, and $\ell\left(a_{i}^{\prime \prime} a_{j}^{\prime \prime}\right)$ are k-critical edges for some $k>4 r-1$. The same is true for $\ell\left(a_{i} a_{j}^{\prime}\right)$ whenever i and j are not both equal to 1 (when $i \neq 1$ and $j \neq 1$ this follows from (III) and (IV)), while $\ell\left(a_{1} a_{1}^{\prime}\right)$ is a $(4 r-1)$-edge. Now, for each $i, j, 1 \leq i \leq r, 2 \leq j \leq r, \ell\left(a_{i}^{\prime \prime} a_{j}^{\prime}\right)$ is a $(4 r+i-j)$-edge, while $a_{i}^{\prime \prime} a_{1}^{\prime}$ is a $(4 r+i-2)$-edge. Finally, if $1 \leq i \leq r$ and $2 \leq j \leq r$, then $\ell\left(a_{i}^{\prime \prime} a_{j}\right)$ is a $(3 r+i+j-3)$-edge, and $\ell\left(a_{i}^{\prime \prime} a_{1}\right)$ is a $(3 r+i-1)$-edge. In conclusion (to obtain (i), we recall that a k-edge is also a $(9 r-2-k)$-edge):
(i) for $1 \leq s \leq r$, the number of $(3 r-1+s)$-edges of types $a^{\prime} a^{\prime \prime}$ or $a a^{\prime \prime}$ is $2 s$;
(ii) there is exactly one $(4 r-1)$-edge of type $a a^{\prime}$; and
(iii) all other edges of type \mathbf{A} are k-critical edges for some $k>4 r-1$.

It follows that the number of $(\leq k)$-edges of type A is
(a) 0 , for $k \leq 3 r-1$;
(b) $2 \sum_{s=1}^{k-(3 r-1)} s=2\binom{k-3 r+2}{2}$, for $3 r \leq k \leq 4 r-2$;
(c) $1+2 \sum_{s=1}^{(4 r-1)-(3 r-1)} s=2\binom{r+1}{2}+1$, for $k=4 r-1$.

By 3 -symmetry, for each integer k there are exactly as many $(\leq k)$-edges of type \mathbf{A} as there are of type \mathbf{B}, and of type \mathbf{C}. Therefore

$$
E_{\leq k}^{\text {mono }}\left(S_{r}\right)= \begin{cases}0 & \text { if } 0 \leq k \leq 3 r-1 \tag{13}\\ 6\binom{k-(3 r-2)}{2} & \text { if } 3 r \leq k \leq 4 r-2 \\ 6\binom{r+1}{2}+3 & \text { if } k=4 r-1\end{cases}
$$

Because $E_{\leq k}\left(S_{r}\right)=E_{\leq k}^{\text {bic }}\left(S_{r}\right)+E_{\leq k}^{\operatorname{mono}}\left(S_{r}\right)$, it follows by identities (12) and (13) that $E_{\leq k}\left(S_{r}\right)$ equals the right hand side of (11).

8 Concluding remarks

The Inequality in Theorem 1 is best possible. That is, there are n-point sets P whose simple allowable sequence Π gives equality in the Inequality of Corollary $\mathbb{1}$:

$$
E_{\geq k}(\Pi)=(n-2 k-1) E_{k-1}(\Pi)+\binom{s}{2} .
$$

We present two constructions. The first has $s=n-2 k-1$ and consists of $2 k+1$ points which are the vertices of a regular polygon and $n-2 k-1$ central points very close to the center of the polygon. This construction was given in [LV*04] to show that $E_{k-1} \geq 2 k+1$ is best possible. Indeed, note that the $(k-1)$-edges of P correspond to the larger diagonals of the polygon, and so $E_{k-1}(\Pi)=2 k+1$; moreover, any edge formed by two points in the central part or one point in the central part and a vertex of the polygon determine a $(\geq k)$-edge. Thus $E_{\geq k}(\Pi)=\binom{n-2 k-1}{2}+(2 k+1)(n-2 k-1)$, which achieves the desired equality.

The second construction has $s=0$ and thus it can only be achieved when $k \geq n / 3$. Consider a $(2 t+1)$-regular polygon where each vertex is replaced by a set of m points on a small segment pointing in the direction of the center of the polygon. Let Π be the allowable sequence corresponding to this point-set, $n=(2 t+1) m$, and $k=t m$. It is straightforward to verify that $E_{k-1}(\Pi)=(2 t+1) m$ and $E_{\geq k}(\Pi)=2(2 t+1)\binom{m}{2}$. Thus $E_{\geq k}(\Pi)=(m-1) E_{k-1}(\Pi)=(n-2 k-1) E_{k-1}(\Pi)$.

Prior to this work, there were two results that provided a lower bound for $E_{\leq k}(P)$ based on the behavior of values of k close to $n / 2$. First, Welzl We96 as a particular case of a more general result proved that $E_{\leq k}(P) \geq F_{1}(k, n)$, where

$$
F_{1}(k, n)=\binom{n}{2}-2 n\left(\sum_{j=k+1}^{n / 2} k\right)^{1 / 2}<\binom{n}{2}-\frac{\sqrt{2}}{2} n^{3 / 2} \sqrt{n-2 k}
$$

Second, Balogh and Salazar BS06 proved that $E_{\leq k}(P) \geq F_{2}(k, n)$, where $F_{2}(k, n)$ is a function that, for $n / 3 \leq k \leq n / 2$, satisfies that

$$
F_{2}(k, n)<\binom{n}{2}-\frac{13 \sqrt{3}}{36} n^{3 / 2} \sqrt{n-2 k}+o\left(n^{2}\right)
$$

By direct comparison, it follows that both $F_{1}(k, n)$ and $F_{2}(k, n)$ are smaller than the bound in Corollary 3. Thus our bound is better than these two previous bounds.

A nice feature of Theorem 1 is that it can give better bounds for $E_{\leq k}(n)$ and k large enough, and for $\overline{c r}(n)$, provided someone finds a better bound than Inequality (2) for $E_{\leq k}(n)$ when $4 n / 9<k<n / 2$. For example, Ábrego et al. [AF*07] considered 3-regular point sets P. These are point-sets with the property that for $1 \leq j \leq n / 3$, the j th depth layer of P has exactly 3 points of P. A point $p \in P$ is in the j th depth layer if p belongs to a $(j-1)$-edge but not to a $(\leq j-2)$-edge of P. If n is a multiple of 18 , they proved the following lower bound:

$$
\begin{equation*}
E_{\leq k}(P) \geq 3\binom{k+2}{2}+3\binom{k+2-n / 3}{2}+18\binom{k+2-4 n / 9}{2} \tag{14}
\end{equation*}
$$

This is better than the bound in Theorem 2 for $k>4 n / 9$, however using Theorem 1 it is possible to find an even better lower bound when $k \geq 17 n / 36$. We construct a new recursive sequence u^{\prime} starting at $m=17 n / 36$ given by

$$
\begin{aligned}
u_{m-1}^{\prime} & =3\binom{m+1}{2}+3\binom{m+1-\lfloor n / 3\rfloor}{ 2}+18\binom{m+1-\lfloor 4 n / 9\rfloor}{ 2} \text { and } \\
u_{k}^{\prime} & =\left\lceil\frac{1}{n-2 k-2}\left(\binom{n}{2}+(n-2 k-3) u_{k-1}^{\prime}\right)\right] \text { for } k \geq m
\end{aligned}
$$

The value of $m=17 n / 36$ is the smallest possible for which u_{m}^{\prime} is greater than the right-side of Inequality (14). Following the proof of Theorem 2 it is possible to show that $E_{\leq k}(P) \geq u_{k}^{\prime}$ for $17 n / 36 \leq k<n / 2$. Thus, if we could show that Inequality (14) holds for arbitrary point sets P, then we know that bound will no longer be tight for $k \geq 17 n / 36$. From equivalent statements to lemmas 1 and 2, it follows that $u_{k}^{\prime} \sim\binom{n}{2}-\left(7 \sqrt{2} n^{2} / 18\right) \sqrt{1-2 k / n}$. This in turn improves the crossing number of 3-regular point-sets P to $\overline{\operatorname{cr}}(P) \geq 0.380024\binom{n}{4}+\Theta\left(n^{3}\right)$.

In $\mathrm{AC}^{*} 10$ we considered other class of point-sets called 3-decomposable. These are point-sets P for which there is a triangle T enclosing P and a balanced partition A, B, and C of P, such that the orthogonal projections of P onto the sides of T show A between B and C on one side, B between A and C on another side, and C between A and B on the third side. For 3 -decomposable sets P we were able to prove a lower bound consisting of an infinite series of binomial coefficients:

$$
\begin{equation*}
E_{\leq k}(P) \geq 3\binom{k+2}{2}+3\binom{k+2-n / 3}{2}+3 \sum_{j=2}^{\infty} j(j+1)\binom{k+2-c_{j} n}{2} \tag{15}
\end{equation*}
$$

where $c_{j}=1 / 2-1 /(3 j(j+1))$.
Our main result does not improve this lower bound, however it gives an interesting heuristic that provides some evidence about the potential truth of this inequality for unrestricted point-sets P. If we assume that the sum of the first $t+1$ terms in the right-side of Inequality (15) is a lower bound for $E_{\leq k}(P)$, then, just as we outlined in the previous paragraph for $t=2$, Theorem 1 gives a better bound when k is big enough. This happens to be precisely when $k \geq c_{t+1} n$, which is also the value of k for which the next term in the sum of Inequality (15) gives a nonzero contribution.

It was also shown in $\overline{\mathrm{AC}^{*} 10}$ that Inequality (15) implies the following bound for 3decomposable sets P :

$$
\begin{equation*}
\overline{\operatorname{cr}}(P) \geq \frac{2}{27}\left(15-\pi^{2}\right)\binom{n}{4}+\Theta\left(n^{3}\right)>0.380029\binom{n}{4}+\Theta\left(n^{3}\right) . \tag{16}
\end{equation*}
$$

Theorem 11 does not improve the $\binom{n}{4}$ coefficient, but it improves the speed of convergence. For instance, using Theorem 1 together with the first 30 terms of Inequality (15) gives a better bound than the one obtained solely from the first 101 terms of Inequality (15).

Finally, we reiterate our conjectures from [AC*10] that inequalities (15) and (16) are true for unrestricted point-sets P. We in fact conjecture that for every k and n, the class of 3-decomposable sets contains optimal sets for both $E_{\leq k}(n)$ and $\overline{\operatorname{cr}}(n)$.

References

[AB*06] B. M. Ábrego, J. Balogh, S. Fernández-Merchant, J. Leaños, and G. Salazar. An extended lower bound on the number of $(\leq k)$-edges to generalized configurations of points and the pseudolinear crossing number of K_{n}. Journal of Combinatorial Theory, Series A. 115 (2008), 1257-1264.
[$\left.\mathrm{AC}^{*} 10\right] \quad$ B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, and G. Salazar. 3symmetric and 3-decomposable drawings of K_{n}. Discrete and Applied Mathematics 158 (2010), 1240-1258.
[AF*08A] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. The maximum number of halving lines and the rectilinear crossing number K_{n} for $n \leq 27$, Electronic Notes in Discrete Mathematics 30 (2008), 261-266.
[AF*08B] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. A central approach to bound the number of crossings in a generalized configuration, Electronic Notes in Discrete Mathematics $\mathbf{3 0}$ (2008), 273-278.
[AF*07] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. Recent developments on the number of $(\leq k)$-sets, halving lines, and the rectilinear crossing number of K_{n}. Proceedings of XII Encuentros de Geometría Computacional, Universidad de Valladolid, Spain, June 25-27 (2007), ISBN 978-84-690-6900-4.
[AF07] B. M. Ábrego and S. Fernández-Merchant. Geometric drawings of K_{n} with few crossings. J. Combin. Theory Ser. A 114 (2007), 373-379.
[AF05] B. M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, Graphs and Comb. 21 (2005), 293-300.
[AA*98] A. Andrzejac, B. Aronov, S. Har-Peled, R. Seidel, and E. Welzl. Results on k-sets and j-facets via continuous motions. In Proceedings of the 14 th Annual ACM Symposium on Computational Geometry (1998), 192-199.
[A] O. Aichholzer. On the rectilinear crossing number. Available online at http://www.ist.tugraz.at/staff/aichholzer/crossings.html.
[AG*07A] O. Aichholzer, J. García, D. Orden, and P.A. Ramos, New results on lower bounds for the number of $(\leq k)$-facets. Electronic Notes in Discrete Mathematics, Vol 29C, 189-193 (2007).
[AG*07B] O. Aichholzer, J. García, D. Orden, and P. Ramos, New lower bounds for the number of $(\leq k)$-edges and the rectilinear crossing number of K_{n}. Discrete Comput. Geom. 38 (2007), 1-14.
[BS06] J. Balogh and G. Salazar, k-sets, convex quadrilaterals, and the rectilinear crossing number of K_{n}, Discrete Comput. Geom. 35 (2006), 671-690.
[BR02] A. Beygelzimer and S. Radziszowski, On halving line arrangements. Discrete Mathematics 257 (2002), 267-283.
[BMP06] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, SpringerVerlag, New York, 2005.
[Dey98] T. K. Dey, Improved bounds for planar k-sets and related problems. Discrete Comput. Geom. 19 (1998), 373-382.
[EL*73] P. Erdős, L. Lóvasz, A. Simmons, E. G. Straus, Dissection graphs of planar point sets. In: A survey of Combinatorial Theory, J. N. Srivastava et al., eds., North-Holland 1973, 139-149.
[EG73] P. Erdős and R. K. Guy, Crossing number problems, Amer. Math. Monthly 80 (1973), 52-58.
[GP80] J. E. Goodman, R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A 29 (1980), 220-235.
[Guy71] R. K. Guy, Latest results on crossing numbers, In: Recent Trends in Graph Theory, Springer, N.Y., (1971), 143-156.
[Lov71] L. Lóvasz, On the number of halving lines, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 14 (1971) 107-108.
$\left[L V^{*} 04\right] \quad$ L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl, Convex quadrilaterals and k-sets. In: Pach, J. editor: Towards a theory of geometric graphs, Contemporary Mathematics Series, 342, AMS 2004, 139-148.
[PR*06] J. Pach, R. Radoičić, G. Tardos, G. Tóth, Improving the Crossing Lemma by finding more crossings in sparse graphs, Discrete Comput. Geom. 36 (2006), 527-552.
[TT02] H. Tamaki, T. Tokuyama, A characterization of planar graphs by pseudo-line arrangements. Eighth Annual International Symposium on Algorithms and Computation (Singapore, 1997), Algorithmica 35 (2003), 269-285.
[Tó01] G. Tóth, Point Sets with many k-sets, Discrete Comput. Geom. 26 (2001), 187-194.
[We96] E. Welzl, More on k-sets of finite sets in the plane, Discrete Comput. Geom. 1 (1986), 95-100.

[^0]: *Supported by CONACYT Grant 106432

