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tLet P be a set of points in general position in the plane. Join all pairs of pointsin P with straight line segments. The number of segment-
rossings in su
h a drawing,denoted by cr(P ), is the re
tilinear 
rossing number of P . A halving line of P isa line passing though two points of P that divides the rest of the points of P in(almost) half. The number of halving lines of P is denoted by h(P ). Similarly, a k-edge, 0 ≤ k ≤ n/2 − 1, is a line passing through two points of P and leaving exa
tly kpoints of P on one side. The number of (≤ k)-edges of P is denoted by E≤k(P ). Let
r(n), h(n), and E≤k(n) denote the minimum of cr(P ), the maximum of h(P ), and theminimum of E≤k(P ), respe
tively, over all sets P of n points in general position in theplane. We show that the previously best known lower bound on E≤k(n) is tight for

k < ⌈(4n − 2)/9⌉ and improve it for all k ≥ ⌈(4n − 2)/9⌉. This in turn improves thelower bound on 
r(n) from 0.37968
(n

4

)
+Θ(n3) to 277

729

(n
4

)
+Θ(n3) ≥ 0.37997

(n
4

)
+Θ(n3).We also give the exa
t values of 
r(n) and h(n) for all n ≤ 27. Exa
t values were knownonly for n ≤ 18 and odd n ≤ 21 for the 
rossing number, and for n ≤ 14 and odd n ≤ 21for halving lines.2010 AMS Subje
t Classi�
ation: Primary 52C30, Se
ondary 52C10, 52C45, 05C62,68R10, 60D05, and 52A22.Keywords: k-edges, k-sets, Halving lines, Re
tilinear 
rossing numbers, Allowablesequen
es, Geometri
 drawings.1 Introdu
tionWe 
onsider three important well-known problems in Combinatorial Geometry: the re
tilin-ear 
rossing number, the maximum number of halving lines, and the minimum number of
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(≤ k)-edges of 
omplete geometri
 graphs on n verti
es. All point sets in this paper are inthe plane, �nite, and in general position.Let P be a �nite set of points in general position in the plane. The re
tilinear 
rossingnumber of P , denoted by cr(P ), is the number of 
rossings obtained when all straight linesegments joining pairs of points in P are drawn. (A 
rossing is the interse
tion of twosegments in their interior.) The re
tilinear 
rossing number of n is the minimum numberof 
rossings determined by any set of n points, i.e., 
r(n) = min{cr(P ) : |P | = n}. Theproblem of determining 
r(n) for ea
h n was posed by Erd®s and Guy in the early seventies[EG73℄,[Guy71℄. This is equivalent to �nding the minimum number of 
onvex quadrilateralsdetermined by n points, as every pair of 
rossing segments bije
tively 
orresponds to thediagonals of a 
onvex quadrilateral.A halving line of P is a line passing through two points of P and dividing the rest inalmost half. So when P has n points and n is even, a halving line of P leaves n/2−1 points of
P on ea
h side; whereas when n is odd, a halving line leaves (n−3)/2 points on one side and
(n − 1)/2 on the other. The number of halving lines of P is denoted by h(P ). Generalizinga halving line, a k-edge of P , with 0 ≤ k ≤ n/2−1, is a line through two points of P leavingexa
tly k points on one side. The number of k-edges of P is denoted by Ek(P ). Sin
e ahalving line is a (⌊n/2⌋ − 1)-edge, then E⌊n/2⌋−1(P ) = h(P ). Similarly, for 0 ≤ k ≤ n/2− 1,
E≤k(P ) and E≥k(P ) denote the number of (≤ k)-edges and (≥ k)-edges of P , respe
tively.That is, E≤k(P ) =

∑k
j=0 Ej(P ) and E≥k(P ) =

∑⌊n/2⌋−1
j=k Ej(P ) =

(
n
2

)
−
∑k−1

j=0 Ej(P ). Let
h(n) and E≤k(n) be the maximum of h(P ) and the minimum of E≤k(P ), respe
tively, overall sets P of n points. A 
on
ept 
losely related to k-edges is that of k-sets; a k-set of Pis a set Q that 
an be separated from P \ Q with a straight line. Rotating this separatingline 
lo
kwise until it hits a point on ea
h side yields a (k − 1)-edge, and it turns out thatthis asso
iation is bije
tive. Thus the number of k-sets of P is equal to the number of
(k − 1)-edges of P . As a 
onsequen
e, any of the results obtained here for k-edges 
an bedire
tly translated into equivalent results for (k + 1)-sets. Erd®s, Lovász, Simmons, andStraus [EL*73℄, [Lov71℄ �rst introdu
ed the 
on
epts of halving lines, k-sets, and k-edges.Sin
e the introdu
tion of these parameters ba
k in the early 1970s, the determination(or estimation) of 
r(n), h(n), and E≤k(n) have be
ome 
lassi
al problems in 
ombinatorialgeometry. General bounds are known but exa
t values have only been found for small n.The best known general bounds for the halving lines are Ω(nec

√
log n) ≤ h(n) ≤ O(n4/3), dueto Tóth [Tó01℄ and Dey [Dey98℄, respe
tively. The previously best asymptoti
 bounds forthe 
rossing number are

0.3792

(
n

4

)
+ Θ(n3) ≤ 
r (n) ≤ 0.380488

(
n

4

)
+ Θ(n3). (1)The lower bound is due to Ai
hholzer et al. [AG*07B℄ and it follows from Inequality (2)as we indi
ate below. The upper bound follows from a re
ursive 
onstru
tion devised byÁbrego and Fernández-Mer
hant [AF07℄ using the a suitable initial 
onstru
tion found bythe authors in [AC*10℄. The best lower bound for the minimum number of (≤ k)-edges is

E≤k (n) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − ⌊n/3⌋

2

)
− max {0, (k + 1 − ⌊n/3⌋)(n − 3⌊n/3⌋)} , (2)2



due to Ai
hholzer et al. [AG*07B℄. Further referen
es and related problems 
an be found in[BMP06℄.The last two problems are naturally related, and their 
onne
tion to the �rst problem isshown by the following identity, independently proved by Lóvasz et al. [LV*04℄ and Ábregoand Fernández-Mer
hant [AF05℄. For any set P of n points,
cr(P ) = 3

(
n

4

)
−

⌊n/2⌋−1∑

k=0

k (n − k − 2)Ek (P ) , or equivalently
cr(P ) =

⌊n/2⌋−2∑

k=0

(n − 2k − 3)E≤k (P ) − 3

4

(
n

3

)
+
(
1 + (−1)n+1) 1

8

(
n

2

)
. (3)Hen
e, lower bounds on E≤k(n) give lower bounds on 
r(n).The majority of our results (all non-
onstru
tive parts) are proved in the more general
ontext of generalized 
on�gurations of points, where the points in P are joined by pseu-dosegments rather than straight line segments. Goodman and Polla
k [GP80℄ established a
orresponden
e between the set of generalized 
on�gurations of points and what they 
alledallowable sequen
es. In Se
tion 2, we de�ne allowable sequen
es, introdu
e the ne
essary no-tation to state the three problems above in the 
ontext of allowable sequen
es, and in
ludea summary of results for these problems in both, the geometri
 and the allowable sequen
e
ontext.

n 14 16 18 20 22 23 24 25 26 27

h(n) = h̃(n) 22∗ 27 33 38 44 75 51 85 57 96
r(n) = 
̃r(n) 324∗ 603∗ 1029∗ 1657 2528 3077 3699 4430 5250 6180Table 1: New exa
t values. The ∗ values were only known in the re
tilinear 
ase.The main result in this paper is Theorem 1 in Se
tion 3, whi
h bounds E≥k(P ) by afun
tion of Ek−1(P ). This result has the following important 
onsequen
es.1. In Se
tion 4, we �nd exa
t values of 
r(n) and h(n) for n ≤ 27. Exa
t values were onlyknown for n ≤ 18 and odd n ≤ 21 in the 
ase of 
r(n), and for n ≤ 14 and odd n ≤ 21in the 
ase of h(n). (See Table 1.) We also show that the same values are a
hievedfor the more general 
ase of the pseudolinear 
rossing number 
̃r(n) and the maximumnumber of halving pseudolines h̃(n). (See Se
tion 2 for the de�nitions.)2. Theorem 2 in Se
tion 5 improves the lower bound in Inequality (2) for k ≥ ⌈(4n − 11)/9⌉.It gives a re
ursive lower bound whose asymptoti
 value is given by
E≤k(n) ≥

(
n

2

)
− 1

9

√
1 − 2k + 2

n
(5n2 + 19n − 31),as shown in Corollary 3. 3



3. Theorem 3 in Se
tion 6 improves the lower bound in Inequality (1) to
r(n) ≥ 277

729

(
n

4

)
+ Θ

(
n3
)
≥ 0.37997

(
n

4

)
+ Θ

(
n3
)
.In Se
tion 7, and to 
omplement item 2 above, we show that Inequality (2) is tight for

k < ⌈(4n − 11)/9⌉. More pre
isely, we 
onstru
t sets of points simultaneously a
hievingequality in Inequality (2) for all k < ⌈(4n − 11)/9⌉.Several results of this paper appeared (without proofs) in the 
onferen
e pro
eedings ofLAGOS'07 [AF*08A, AF*08B℄.2 Allowable sequen
es and generalized 
on�gurations ofpointsAny set P of n points in the plane 
an be en
oded by a sequen
e of permutations of theset [n] = {1, 2, ..., n} as follows. Consider a dire
ted line l. Orthogonally proje
t P onto
l and label the points of P from 1 to n a

ording to their order in l. In this order, theidentity permutation (1, 2, ..., n), is the �rst permutation of our sequen
e. Note that l 
anbe 
hosen so that none of the proje
tions overlap. Continuously rotate l 
ounter
lo
kwise.The order of the proje
tions of P onto l 
hanges every time two proje
tions overlap, thatis, every time a line through two points of P be
omes perpendi
ular to l. Ea
h time thishappens, a new permutation is re
orded as part of our sequen
e. After a 180◦-rotation of
l we obtain a sequen
e of (n

2

)
+ 1 permutations su
h that the �rst permutation (1, 2, ..., n)is the identity, the last permutation (n, n − 1, ..., 2, 1) is the reverse of the identity, any two
onse
utive permutations di�er by a transposition of adja
ent elements, and any pair ofpoints (labels 1, ..., n) transpose exa
tly on
e. This sequen
e is known as a halfperiod ofthe 
ir
ular sequen
e asso
iated to P . The 
ir
ular sequen
e of P is then a doubly in�nitesequen
e of permutations obtained by rotating l inde�nitely in both dire
tions.As an abstra
t generalization of a 
ir
ular sequen
e, a simple allowable sequen
e on [n]is a doubly in�nite sequen
e Π = (..., π−1, π0, π1, ...) of permutations of [n], su
h that anytwo 
onse
utive permutations πi and πi+1 di�er by a transposition τ(πi) of neighboring el-ements, and su
h that for every j, πj is the reverse permutation of πj+(n

2)
. A halfperiodof Π is a sequen
e of (n

2

)
+ 1 
onse
utive permutations of [n]. As before, any halfperiodof Π uniquely determines Π and all properties for halfperiods mentioned above still hold.Moreover, the halfperiod π = (πi, πi+1, ..., πi+(n

2)
) is 
ompletely determined by the transposi-tions τ(πi), τ(πi+1), . . . , τ(πi+(n

2)−1). Note that the sequen
e (. . . , τ(π−1), τ(π0), τ(π1) . . .) is
(

n
2

)-periodi
. Thus we indistin
tly refer to π as a sequen
e of permutations or as a sequen
eof (suitable) transpositions. Allowable sequen
es that are the 
ir
ular sequen
e of a set ofpoints are 
alled stret
hable.A pseudoline is a 
urve in P
2, the proje
tive plane, whose removal does not dis
onne
t

P
2. Alternatively, a pseudoline is a simple 
urve in the plane that extends in�nitely in bothdire
tions. A simple generalized 
on�guration of points 
onsists of a set of (n

2

) pseudolinesand n points in the plane su
h that ea
h pseudoline passes through exa
tly two points, andany two pseudolines interse
t exa
tly on
e. 4



Cir
ular and allowable sequen
es were �rst introdu
ed by Goodman and Polla
k [GP80℄.They proved that not every allowable sequen
e is stret
hable and established a 
orrespon-den
e between allowable sequen
es and generalized 
on�gurations of points.The three problems at hand 
an be extended to generalized 
on�gurations of points,or equivalently, to simple allowable sequen
es. In this new setting, a transposition of twopoints in positions k and k + 1, or n − k and n − k + 1 in a simple allowable sequen
e
Π 
orresponds to a (k − 1)-edge. We say that su
h transposition is a k-transposition, orrespe
tively, a (n − k)-transposition, and if 1 ≤ k ≤ n/2 all these transpositions are 
alled
k-
riti
al. Therefore Ek(Π), E≤k(Π), and E≥k(Π) 
orrespond to the number of (k + 1)-
riti
al, (≤ k + 1)-
riti
al, and (≥ k + 1)-
riti
al transpositions in any halfperiod of Π. Ahalving line of Π is a ⌊n/2⌋-transposition, and thus h(Π) = E⌊n/2⌋−1(Π). Identity (3), whi
hrelates the number of k-edges to the 
rossing number, was originally proved for allowablesequen
es. In this setting, a pseudosegment is the segment of a pseudoline joining two pointsin a generalized 
on�guration of points, and cr(Π) is the number of pseudosegment-
rossingsin the generalized 
on�guration of points that 
orresponds to the allowable sequen
e Π. Allthese de�nitions and fun
tions 
oin
ide with their original 
ounterparts for P when Π is the
ir
ular sequen
e of P . However, when 
r(n), h(n), and E≤k(n) are minimized or maximizedover all allowable sequen
es on [n] rather than over all sets of n points, the 
orrespondingquantities may 
hange and therefore we use the notation 
̃r(n), h̃(n), and Ẽ≤k(n). Be
ause
n-point sets 
orrespond to the stret
hable simple allowable sequen
es on [n], it follows that
̃r(n) ≤ 
r(n), h̃(n) ≥ h(n), and Ẽ≤k(n) ≤ E≤k(n). Tamaki and Tokuyama [TT02℄ extendedDey's upper bound for allowable sequen
es to h̃(n) = O(n4/3) . Ábrego et al. [AB*06℄ provedthat the lower bound for E≤k(n) in Inequality (2) is also a lower bound on Ẽ≤k(n). Theyused this bound to extend (and even slightly improve) the 
orresponding lower bound on
r(n) to 
̃r(n).Our main result, Theorem 1 in Se
tion 3, 
on
entrates on the 
entral behavior of allowablesequen
es. We bound E≥k(Π) by a fun
tion of Ek−1(Π). As a 
onsequen
e, we improve (ormat
h) the upper bounds on h̃(n) for n ≤ 27, and thus the lower bounds on 
̃r(n) in thesame range. This is enough to mat
h the 
orresponding best known geometri
 
onstru
tions[A℄ for h(n) and 
r(n). This shows that for all n ≤ 27, h̃(n) = h(n) and 
̃r(n) = 
r(n) whoseexa
t values are summarized in Table 1.3 The Central TheoremIn this se
tion, we present our main theorem. Given a halfperiod π = (π0, π1, π2, ..., π(n

2)
)of an allowable sequen
e and an integer 1 ≤ k < n/2, the k-
enter of the permutation πj ,denoted by C(k, πj), is the set of elements in the middle n − 2k positions of πj . Let L0, C0,and R0 be the set of elements in the �rst k, middle n−2k, and last k positions, respe
tively,of the permutation π0. De�ne

s (k, π) = min

{
|C0 ∩ C (k, πi)| : 0 ≤ i ≤

(
n

2

)}
.Note that s(k, π) ≤ n− 2k − 1 be
ause at least one of the n − 2k elements of C0 must leavethe k-
enter. 5



Theorem 1. Let Π be an allowable sequen
e on [n] and π any halfperiod of Π. If s = s(k, π),then
E≥k (Π) ≤ (n − 2k − 1) Ek−1 (Π) − s

2
(Ek−1 (Π) − n + 1) .Proof. For presentation purposes, we divide this proof into subse
tions.Let Π be an allowable sequen
e on [n] and π = (π0, π1, π2, ..., π(n

2)
) any halfperiod of Π,

s = s(k, π), and K = Ek−1(π).Suppose that πi1 , πi2 , ..., πiK is the subsequen
e of permutations in π obtained when the
k-
riti
al transpositions τ(πi1), τ(πi2), ..., τ(πiK ) of π o

ur (in this order). For simpli
ity wewrite τj instead of τ(πij ). These permutations partition π into K + 1 parts B0(π), B1(π),
B2(π), ..., BK(π) 
alled blo
ks, where Bj(π) = {πl : ij ≤ l < ij+1} for 1 ≤ j ≤ K − 1,
B0(π) = {πl : 0 ≤ l < i1}, and BK(π) = {πl : iK ≤ l ≤

(
n
2

)
}. Denote by pj the pointthat enters the k-
enter of πij with τj . We say that a (≥ k + 1)-
riti
al transposition in

Bj(π), 1 ≤ j ≤ K, is an essential transposition if it involves pj or if it o

urs before τ1, anda nonessential transposition otherwise.

Figure 1: Classi�
ation of essential k-
riti
al transpositions.Rearrangement of πWe 
laim that, to bound E≥k(Π), we 
an assume that all (≥ k + 1)-
riti
al transpositionsof π are essential transpositions. To show this, in 
ase π has nonessential transpositions,we modify π so that the obtained halfperiod λ satis�es Ej(π) = Ej(λ) for all j < k, andthus E≥k(π) = E≥k(λ); and either λ has only essential transpositions or the last nonessentialtransposition of λ o

urs in an earlier permutation than the last nonessential transposition of
π. Applying this pro
edure enough times, we end with a halfperiod λ all of whose (≥ k +1)-
riti
al transpositions are essential and su
h that Ej(π) = Ej(λ) for all j ≤ k, and thus
E≥k(π) = E≥k(λ). 6



This is how λ is 
onstru
ted. Suppose Bj(π) is the last blo
k of π that 
ontains nonessen-tial transpositions. De�ne λ as the halfperiod that 
oin
ides with π everywhere ex
ept forthe (≥ k + 1)-transpositions in Bj(π). All nonessential transpositions in Bj(π) take pla
eright before τj in λ, and right after τj o

urs, all essential transpositions in Bj(π) o

ur 
on-se
utively in Bj(λ) but probably in a di�erent order than in Bj(π), so that the �nal positionof pj is the same in Bj(π) and Bj(λ). Note that in fa
t the last permutations of the blo
ks
Bj(π) and Bj(λ) are equal.Classi�
ation of k-
riti
al transpositionsFrom now on, we assume that π only has essential transpositions. We 
lassify the k-
riti
altranspositions as follows (see Figure 1): τj is an arriving transposition if pj ∈ C0. An arrivingtransposition is m-augmenting if it in
rements the number of elements in C0 in the k-
enterfrom m − 1 to m, and it is neutral otherwise. We say that τj is a returning transposition ifit is a k-transposition and pj ∈ R0, or if it is an (n − k)-transposition and pj ∈ L0. That is,
pi is �getting ba
k� to its starting region. Similarly, τj is a departing transposition if it is a
k-transposition and pj ∈ L0, or if it is an (n − k)-transposition and pj ∈ R0. That is, pj is�getting away� from its original region. We say that a departing transposition τj is a 
uttingtransposition, if τj is a k-transposition and the next k-
riti
al transposition that involves
pj is an (n − k)-transposition; or if τi is an (n − k)-transposition and the next k-
riti
altransposition that involves pj is a k-transposition. All other departing transpositions are
alled stalling.Finally, we de�ne the weight of a k-
riti
al transposition τj , denoted by w(τj), as thenumber of (≥ k + 1)-
riti
al transpositions in Bj(π) that are not between two elements of
C0. Transpositions with weight at most n−2k−1−s are 
alled light. All other transpositionsare heavy.Let A, N, R, C, Slight, and Sheavy be the number of augmenting, neutral, returning, 
utting,light stalling, and heavy stalling transpositions, respe
tively. Then K = A + N + R + C +
Slight + Sheavy.Bounding E≥k(Π)Observe that the k-
enter of all permutations in B0(π) remains un
hanged. It follows thatall (≥ k + 1)-
riti
al transpositions of B0(π) are between elements of C0. Thus ∑K

j=1 w(τj)
ounts all (≥ k + 1)-
riti
al transpositions ex
ept those between two elements of C0. Thereare (n−2k
2

) transpositions between elements of C0, but ea
h neutral transposition 
orrespondsto a k-
riti
al (not (≥ k + 1)-
riti
al) transposition between two elements of C0. Thus
E≥k(Π) ≤

(
n − 2k

2

)
− N +

K∑

j=1

w(τj). (4)Bounds for the weight of a k-
riti
al transpositionWe bound the weight of a transposition depending on its 
lass (departing, returning, et
.),as well as the number of transpositions within a 
lass, if ne
essary. For j ≥ 1 all (≥ k + 1)-
riti
al transpositions in Bj(π) involve pj and thus w(τj) ≤ n − 2k − 1. However, sin
e the7



weight of τj does not 
ount transpositions between two elements of C0, and there are alwaysat least s elements of C0 in the k-
enter, then w(τj) ≤ n − 2k − s whenever τj is arriving(be
ause pj ∈ C0). Moreover, if τj is m-augmenting, then w(τj) ≤ n − 2k − m. If τj is areturning transposition, then pj has already been transposed with all the elements of C0 thatare in the k-
enter of πij . Sin
e there are at least s su
h elements, then w(τj) ≤ n−2k−1−s.Summarizing,
w (τj) ≤





n − 2k − 1 for all τj ,
n − 2k − s, if τj is neutral,
n − 2k − m, if τj is m-augmenting,
n − 2k − 1 − s, if τj is light stalling or returning. (5)Bounding CWe bound the number of 
utting transpositions. Sin
e the �rst (last) k elements of π0 arethe last (�rst) elements of π(n

2)
, then the 2k elements not in C0 must parti
ipate in at leastone 
utting transposition. That is, C ≥ 2k. Note that, if p /∈ C0 parti
ipates in c ≥ 2
utting transpositions, then there must be at least c − 1 returning transpositions of p. Inother words, there must be at least C−2k ≥ 0 returning transpositions. There are C 
uttingtranspositions and at least n − 2k − s arriving transpositions (at least one m-augmentingarriving transposition for ea
h s + 1 ≤ m ≤ n − 2k). Then K − C − (n − 2k − s) 
ountsall other k-
riti
al transpositions, in
luding in parti
ular all returning transpositions. Thus

K − C − (n − 2k − s) ≥ C − 2k, that is,
2C ≤ 4k + K − n + s. (6)Augmenting and heavy stalling transpositionsWe keep tra
k of the augmenting and heavy stalling transpositions together. To do this,we 
onsider the bipartite graph G whose verti
es are the augmenting and the heavy stallingtranspositions. The augmenting transposition τl is adja
ent in G to the heavy stalling trans-position τj if j < l, pj is in the k-
enter of all permutations in blo
ks Bj to Bl, one trans-position from τj and τl is a k-transposition and the other is an (n− k)-transposition, and pldoes not swap with pj in Bl(π). We bound the degree of a vertex in G.Let τj be a heavy stalling transposition. If pj ∈ L0 (the 
ase pj ∈ R0 is equivalent),then τj is a k-transposition. Be
ause pj moves to the right exa
tly w(τj) > n − 2k − 1 − spositions within Bj(π), it follows that the k-
enter right before τj+1 o

urs (i.e., the k-
enterof πij+1−1) has at most n − 2k − 1 − w(τj) < s points of C0 to the right of pj. Also, sin
e τjis stalling, the next time that pj leaves the k-
enter is by a k-transposition τj+a. This meansthat the k-
enter right before τj+a o

urs (i.e., the k-
enter of πij+a−1) has at least s points of

C0 to the right of pj . Thus, between τj and τj+a there must be at least s−(n−2k−1−w(τj))arriving (n−k)-transpositions τl su
h that pl remains to the right of pj in Bl(π), i.e., pl doesnot swap with pj in Bl(π). These transpositions are adja
ent to τj and thus the degree of τjin G is at least w(τj) − (n − 2k − 1 − s). Hen
e,
|E(G)| ≥

∑

τj heavy stalling (w (τj) − (n − 2k − 1 − s)) ,8



where E(G) is the set of edges of G.Let τl be an m-augmenting transposition. Sin
e pl ∈ C0, and weights do not 
ounttranspositions between two elements of C0, then at most n−2k−m−w(τl) points in L0∪R0do not swap with pl in Bl(π). Only these points are possible pjs su
h that τj is adja
ent to
τl. Thus the degree of τl in G is at most n − 2k − m − w(τl) ≤ n − 2k − 1 − s − w(τl).Note that there is at least one m-augmenting transposition for ea
h s + 1 ≤ m ≤ n− 2k.This is be
ause the k-
enter of at least one permutation of π 
ontains exa
tly s elementsof C0 (by de�nition of s), and the k-
enter of π(n

2)

ontains exa
tly n − 2k elements of C0(sin
e it 
oin
ides with C0). Then the number of elements in the k-
enter must be eventuallyin
remented from s to n−2k. For ea
h s+1 ≤ m ≤ n−2k, we use n−2k−m−w(τl) to boundthe degree of one m-augmenting transposition. For all other augmenting transpositions weuse the bound n − 2k − 1 − s − w(τl). Hen
e

|E (G)| ≤
∑

τj augmenting ((n − 2k − 1 − s) − w (τj)) −
n−2k∑

m=s+1

(m − s − 1)

=
∑

τj augmenting ((n − 2k − 1 − s) − w (τj)) −
(

n − 2k − s

2

)
.The previous two inequalities imply that

∑

τj augmenting w (τj)+
∑

τj heavy stallingw (τj) ≤ (n − 2k − 1 − s) (A + Sheavy)−(n − 2k − s

2

)
. (7)Final 
al
ulationsWe use inequalities (5) and (7) to bound ∑K

i=1 w(τi) − N .
K∑

j=1

w (τj) − N =
∑

τj 
utting w (τj) +
∑

τj augmenting w (τj) +
∑

τj heavy stallingw (τj)

+
∑

τj light stalling w (τj) +
∑

τj returning w (τj) +
∑

τj neutral w (τj) − N

≤ (n − 2k − 1)C + (n − 2k − 1 − s) (A + Sheavy) − (n − 2k − s

2

)

+ (n − 2k − 1 − s) (Slight + R) + (n − 2k − s) N − N

≤ sC + (n − 2k − 1 − s) K −
(

n − 2k − s

2

)
.By Inequality (4),

E≥k (Π) ≤
(

n − 2k

2

)
−
(

n − 2k − s

2

)
+ sC + (n − 2k − 1 − s) K

= (n − 2k − 1) K − s

2
(2K − 2n + 4k + 1 + s − 2C) .9



Finally, by Inequality (6),
E≥k (Π) ≤ (n − 2k − 1)K − s

2
(K − n + 1) .4 New exa
t values for n ≤ 27In this se
tion, we give exa
t values of h(n) and h̃(n) for n ≤ 27. We start by stating arelaxed version of Theorem 1, whi
h we use in the spe
ial 
ase when k = ⌊n/2⌋ − 1.Corollary 1. Let Π be a simple allowable sequen
e on [n] and π any halfperiod of Π. If

s = s(k, π), then
E≥k (Π) ≤ (n − 2k − 1) Ek−1 (Π) +

(
s

2

)
≤ (n − 2k − 1) Ek−1 (Π) +

(
n − 2k − 1

2

)
.Proof. There are at least n−2k−s elements of C0 that leave the k-
enter, so there are at least

n−2k−s arriving transpositions. In addition, there are at least 2k departing transpositions,one per element not in C0. It follows that Ek−1(Π) ≥ 2k + (n − 2k − s) = n − s. The �rstinequality now follows dire
tly from Theorem 1. Finally, s ≤ n−2k−1 for all halfperiods of
Π whi
h yields the se
ond inequality. Another 
onsequen
e is that Ek−1(Π) ≥ n−s ≥ 2k+1,whi
h is in fa
t the minimum possible value of Ek−1 (
f. [LV*04℄).The previous 
orollary implies the following result for halving lines.Corollary 2. If Π is a simple allowable sequen
e on [n] and n ≥ 8, then

h (Π) ≤
{ ⌊

1
24

n(n + 30) − 3
⌋ if n is even,

⌊
1
18

(n − 3)(n + 45) + 1
9

⌋ if n is odd.Proof. If k = ⌊n/2⌋ − 1 on Corollary 1, then E≥⌊n/2⌋−1(Π) = h(Π) and thus h(Π) ≤ (n −
2⌊n/2⌋ + 1)E≥⌊n/2⌋−2(Π) +

(
n−2⌊n/2⌋+1

2

), that is,
h (Π) ≤

{
En/2−2 (Π) if n is even,
2E(n−1)/2−2 (Π) + 1 if n is odd.Moreover, be
ause E≤⌊n/2⌋−3(Π) + E⌊n/2⌋−2(Π) + h(Π) =

(
n
2

), it follows that
h (Π) ≤

{ ⌊
1
2

(
n
2

)
− 1

2
E≤n/2−3 (Π)

⌋ if n is even,
⌊

2
3

(
n
2

)
− 2

3
E≤(n−1)/2−3 (Π) + 1

3

⌋ if n is odd.The bound in Inequality (2) is also valid in the more general 
ontext of allowable sequen
es[AB*06℄. Using this bound for E≤k(Π) when k = ⌊n/2⌋−3, and 
onsidering all residue 
lassesof n modulo 18 with n ≥ 8, it follows that ⌊1
2

(
n
2

)
− 1

2
E≤n/2−3(Π)⌋ ≤ ⌊n(n+30)/24−3⌋ when

n is even, and ⌊2
3

(
n
2

)
− 2

3
E≤(n−1)/2−3(Π)+ 1

3
⌋ ≤ ⌊(n−3)(n+45)/18+1/9⌋ when n is odd.10



Be
ause h(n) ≤ cn4/3, the inequality in Corollary 2 is only useful for small values of n.However, even with the 
urrent best 
onstant c = (31287/8192)1/3 < 1.5721 [AA*98, PR*06℄,our bound is better when n is even in the range 8 ≤ n ≤ 184.The exa
t values of h(n) were previously known only for even n ≤ 14 or odd n ≤ 21[AA*98, BR02℄. The exa
t values of 
r(n) were previously known only for even n ≤ 18 orodd n ≤ 21 [AG*07B℄. The values in Table 1 
orrespond to the upper bounds obtained byCorollary 2 when n is even, 14 ≤ n ≤ 26 or n is odd, 23 ≤ n ≤ 27. We also obtained newlower bounds for 
̃r(n) in this range of values of n. The identity E≤⌊n/2⌋−2(Π) =
(

n
2

)
− h(Π)together with Corollary 2 give a new lower bound for E≤⌊n/2⌋−2(Π). Using this bound for

k = ⌊n/2⌋ − 2 and the bound in Inequality (2) for k ≤ ⌊n/2⌋ − 3 in Identity (3) yieldsthe values in Table 1 for 
̃r(n). For example, if n = 24 then E≤10(Π) =
(
24
2

)
− h(24) ≥

276 − 51 = 225 and by Inequality (2), the ve
tor (E≤0(Π), E≤1(Π), E≤2(Π), . . . , E≤9(Π))is bounded below entry-wise by (3, 9, 18, 30, 45, 63, 84, 108, 138, 174), so Identity (3) impliesthat 
̃r(24) =
∑10

k=0(21 − 2k)E≤k(Π) − 3
4

(
24
3

)
≥ 3699.All the bounds shown in Table 1 are attained by Ai
hholzer's et al. 
onstru
tions [A℄,and thus Table 1 a
tually shows the exa
t values of h̃(n), h(n), 
̃r(n), and 
r(n) for n in thespe
i�ed range.For 28 ≤ n ≤ 33, Table 2 shows the new redu
ed gap between the lower and upperbounds of h(n) and h̃(n).

n 28 29 30 31 32 33

h (n) ≥ 63 105 69 115 73 126

h̃ (n) ≤ 64 107 72 118 79 130Table 2: Updated bounds for 28 ≤ n ≤ 335 New lower bound for the number of (≤ k)-edgesIn this se
tion, we obtain a new lower bound for the number of ≤k-edges. Our emphasis ison �nding the best possible asymptoti
 result as well as the best bounds that apply to thesmall values of n for whi
h the exa
t value is unknown. Theorem 2 provides the exa
t resultthat 
an be applied to small values of n, whereas Corollary 3 is suitable enough to give thebest asymptoti
 behavior.Let m = ⌈(4n − 11)/9⌉. For ea
h n, de�ne the following re
ursive sequen
e.
um−1 = 3

(
m + 1

2

)
+ 3

(
m + 1 − ⌊n/3⌋

2

)
− 3

(
m −

⌊n

3

⌋)(n

3
−
⌊n

3

⌋) and
uk =

⌈
1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)⌉ for k ≥ m.The following is the new lower bound on E≤k(n). It follows from Theorem 1.11



Theorem 2. For any n and k su
h that m − 1 ≤ k ≤ (n − 3)/2,
E≤k(n) ≥ uk.Proof. We need the following two lemmas to estimate the growth of the sequen
e uk withrespe
t to n and k. For presentation purposes, we defer their proofs to the end of the se
tion.Lemma 1. For any k su
h that m − 1 ≤ k ≤ (n − 5)/2,

3

√
1 − 2k + 9/2

n
<

(
n
2

)
− uk(

n
2

)
− um−1

≤ 3

√
1 − 2k + 2

n
. (8)Lemma 2. For any k su
h that m ≤ k ≤ (n − 5)/2,

3

√
1 − 2k + 9/2

n

((
n

2

)
− um−1

)
≥ (n − 1) (n − 2k − 3) .We prove the stronger statement Ẽ≤k(n) ≥ uk. Let Π be an allowable sequen
e on [n]and π any of its halfperiods. We pro
eed by indu
tion on k. If k = m−1 the result holds byInequality (2), proved in the more general 
ontext of allowable sequen
es [AB*06℄. Assumethat k ≥ m and E≤k−1(Π) ≥ uk−1. Let s = s(k + 1, π); by Theorem 1,

E≥k+1 (Π) ≤ (n − 2k − 3)Ek (Π) − s

2
(Ek (Π) − (n − 1)) .If s = 0 or Ek(Π) ≥ n − 1, then E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π). Thus

(
n

2

)
− E≤k(Π) ≤ (n − 2k − 3) (E≤k(Π) − E≤k−1(Π)) ,and by indu
tion

E≤k(Π) ≥ 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)E≤k−1 (Π)

)

≥ 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)
,whi
h implies that E≤k(Π) ≥ uk by de�nition of uk. Now assume s > 0 and Ek(Π) < n − 1.Be
ause Ek(Π) ≥ 2k + 3 (see the proof of Corollary 1), it follows that k ≤ (n − 5)/2. ByTheorem 1,

E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π) − s

2
(Ek(Π) − (n − 1))

= (n − 2k − 3 − s

2
)Ek(Π) +

s

2
(n − 1) .Re
all that s = s(k + 1, π) ≤ n − 2k − 3. Be
ause Ek(Π) < n − 1, it follows that

E≥k+1(Π) ≤ (n − 2k − 3 − s

2
)(n − 1) +

s

2
(n − 1)

= (n − 1) (n − 2k − 3) .12



Therefore
E≤k(Π) =

(
n

2

)
− E≥k+1(Π) ≥

(
n

2

)
− (n − 1) (n − 2k − 3) .By Lemma 2,

E≤k(Π) ≥
(

n

2

)
− 3

√
1 − 2k + 9/2

n

((
n

2

)
− um−1

)
,and by Lemma 1, E≤k(Π) ≥ uk for all allowable sequen
es Π on [n]. Therefore E≤k(n) ≥

Ẽ≤k(n) ≥ uk.Corollary 3. For any n and k su
h that m − 1 ≤ k ≤ (n − 2)/2,
E≤k(n) ≥

(
n

2

)
− 1

9

√
1 − 2k + 2

n

(
5n2 + 19n − 31

)
.Proof. Let Π be an allowable sequen
e on [n]. If k = ⌊n/2⌋ − 1, then E≤⌊n/2⌋−1(Π) =

(
n
2

).For k < ⌊n/2⌋ − 1, it follows that n ≥ 3 and from Theorem 2 and Lemma 1,
E≤k(Π) ≥ uk ≥

(
n

2

)
− 3

√
1 − 2k + 2

n

((
n

2

)
− um−1

)
.Considering the possible residues of n modulo 9, it 
an be veri�ed that for n ≥ 3,

um−1 ≥
17

54
n2 − 65

54
n +

31

27
(equality if n ≡ 3 (mod 9)).Therefore E≤k(n) ≥ Ẽ≤k(n) ≥

(
n
2

)
− 1

9

√
1 − 2k+2

n
(5n2 + 19n − 31).Proofs of the LemmasProof of Lemma 1. The integer range [m − 1, (n − 5)/2] is empty for n ≤ 5. Assume n ≥ 6and pro
eed by indu
tion on k. If k = m−1, then 3
√

1 − (2m + 5/2)/n ≤ 1 ≤ 3
√

1 − 2m/nis equivalent to ⌈(4n−11)/9⌉ ≤ 4n/9 ≤ ⌈(4n−11)/9⌉+5/4 whi
h holds in general. Assumethat k ≥ m and that (8) holds for k − 1. From the de�nition of uk and the indu
tionhypothesis,
(

n

2

)
− uk ≤

(
n

2

)
− 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)

=
n − 2k − 3

n − 2k − 2

((
n

2

)
− uk−1

)
≤ 3

((
n

2

)
− um−1

)
n − 2k − 3

n − 2k − 2

√
1 − 2k

n
,and (n− 2k − 3)

√
1 − 2k/n /(n− 2k − 2) ≤

√
1 − (2k + 2)/n be
ause k ≤ (n− 5)/2, whi
hproves the se
ond inequality in (8). Similarly, from the de�nition of uk and the indu
tionhypothesis,

(
n

2

)
− uk ≥

(
n

2

)
− 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)
− 1

=
n − 2k − 3

n − 2k − 2

((
n

2

)
− uk−1

)
− 1 ≥ 3

((
n

2

)
− um−1

)
n − 2k − 3

n − 2k − 2

√
1 − 2k + 5/2

n
− 1.13



Hen
e, to prove the se
ond inequality in (8), it is enough to show that 3(
(

n
2

)
−um−1)d > 1,where

d =
n − 2k − 3

n − 2k − 2

√
1 − 2k + 5/2

n
−
√

1 − 2k + 9/2

n
(9)is always positive be
ause k ≤ (n − 5)/2. First note that

um−1 ≤ 3

(
m + 1

2

)
+ 3

(
m + 1 − ⌊n/3⌋

2

)
≤ 3

(
(4n + 6)/9

2

)
+ 3

(
(n + 10)/9

2

)
,whi
h implies that

3

((
n

2

)
− um−1

)
≥ 1

9

(
5n2 − 25n + 4

)
. (10)Multiplying the easily-veri�ed inequality

1 >
(n − 2k − 3)

√
n − 2k − 5/2 + (n − 2k − 2)

√
n − 2k − 9/2

(2n − 4k − 5)
√

n − 2k − 5/2by Identity (9), yields
d >

n − 2k − 9/4

(n − 2k − 2)2
√

n (n − 2k − 5/2)
· 2n − 4k − 4

2n − 4k − 5

>
n − 2k − 9/4

(n − 2k − 2)2
√

n (n − 2k − 5/2)

=

(
1 − 1

4 (n − 2k − 2)

)
1

(n − 2k − 2)
√

n (n − 2k − 2 − 1/2)
.Sin
e (4n − 11)/9 ≤ k ≤ (n − 5)/2, then 3 ≤ n − 2k − 2 ≤ (n + 4)/9. Thus

d >

(
1 − 1

12

)
27

(n + 4)
√

n (n − 1/2)
=

99

4 (n + 4)
√

n (n − 1/2) .This inequality, together with Inequality (10), imply that for all n ≥ 6,
3

((
n

2

)
− um−1

)
d >

11

4

(
5n2 − 25n + 4

(n + 4)
√

n (n − 1/2)

)
> 1.Proof of Lemma 2. For ea
h n ≤ 40 the integer range [m, (n − 5)/2] is either empty or
ontains only k = ⌊(n−5)/2⌋. For these 
ases, the inequality 
an easily be veri�ed. Assume

n ≥ 41, it follows from Inequality (10) that
9

(
1 − 2k + 9/2

n

)((
n

2

)
− um−1

)2

≥ (n − 2k − 9/2) (5n2 − 25n + 4)
2

81n
.Sin
e k ≤ (n − 5)/2, then

n − 2k − 9/2 ≥ (n − 2k − 3)2

n − 2k + 3
.14



Also k ≥ m ≥ (4n − 11)/9 implies n − 2k + 3 ≤ (n + 49)/9 and thus
(n − 2k − 9/2) (5n2 − 25n + 4)

2

81n
≥ (n − 2k − 3)2 (5n2 − 25n + 4)

2

9n (n + 49)
.Finally, for n ≥ 41,

(5n2 − 25n + 4)
2

9n (n + 49)
≥ (n − 1)2,and 
onsequently

9

(
1 − 2k + 9/2

n

)((
n

2

)
− um−1

)2

≥ (n − 1)2(n − 2k − 3)2.6 New lower bound on 
r(n)In this se
tion, we use Corollary 3 to get the following new lower bound on 
r(n).Theorem 3. 
r(n) ≥ 277
729

(
n
4

)
+ Θ(n3) > 0.379972

(
n
4

)
+ Θ(n3).Proof. We a
tually prove that the right hand side is a lower bound on 
̃r(n). A

ording to(3), if Π is an awollable sequen
e on [n], then

cr (Π) =

(
n

4

)
24

⌊n/2⌋−1∑

k=0

1

n

(
1 − 2k

n

)
E≤k (Π)

n2


 + Θ

(
n3
)
.Using Inequality (2) for 0 ≤ k ≤ m − 1 gives

E≤k (Π)

n2
≥ 3

2

(
k

n

)2

+
3

2
max

(
0,

k

n
− 1

3

)2

− Θ

(
1

n

)
.Similarly, if m ≤ k ≤ ⌊n/2⌋ − 1, then by Corollary 3,

E≤k (Π)

n2
≥ 1

2
− 5

9

√
1 − 2k

n
+ Θ

(
1

n

) .Therefore,
cr (Π) ≥

(
n

4

)(
24

∫ 4/9

0

3

2
(1 − 2x)

(
x2 + max

(
0, x − 1

3

)2
)

dx

)

+

(
n

4

)(
24

∫ 1/2

4/9

(1 − 2x)

(
1

2
− 5

9

√
1 − 2x

)
dx

)
+ Θ(n3)

≥
(

n

4

)(
86

243
+

19

729

)
+ Θ(n3) =

277

729

(
n

4

)
+ Θ(n3).15



The following is the list of best lower bounds for 
̃r(n) in the range 28 ≤ n ≤ 99 thatfollow from using Identity (3) with the bound in either Inequality (2) or the new bound fromTheorem 2.
n 
̃r (n) ≥ n 
̃r (n) ≥ n 
̃r (n) ≥ n 
̃r (n) ≥ n 
̃r (n) ≥ n 
̃r (n) ≥
28 7233 40 33048 52 99073 64 234223 76 475305 88 866947
29 8421 41 36674 53 107251 65 249732 77 501531 89 907990
30 9723 42 40561 54 115878 66 265888 78 528738 90 950372
31 11207 43 44796 55 125087 67 282974 79 557191 91 994394
32 12830 44 49324 56 134798 68 300767 80 586684 92 1039840
33 14626 45 54181 57 145030 69 319389 81 617310 93 1086725
34 16613 46 59410 58 155900 70 338913 82 649190 94 1135377
35 18796 47 65015 59 167344 71 359311 83 682308 95 1185551
36 21164 48 70948 60 179354 72 380531 84 716507 96 1237263
37 23785 49 77362 61 192095 73 402798 85 752217 97 1290844
38 26621 50 84146 62 205437 74 425980 86 789077 98 1346029
39 29691 51 91374 63 219457 75 450078 87 827289 99 14029327 A point-set with few (≤ k)-edges for every k ≤ 4n/9− 1Combining Inequality (2) and Theorem 2, we obtain the best known lower bound for E≤k(n).If n is a multiple of 9 and k ≤ (4n/9) − 1, then this bound reads

E≤k(n) ≥





3
(

k+2
2

) if 0 ≤ k ≤ n/3 − 1,
3
(

k+2
2

)
+ 3
(

k−n/3+2
2

) if n/3 ≤ k ≤ 4n/9 − 2,
3
(
(4n/9−1)+2

2

)
+ 3
(
(4n/9−1)−n/3+2

2

)
+ 3 if k = 4n/9 − 1. (11)Our aim in this se
tion is to show that this bound is tight for n ≥ 27. This improves onthe 
onstru
tion in [AG*07A℄, where tightness for Inequality (11) is proved for k ≤ (5n/12).We re
ursively 
onstru
t, for ea
h integer r ≥ 3, a 9r-point set Sr su
h that for every

k ≤ (4n/9) − 1, E≤k(Sr) equals the right hand side of (11).Constru
ting the sets SrIf a and b are distin
t points, then ℓ(ab) denotes the line spanned by a and b, and ab denotesthe 
losed line segment with endpoints a and b, dire
ted from a towards b. Let θ denote the
lo
kwise rotation by an angle of 2π/3 around the origin. At this point the reader may wantto take a sneak preview at Figure 2, where S3 is sket
hed.For ea
h r ≥ 3 the set Sr is naturally partitioned into nine sets of size r: Ar = {a1, . . . , ar},
A′

r = {a′
1, . . . , a

′
r}, A′′

r , and their respe
tive 2π/3 and 4π/3 rotations around the origin. Theelements of A′′
r are not labeled be
ause they 
hange in ea
h iteration. For i = 1, . . . , r, welet bi = θ(ai), b

′
i = θ(a′

i), ci = θ2(ai), and c′i = θ2(ai). Thus if we let Br = {b1, . . . , br},
B′

r = {b′1, . . . , b′r}, B′′
r = θ(A′′

r), Cr = {c1, . . . , cr}, C ′
r = {c′1, . . . , c′r}, and C ′′

r = θ2(A′′
r),16



then we obtain Br ∪B′
r ∪B′′

r (respe
tively, Cr ∪C ′
r ∪C ′′

r ) by applying θ (respe
tively, θ2) to
Ar ∪ A′

r ∪ A′′
r . We refer to this property as the 3-symmetry of Sr.As we mentioned before, the 
onstru
tion of the sets Sr is re
ursive. For r ≥ 3, we obtain

Ar+1 and A′
r+1 by adding suitable points ar+1 to Ar and a′

r+1 to A′
r. Keeping 3-symmetry,this determines Br+1, B′

r+1, Cr+1, and C ′
r+1. However, the set A′′

r+1 is not obtained by addinga point to A′′
r , but instead is de�ned in terms of Br+1, B

′
r+1, Cr+1, and C ′

r+1; this explainswhy we have not listed the elements in A′′
r , B

′′
r , and C ′′

r .Before moving on with the 
onstru
tion, we remark that the sets Sr 
ontain subsets ofmore than two 
ollinear points. As it will be
ome 
lear from the 
onstru
tion, the points
an be slightly perturbed to general position, so that the number of (≤ k)-edges remainsun
hanged for every k ≤ 4n/9 − 1.

Figure 2: The 27-point set S3. The points a∞, a′
∞, b∞, b′∞, c∞, and c′∞ do not belong to S3.We start by des
ribing S3, see Figure 2. First we expli
itly �x A3 and A′

3: a1 =
(−700,−50), a2 = (−410, 150), a3 = (−436, 144), a′

1 = (−1300, 20), a′
2 = (−1200,−10),17



and a′
3 = (−1170,−14). Thus B3, B

′
3, C3, and C ′

3 also get determined. For the points in A′′
3we do not give their exa
t 
oordinates, instead we simply ask that they satisfy the following:all the points in A′′

3 lie on the x-axis, and are su�
iently far to the left of A3 ∪ A′
3 so thatif a line ℓ1 passes through a point in A′′

3 and a point in S3 \ (B′′
3 ∪ C ′′

3 ), and a line ℓ2 passesthrough two points in S3 \A′′
3, then the slope of ℓ1 is smaller in absolute value than the slopeof ℓ2, i.e., ℓ1 is 
loser (in slope) to a horizontal line, than ℓ2.

Figure 3: br+1 is pla
ed in between br and b∞, above the line ℓ(a′
ra2).We need to de�ne six auxiliary points not in Sr : a∞ = ℓ(a2a3) ∩ ℓ(c2c3) and a′

∞ =
ℓ(a′

2a
′
3)∩ ℓ(a2a3). As expe
ted, let b∞ = θ(a∞), c∞ = θ2(a∞), b′∞ = θ(a′

∞), and c′∞ = θ2(a′
∞).We now des
ribe how to get Sr+1 from Sr. The 
ru
ial step is to de�ne the points br+1and a′

r+1 to be added to Br and A′
r to obtain Br+1 and A′

r+1, respe
tively. Then we 
onstru
t
A′′

r+1 and applying θ and θ2 to Br+1, A′
r+1, and A′′

r+1, we obtain the rest of Sr+1.Suppose that for some r ≥ 3, the set Sr has been 
onstru
ted so that the followingproperties hold for t = r (this is 
learly true for the base 
ase r = 3):(I) The points a2, . . . , at appear in this order along a2a∞.(II) The points a′
2, . . . , a

′
t appear in this order along a′

2a
′
∞.(III) For all i = 2, . . . , t − 1 and j = 2, . . . , t, ℓ(a′

iaj) interse
ts the interior of bibi+1.(IV) For all j = 2, . . . , t, ℓ(a′
taj) interse
ts the interior of btb∞.Now we add br+1 and a′

r+1. Pla
e br+1 anywhere on the open line segment determined by
b∞ and the interse
tion point of ℓ(a′

ra2) with brb∞. (The existen
e of this interse
tion point is18



guaranteed by (IV), see Figure 3). Pla
e a′
r+1 anywhere on the open line segment determinedby a′

∞ and the interse
tion point of ℓ(br+1a∞) with a′
ra

′
∞. (This interse
tion exists be
ause

a′
∞, a∞, a2, and b∞ are 
ollinear and appear in this order along ℓ(a′

∞b∞), the line ℓ(a′
∞b∞)separates br+1 from a′

r, and the line ℓ(a′
ra2) separates br+1 from a∞, see Figure 4). Thus Br+1and A′

r+1 and 
onsequently Ar+1, Cr+1, B
′
r+1, and C ′

r+1, are de�ned. It is straightforward to
he
k that (I)�(IV) hold for t = r + 1.

Figure 4: a′
r+1 is pla
ed in between a′

r and a′
∞, below the line ℓ(a∞br+1).It only remains to des
ribe how to 
onstru
t A′′

r+1. As we mentioned above, this set is nota superset of A′′
r , instead it gets de�ned analogously to A′′

3: we let the points in A′′
r+1 lie onthe x-axis, and su�
iently far to the left of Ar+1 ∪A′

r+1, so that if ℓ1 passes through a pointin A′′
r+1 and through a point in Sr+1 \ (B′′

r+1 ∪ C ′′
r+1), and ℓ2 spans two points in Sr+1 \A′′

r+1,then the slope of ℓ1 is smaller in absolute value than the slope of ℓ2.Cal
ulating E≤k(Sr)We �x r ≥ 3, and pro
eed to determine E≤k(Sr) for ea
h k, 0 ≤ k ≤ 4r − 1. It is now
onvenient to label the elements of A′′
r , B

′′
r , and C ′′

r . Let a′′
1, a

′′
2, . . . , a

′′
r be the elements of

A′′
r , ordered as they appear from left to right along the negative x-axis. As expe
ted, let

b′′i = θ(a′′
i ) and c′′i = θ2(a′′

i ), for i = 1, . . . , r. 19



We 
all a k-edge bi
hromati
 if it joins two points with di�erent label letters (i.e., if it isof the form ab, bc, or ac); otherwise, a k-edge is mono
hromati
. A mono
hromati
 edge is oftype aa if it is of the form ℓ(aiaj) for some integers i, j; edges of types aa′, aa′′, a′a′, a′a′′, a′′a′′(and their 
ounterparts for b and c) are similarly de�ned. Finally, we say that an edge of anyof the types aa, aa′, aa′′, a′a′, a′a′′, or a′′a′′ is of type A; edges of types B and C are similarlyde�ned. We let Ebi

≤k (respe
tively, Emono

≤k ) stand for the number of bi
hromati
 (respe
tively,mono
hromati
) (≤ k)-edges, so that E≤k(Sr) = Ebi

≤k(Sr) + Emono

≤k (Sr).We say that a �nite point set P is 3-de
omposable if it 
an be partitioned into threeequal-size sets A, B, and C satisfying the following: there is a triangle T en
losing P su
hthat the orthogonal proje
tions of P onto the three sides of T show A between B and C onone side, B between A and C on another side, and C between A and B on the third side(see [AC*10℄). We say that {A, B, C} is a 3-de
omposition of P . It is easy to see that if welet A := Ar ∪ A′
r ∪ A′′

r , B := Br ∪ B′
r ∪ B′′

r , and C := Cr ∪ C ′
r ∪ C ′′

r , then {A, B, C} is a
3-de
omposition of Sr: indeed, it su�
es to take an en
losing triangle of Sr with one sideorthogonal to the line spanned by the points in A′′, one side orthogonal to the line spannedby the points in B′′, and one side orthogonal to the line spanned by the points in C ′′. Thus,it follows from Claim 1 in [AC*10℄ (where it is proved in the more general setting of allowablesequen
es) that

Ebi

≤k(Sr) =





3
(

k+2
2

)
, if 0 ≤ k ≤ 3r − 1;

3
(
3r+1

2

)
+ (k − 3r + 1)9r, if 3r ≤ k ≤ 4r − 1. (12)We now 
ount the mono
hromati
 (≤ k)-edges. By 3-symmetry, it su�
es to fo
us onthose of type A.It is readily 
he
ked that for all i and j distin
t integers, ℓ(aiaj), ℓ(a

′
ia

′
j), and ℓ(a′′

i a
′′
j ) are

k-
riti
al edges for some k > 4r − 1. The same is true for ℓ(aia
′
j) whenever i and j are notboth equal to 1 (when i 6= 1 and j 6= 1 this follows from (III) and (IV) ), while ℓ(a1a

′
1) isa (4r − 1)-edge. Now, for ea
h i, j, 1 ≤ i ≤ r, 2 ≤ j ≤ r, ℓ(a′′

i a
′
j) is a (4r + i − j)-edge,while a′′

i a
′
1 is a (4r + i − 2)-edge. Finally, if 1 ≤ i ≤ r and 2 ≤ j ≤ r, then ℓ(a′′

i aj) is a
(3r + i+ j−3)-edge, and ℓ(a′′

i a1) is a (3r+ i−1)-edge. In 
on
lusion (to obtain (i), we re
allthat a k-edge is also a (9r − 2 − k)-edge):(i) for 1 ≤ s ≤ r, the number of (3r − 1 + s)-edges of types a′a′′ or aa′′ is 2s;(ii) there is exa
tly one (4r − 1)-edge of type aa′; and(iii) all other edges of type A are k-
riti
al edges for some k > 4r − 1.It follows that the number of (≤ k)-edges of type A is(a) 0, for k ≤ 3r − 1;(b) 2
∑k−(3r−1)

s=1 s = 2
(

k−3r+2
2

), for 3r ≤ k ≤ 4r − 2;(
) 1 + 2
∑(4r−1)−(3r−1)

s=1 s = 2
(

r+1
2

)
+ 1, for k = 4r − 1.20



By 3-symmetry, for ea
h integer k there are exa
tly as many (≤ k)-edges of type A asthere are of type B, and of type C. Therefore
Emono

≤k (Sr) =





0 if 0 ≤ k ≤ 3r − 1,
6
(

k−(3r−2)
2

) if 3r ≤ k ≤ 4r − 2,
6
(

r+1
2

)
+ 3 if k = 4r − 1. (13)Be
ause E≤k(Sr) = Ebi


≤k(Sr) + Emono
≤k (Sr), it follows by identities (12) and (13) that

E≤k(Sr) equals the right hand side of (11).8 Con
luding remarksThe Inequality in Theorem 1 is best possible. That is, there are n-point sets P whose simpleallowable sequen
e Π gives equality in the Inequality of Corollary 1:
E≥k(Π) = (n − 2k − 1)Ek−1(Π) +

(
s

2

)
.We present two 
onstru
tions. The �rst has s = n−2k−1 and 
onsists of 2k+1 points whi
hare the verti
es of a regular polygon and n − 2k − 1 
entral points very 
lose to the 
enterof the polygon. This 
onstru
tion was given in [LV*04℄ to show that Ek−1 ≥ 2k + 1 is bestpossible. Indeed, note that the (k − 1)-edges of P 
orrespond to the larger diagonals of thepolygon, and so Ek−1(Π) = 2k + 1; moreover, any edge formed by two points in the 
entralpart or one point in the 
entral part and a vertex of the polygon determine a (≥ k)-edge.Thus E≥k(Π) =

(
n−2k−1

2

)
+ (2k + 1)(n − 2k − 1), whi
h a
hieves the desired equality.The se
ond 
onstru
tion has s = 0 and thus it 
an only be a
hieved when k ≥ n/3.Consider a (2t + 1)-regular polygon where ea
h vertex is repla
ed by a set of m pointson a small segment pointing in the dire
tion of the 
enter of the polygon. Let Π be theallowable sequen
e 
orresponding to this point-set, n = (2t + 1)m, and k = tm. It isstraightforward to verify that Ek−1(Π) = (2t + 1)m and E≥k(Π) = 2(2t + 1)

(
m
2

). Thus
E≥k(Π) = (m − 1)Ek−1(Π) = (n − 2k − 1)Ek−1(Π).Prior to this work, there were two results that provided a lower bound for E≤k(P ) basedon the behavior of values of k 
lose to n/2. First, Welzl [We96℄ as a parti
ular 
ase of a moregeneral result proved that E≤k(P ) ≥ F1(k, n), where

F1(k, n) =

(
n

2

)
− 2n




n/2∑

j=k+1

k




1/2

<

(
n

2

)
−

√
2

2
n3/2

√
n − 2k.Se
ond, Balogh and Salazar [BS06℄ proved that E≤k(P ) ≥ F2(k, n), where F2(k, n) is afun
tion that, for n/3 ≤ k ≤ n/2, satis�es that

F2(k, n) <

(
n

2

)
− 13

√
3

36
n3/2

√
n − 2k + o(n2).21



By dire
t 
omparison, it follows that both F1(k, n) and F2(k, n) are smaller than the boundin Corollary 3. Thus our bound is better than these two previous bounds.A ni
e feature of Theorem 1 is that it 
an give better bounds for E≤k(n) and k largeenough, and for 
r(n), provided someone �nds a better bound than Inequality (2) for E≤k(n)when 4n/9 < k < n/2. For example, Ábrego et al. [AF*07℄ 
onsidered 3-regular point sets
P . These are point-sets with the property that for 1 ≤ j ≤ n/3, the jth depth layer of P hasexa
tly 3 points of P . A point p ∈ P is in the jth depth layer if p belongs to a (j − 1)-edgebut not to a (≤ j − 2)-edge of P . If n is a multiple of 18, they proved the following lowerbound:

E≤k(P ) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − n/3

2

)
+ 18

(
k + 2 − 4n/9

2

)
. (14)This is better than the bound in Theorem 2 for k > 4n/9, however using Theorem 1 it ispossible to �nd an even better lower bound when k ≥ 17n/36. We 
onstru
t a new re
ursivesequen
e u′ starting at m = 17n/36 given by

u′
m−1 = 3

(
m + 1

2

)
+ 3

(
m + 1 − ⌊n/3⌋

2

)
+ 18

(
m + 1 − ⌊4n/9⌋

2

) and
u′

k =

⌈
1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)u′

k−1

)⌉ for k ≥ m.The value of m = 17n/36 is the smallest possible for whi
h u′
m is greater than the right-sideof Inequality (14). Following the proof of Theorem 2 it is possible to show that E≤k(P ) ≥ u′

kfor 17n/36 ≤ k < n/2. Thus, if we 
ould show that Inequality (14) holds for arbitrary pointsets P , then we know that bound will no longer be tight for k ≥ 17n/36. From equivalentstatements to lemmas 1 and 2, it follows that u′
k ∼

(
n
2

)
− (7

√
2n2/18)

√
1 − 2k/n. This inturn improves the 
rossing number of 3-regular point-sets P to 
r(P ) ≥ 0.380024

(
n
4

)
+Θ(n3).In [AC*10℄ we 
onsidered other 
lass of point-sets 
alled 3-de
omposable. These arepoint-sets P for whi
h there is a triangle T en
losing P and a balan
ed partition A, B, and

C of P , su
h that the orthogonal proje
tions of P onto the sides of T show A between Band C on one side, B between A and C on another side, and C between A and B on thethird side. For 3-de
omposable sets P we were able to prove a lower bound 
onsisting of anin�nite series of binomial 
oe�
ients:
E≤k(P ) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − n/3

2

)
+ 3

∞∑

j=2

j(j + 1)

(
k + 2 − cjn

2

)
, (15)where cj = 1/2 − 1/(3j(j + 1)).Our main result does not improve this lower bound, however it gives an interesting heuris-ti
 that provides some eviden
e about the potential truth of this inequality for unrestri
tedpoint-sets P . If we assume that the sum of the �rst t+1 terms in the right-side of Inequality(15) is a lower bound for E≤k(P ), then, just as we outlined in the previous paragraph for

t = 2, Theorem 1 gives a better bound when k is big enough. This happens to be pre
iselywhen k ≥ ct+1n, whi
h is also the value of k for whi
h the next term in the sum of Inequality(15) gives a nonzero 
ontribution. 22



It was also shown in [AC*10℄ that Inequality (15) implies the following bound for 3-de
omposable sets P :
r(P ) ≥ 2

27
(15 − π2)

(
n
4

)
+ Θ(n3) > 0.380029

(
n
4

)
+ Θ(n3). (16)Theorem 1 does not improve the (n

4

) 
oe�
ient, but it improves the speed of 
onvergen
e.For instan
e, using Theorem 1 together with the �rst 30 terms of Inequality (15) gives abetter bound than the one obtained solely from the �rst 101 terms of Inequality (15).Finally, we reiterate our 
onje
tures from [AC*10℄ that inequalities (15) and (16) aretrue for unrestri
ted point-sets P . We in fa
t 
onje
ture that for every k and n, the 
lass of
3-de
omposable sets 
ontains optimal sets for both E≤k(n) and 
r(n).Referen
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