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3Unidad Aadémia de Matemátias, Universidad Autónoma de Zaateas.jleanos�mate.reduaz.mx4Instituto de Físia, Universidad Autónoma de San Luis Potosí.gsalazar�ifisia.uaslp.mx AbstratLet P be a set of points in general position in the plane. Join all pairs of pointsin P with straight line segments. The number of segment-rossings in suh a drawing,denoted by cr(P ), is the retilinear rossing number of P . A halving line of P isa line passing though two points of P that divides the rest of the points of P in(almost) half. The number of halving lines of P is denoted by h(P ). Similarly, a k-edge, 0 ≤ k ≤ n/2 − 1, is a line passing through two points of P and leaving exatly kpoints of P on one side. The number of (≤ k)-edges of P is denoted by E≤k(P ). Letr(n), h(n), and E≤k(n) denote the minimum of cr(P ), the maximum of h(P ), and theminimum of E≤k(P ), respetively, over all sets P of n points in general position in theplane. We show that the previously best known lower bound on E≤k(n) is tight for

k < ⌈(4n − 2)/9⌉ and improve it for all k ≥ ⌈(4n − 2)/9⌉. This in turn improves thelower bound on r(n) from 0.37968
(n

4

)
+Θ(n3) to 277

729

(n
4

)
+Θ(n3) ≥ 0.37997

(n
4

)
+Θ(n3).We also give the exat values of r(n) and h(n) for all n ≤ 27. Exat values were knownonly for n ≤ 18 and odd n ≤ 21 for the rossing number, and for n ≤ 14 and odd n ≤ 21for halving lines.2010 AMS Subjet Classi�ation: Primary 52C30, Seondary 52C10, 52C45, 05C62,68R10, 60D05, and 52A22.Keywords: k-edges, k-sets, Halving lines, Retilinear rossing numbers, Allowablesequenes, Geometri drawings.1 IntrodutionWe onsider three important well-known problems in Combinatorial Geometry: the retilin-ear rossing number, the maximum number of halving lines, and the minimum number of
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(≤ k)-edges of omplete geometri graphs on n verties. All point sets in this paper are inthe plane, �nite, and in general position.Let P be a �nite set of points in general position in the plane. The retilinear rossingnumber of P , denoted by cr(P ), is the number of rossings obtained when all straight linesegments joining pairs of points in P are drawn. (A rossing is the intersetion of twosegments in their interior.) The retilinear rossing number of n is the minimum numberof rossings determined by any set of n points, i.e., r(n) = min{cr(P ) : |P | = n}. Theproblem of determining r(n) for eah n was posed by Erd®s and Guy in the early seventies[EG73℄,[Guy71℄. This is equivalent to �nding the minimum number of onvex quadrilateralsdetermined by n points, as every pair of rossing segments bijetively orresponds to thediagonals of a onvex quadrilateral.A halving line of P is a line passing through two points of P and dividing the rest inalmost half. So when P has n points and n is even, a halving line of P leaves n/2−1 points of
P on eah side; whereas when n is odd, a halving line leaves (n−3)/2 points on one side and
(n − 1)/2 on the other. The number of halving lines of P is denoted by h(P ). Generalizinga halving line, a k-edge of P , with 0 ≤ k ≤ n/2−1, is a line through two points of P leavingexatly k points on one side. The number of k-edges of P is denoted by Ek(P ). Sine ahalving line is a (⌊n/2⌋ − 1)-edge, then E⌊n/2⌋−1(P ) = h(P ). Similarly, for 0 ≤ k ≤ n/2− 1,
E≤k(P ) and E≥k(P ) denote the number of (≤ k)-edges and (≥ k)-edges of P , respetively.That is, E≤k(P ) =

∑k
j=0 Ej(P ) and E≥k(P ) =

∑⌊n/2⌋−1
j=k Ej(P ) =

(
n
2

)
−
∑k−1

j=0 Ej(P ). Let
h(n) and E≤k(n) be the maximum of h(P ) and the minimum of E≤k(P ), respetively, overall sets P of n points. A onept losely related to k-edges is that of k-sets; a k-set of Pis a set Q that an be separated from P \ Q with a straight line. Rotating this separatingline lokwise until it hits a point on eah side yields a (k − 1)-edge, and it turns out thatthis assoiation is bijetive. Thus the number of k-sets of P is equal to the number of
(k − 1)-edges of P . As a onsequene, any of the results obtained here for k-edges an bediretly translated into equivalent results for (k + 1)-sets. Erd®s, Lovász, Simmons, andStraus [EL*73℄, [Lov71℄ �rst introdued the onepts of halving lines, k-sets, and k-edges.Sine the introdution of these parameters bak in the early 1970s, the determination(or estimation) of r(n), h(n), and E≤k(n) have beome lassial problems in ombinatorialgeometry. General bounds are known but exat values have only been found for small n.The best known general bounds for the halving lines are Ω(nec

√
log n) ≤ h(n) ≤ O(n4/3), dueto Tóth [Tó01℄ and Dey [Dey98℄, respetively. The previously best asymptoti bounds forthe rossing number are

0.3792

(
n

4

)
+ Θ(n3) ≤ r (n) ≤ 0.380488

(
n

4

)
+ Θ(n3). (1)The lower bound is due to Aihholzer et al. [AG*07B℄ and it follows from Inequality (2)as we indiate below. The upper bound follows from a reursive onstrution devised byÁbrego and Fernández-Merhant [AF07℄ using the a suitable initial onstrution found bythe authors in [AC*10℄. The best lower bound for the minimum number of (≤ k)-edges is

E≤k (n) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − ⌊n/3⌋

2

)
− max {0, (k + 1 − ⌊n/3⌋)(n − 3⌊n/3⌋)} , (2)2



due to Aihholzer et al. [AG*07B℄. Further referenes and related problems an be found in[BMP06℄.The last two problems are naturally related, and their onnetion to the �rst problem isshown by the following identity, independently proved by Lóvasz et al. [LV*04℄ and Ábregoand Fernández-Merhant [AF05℄. For any set P of n points,
cr(P ) = 3

(
n

4

)
−

⌊n/2⌋−1∑

k=0

k (n − k − 2)Ek (P ) , or equivalently
cr(P ) =

⌊n/2⌋−2∑

k=0

(n − 2k − 3)E≤k (P ) − 3

4

(
n

3

)
+
(
1 + (−1)n+1) 1

8

(
n

2

)
. (3)Hene, lower bounds on E≤k(n) give lower bounds on r(n).The majority of our results (all non-onstrutive parts) are proved in the more generalontext of generalized on�gurations of points, where the points in P are joined by pseu-dosegments rather than straight line segments. Goodman and Pollak [GP80℄ established aorrespondene between the set of generalized on�gurations of points and what they alledallowable sequenes. In Setion 2, we de�ne allowable sequenes, introdue the neessary no-tation to state the three problems above in the ontext of allowable sequenes, and inludea summary of results for these problems in both, the geometri and the allowable sequeneontext.

n 14 16 18 20 22 23 24 25 26 27

h(n) = h̃(n) 22∗ 27 33 38 44 75 51 85 57 96r(n) = ̃r(n) 324∗ 603∗ 1029∗ 1657 2528 3077 3699 4430 5250 6180Table 1: New exat values. The ∗ values were only known in the retilinear ase.The main result in this paper is Theorem 1 in Setion 3, whih bounds E≥k(P ) by afuntion of Ek−1(P ). This result has the following important onsequenes.1. In Setion 4, we �nd exat values of r(n) and h(n) for n ≤ 27. Exat values were onlyknown for n ≤ 18 and odd n ≤ 21 in the ase of r(n), and for n ≤ 14 and odd n ≤ 21in the ase of h(n). (See Table 1.) We also show that the same values are ahievedfor the more general ase of the pseudolinear rossing number ̃r(n) and the maximumnumber of halving pseudolines h̃(n). (See Setion 2 for the de�nitions.)2. Theorem 2 in Setion 5 improves the lower bound in Inequality (2) for k ≥ ⌈(4n − 11)/9⌉.It gives a reursive lower bound whose asymptoti value is given by
E≤k(n) ≥

(
n

2

)
− 1

9

√
1 − 2k + 2

n
(5n2 + 19n − 31),as shown in Corollary 3. 3



3. Theorem 3 in Setion 6 improves the lower bound in Inequality (1) tor(n) ≥ 277

729

(
n

4

)
+ Θ

(
n3
)
≥ 0.37997

(
n

4

)
+ Θ

(
n3
)
.In Setion 7, and to omplement item 2 above, we show that Inequality (2) is tight for

k < ⌈(4n − 11)/9⌉. More preisely, we onstrut sets of points simultaneously ahievingequality in Inequality (2) for all k < ⌈(4n − 11)/9⌉.Several results of this paper appeared (without proofs) in the onferene proeedings ofLAGOS'07 [AF*08A, AF*08B℄.2 Allowable sequenes and generalized on�gurations ofpointsAny set P of n points in the plane an be enoded by a sequene of permutations of theset [n] = {1, 2, ..., n} as follows. Consider a direted line l. Orthogonally projet P onto
l and label the points of P from 1 to n aording to their order in l. In this order, theidentity permutation (1, 2, ..., n), is the �rst permutation of our sequene. Note that l anbe hosen so that none of the projetions overlap. Continuously rotate l ounterlokwise.The order of the projetions of P onto l hanges every time two projetions overlap, thatis, every time a line through two points of P beomes perpendiular to l. Eah time thishappens, a new permutation is reorded as part of our sequene. After a 180◦-rotation of
l we obtain a sequene of (n

2

)
+ 1 permutations suh that the �rst permutation (1, 2, ..., n)is the identity, the last permutation (n, n − 1, ..., 2, 1) is the reverse of the identity, any twoonseutive permutations di�er by a transposition of adjaent elements, and any pair ofpoints (labels 1, ..., n) transpose exatly one. This sequene is known as a halfperiod ofthe irular sequene assoiated to P . The irular sequene of P is then a doubly in�nitesequene of permutations obtained by rotating l inde�nitely in both diretions.As an abstrat generalization of a irular sequene, a simple allowable sequene on [n]is a doubly in�nite sequene Π = (..., π−1, π0, π1, ...) of permutations of [n], suh that anytwo onseutive permutations πi and πi+1 di�er by a transposition τ(πi) of neighboring el-ements, and suh that for every j, πj is the reverse permutation of πj+(n

2)
. A halfperiodof Π is a sequene of (n

2

)
+ 1 onseutive permutations of [n]. As before, any halfperiodof Π uniquely determines Π and all properties for halfperiods mentioned above still hold.Moreover, the halfperiod π = (πi, πi+1, ..., πi+(n

2)
) is ompletely determined by the transposi-tions τ(πi), τ(πi+1), . . . , τ(πi+(n

2)−1). Note that the sequene (. . . , τ(π−1), τ(π0), τ(π1) . . .) is
(

n
2

)-periodi. Thus we indistintly refer to π as a sequene of permutations or as a sequeneof (suitable) transpositions. Allowable sequenes that are the irular sequene of a set ofpoints are alled strethable.A pseudoline is a urve in P
2, the projetive plane, whose removal does not disonnet

P
2. Alternatively, a pseudoline is a simple urve in the plane that extends in�nitely in bothdiretions. A simple generalized on�guration of points onsists of a set of (n

2

) pseudolinesand n points in the plane suh that eah pseudoline passes through exatly two points, andany two pseudolines interset exatly one. 4



Cirular and allowable sequenes were �rst introdued by Goodman and Pollak [GP80℄.They proved that not every allowable sequene is strethable and established a orrespon-dene between allowable sequenes and generalized on�gurations of points.The three problems at hand an be extended to generalized on�gurations of points,or equivalently, to simple allowable sequenes. In this new setting, a transposition of twopoints in positions k and k + 1, or n − k and n − k + 1 in a simple allowable sequene
Π orresponds to a (k − 1)-edge. We say that suh transposition is a k-transposition, orrespetively, a (n − k)-transposition, and if 1 ≤ k ≤ n/2 all these transpositions are alled
k-ritial. Therefore Ek(Π), E≤k(Π), and E≥k(Π) orrespond to the number of (k + 1)-ritial, (≤ k + 1)-ritial, and (≥ k + 1)-ritial transpositions in any halfperiod of Π. Ahalving line of Π is a ⌊n/2⌋-transposition, and thus h(Π) = E⌊n/2⌋−1(Π). Identity (3), whihrelates the number of k-edges to the rossing number, was originally proved for allowablesequenes. In this setting, a pseudosegment is the segment of a pseudoline joining two pointsin a generalized on�guration of points, and cr(Π) is the number of pseudosegment-rossingsin the generalized on�guration of points that orresponds to the allowable sequene Π. Allthese de�nitions and funtions oinide with their original ounterparts for P when Π is theirular sequene of P . However, when r(n), h(n), and E≤k(n) are minimized or maximizedover all allowable sequenes on [n] rather than over all sets of n points, the orrespondingquantities may hange and therefore we use the notation ̃r(n), h̃(n), and Ẽ≤k(n). Beause
n-point sets orrespond to the strethable simple allowable sequenes on [n], it follows that̃r(n) ≤ r(n), h̃(n) ≥ h(n), and Ẽ≤k(n) ≤ E≤k(n). Tamaki and Tokuyama [TT02℄ extendedDey's upper bound for allowable sequenes to h̃(n) = O(n4/3) . Ábrego et al. [AB*06℄ provedthat the lower bound for E≤k(n) in Inequality (2) is also a lower bound on Ẽ≤k(n). Theyused this bound to extend (and even slightly improve) the orresponding lower bound onr(n) to ̃r(n).Our main result, Theorem 1 in Setion 3, onentrates on the entral behavior of allowablesequenes. We bound E≥k(Π) by a funtion of Ek−1(Π). As a onsequene, we improve (ormath) the upper bounds on h̃(n) for n ≤ 27, and thus the lower bounds on ̃r(n) in thesame range. This is enough to math the orresponding best known geometri onstrutions[A℄ for h(n) and r(n). This shows that for all n ≤ 27, h̃(n) = h(n) and ̃r(n) = r(n) whoseexat values are summarized in Table 1.3 The Central TheoremIn this setion, we present our main theorem. Given a halfperiod π = (π0, π1, π2, ..., π(n

2)
)of an allowable sequene and an integer 1 ≤ k < n/2, the k-enter of the permutation πj ,denoted by C(k, πj), is the set of elements in the middle n − 2k positions of πj . Let L0, C0,and R0 be the set of elements in the �rst k, middle n−2k, and last k positions, respetively,of the permutation π0. De�ne

s (k, π) = min

{
|C0 ∩ C (k, πi)| : 0 ≤ i ≤

(
n

2

)}
.Note that s(k, π) ≤ n− 2k − 1 beause at least one of the n − 2k elements of C0 must leavethe k-enter. 5



Theorem 1. Let Π be an allowable sequene on [n] and π any halfperiod of Π. If s = s(k, π),then
E≥k (Π) ≤ (n − 2k − 1) Ek−1 (Π) − s

2
(Ek−1 (Π) − n + 1) .Proof. For presentation purposes, we divide this proof into subsetions.Let Π be an allowable sequene on [n] and π = (π0, π1, π2, ..., π(n

2)
) any halfperiod of Π,

s = s(k, π), and K = Ek−1(π).Suppose that πi1 , πi2 , ..., πiK is the subsequene of permutations in π obtained when the
k-ritial transpositions τ(πi1), τ(πi2), ..., τ(πiK ) of π our (in this order). For simpliity wewrite τj instead of τ(πij ). These permutations partition π into K + 1 parts B0(π), B1(π),
B2(π), ..., BK(π) alled bloks, where Bj(π) = {πl : ij ≤ l < ij+1} for 1 ≤ j ≤ K − 1,
B0(π) = {πl : 0 ≤ l < i1}, and BK(π) = {πl : iK ≤ l ≤

(
n
2

)
}. Denote by pj the pointthat enters the k-enter of πij with τj . We say that a (≥ k + 1)-ritial transposition in

Bj(π), 1 ≤ j ≤ K, is an essential transposition if it involves pj or if it ours before τ1, anda nonessential transposition otherwise.

Figure 1: Classi�ation of essential k-ritial transpositions.Rearrangement of πWe laim that, to bound E≥k(Π), we an assume that all (≥ k + 1)-ritial transpositionsof π are essential transpositions. To show this, in ase π has nonessential transpositions,we modify π so that the obtained halfperiod λ satis�es Ej(π) = Ej(λ) for all j < k, andthus E≥k(π) = E≥k(λ); and either λ has only essential transpositions or the last nonessentialtransposition of λ ours in an earlier permutation than the last nonessential transposition of
π. Applying this proedure enough times, we end with a halfperiod λ all of whose (≥ k +1)-ritial transpositions are essential and suh that Ej(π) = Ej(λ) for all j ≤ k, and thus
E≥k(π) = E≥k(λ). 6



This is how λ is onstruted. Suppose Bj(π) is the last blok of π that ontains nonessen-tial transpositions. De�ne λ as the halfperiod that oinides with π everywhere exept forthe (≥ k + 1)-transpositions in Bj(π). All nonessential transpositions in Bj(π) take plaeright before τj in λ, and right after τj ours, all essential transpositions in Bj(π) our on-seutively in Bj(λ) but probably in a di�erent order than in Bj(π), so that the �nal positionof pj is the same in Bj(π) and Bj(λ). Note that in fat the last permutations of the bloks
Bj(π) and Bj(λ) are equal.Classi�ation of k-ritial transpositionsFrom now on, we assume that π only has essential transpositions. We lassify the k-ritialtranspositions as follows (see Figure 1): τj is an arriving transposition if pj ∈ C0. An arrivingtransposition is m-augmenting if it inrements the number of elements in C0 in the k-enterfrom m − 1 to m, and it is neutral otherwise. We say that τj is a returning transposition ifit is a k-transposition and pj ∈ R0, or if it is an (n − k)-transposition and pj ∈ L0. That is,
pi is �getting bak� to its starting region. Similarly, τj is a departing transposition if it is a
k-transposition and pj ∈ L0, or if it is an (n − k)-transposition and pj ∈ R0. That is, pj is�getting away� from its original region. We say that a departing transposition τj is a uttingtransposition, if τj is a k-transposition and the next k-ritial transposition that involves
pj is an (n − k)-transposition; or if τi is an (n − k)-transposition and the next k-ritialtransposition that involves pj is a k-transposition. All other departing transpositions arealled stalling.Finally, we de�ne the weight of a k-ritial transposition τj , denoted by w(τj), as thenumber of (≥ k + 1)-ritial transpositions in Bj(π) that are not between two elements of
C0. Transpositions with weight at most n−2k−1−s are alled light. All other transpositionsare heavy.Let A, N, R, C, Slight, and Sheavy be the number of augmenting, neutral, returning, utting,light stalling, and heavy stalling transpositions, respetively. Then K = A + N + R + C +
Slight + Sheavy.Bounding E≥k(Π)Observe that the k-enter of all permutations in B0(π) remains unhanged. It follows thatall (≥ k + 1)-ritial transpositions of B0(π) are between elements of C0. Thus ∑K

j=1 w(τj)ounts all (≥ k + 1)-ritial transpositions exept those between two elements of C0. Thereare (n−2k
2

) transpositions between elements of C0, but eah neutral transposition orrespondsto a k-ritial (not (≥ k + 1)-ritial) transposition between two elements of C0. Thus
E≥k(Π) ≤

(
n − 2k

2

)
− N +

K∑

j=1

w(τj). (4)Bounds for the weight of a k-ritial transpositionWe bound the weight of a transposition depending on its lass (departing, returning, et.),as well as the number of transpositions within a lass, if neessary. For j ≥ 1 all (≥ k + 1)-ritial transpositions in Bj(π) involve pj and thus w(τj) ≤ n − 2k − 1. However, sine the7



weight of τj does not ount transpositions between two elements of C0, and there are alwaysat least s elements of C0 in the k-enter, then w(τj) ≤ n − 2k − s whenever τj is arriving(beause pj ∈ C0). Moreover, if τj is m-augmenting, then w(τj) ≤ n − 2k − m. If τj is areturning transposition, then pj has already been transposed with all the elements of C0 thatare in the k-enter of πij . Sine there are at least s suh elements, then w(τj) ≤ n−2k−1−s.Summarizing,
w (τj) ≤





n − 2k − 1 for all τj ,
n − 2k − s, if τj is neutral,
n − 2k − m, if τj is m-augmenting,
n − 2k − 1 − s, if τj is light stalling or returning. (5)Bounding CWe bound the number of utting transpositions. Sine the �rst (last) k elements of π0 arethe last (�rst) elements of π(n

2)
, then the 2k elements not in C0 must partiipate in at leastone utting transposition. That is, C ≥ 2k. Note that, if p /∈ C0 partiipates in c ≥ 2utting transpositions, then there must be at least c − 1 returning transpositions of p. Inother words, there must be at least C−2k ≥ 0 returning transpositions. There are C uttingtranspositions and at least n − 2k − s arriving transpositions (at least one m-augmentingarriving transposition for eah s + 1 ≤ m ≤ n − 2k). Then K − C − (n − 2k − s) ountsall other k-ritial transpositions, inluding in partiular all returning transpositions. Thus

K − C − (n − 2k − s) ≥ C − 2k, that is,
2C ≤ 4k + K − n + s. (6)Augmenting and heavy stalling transpositionsWe keep trak of the augmenting and heavy stalling transpositions together. To do this,we onsider the bipartite graph G whose verties are the augmenting and the heavy stallingtranspositions. The augmenting transposition τl is adjaent in G to the heavy stalling trans-position τj if j < l, pj is in the k-enter of all permutations in bloks Bj to Bl, one trans-position from τj and τl is a k-transposition and the other is an (n− k)-transposition, and pldoes not swap with pj in Bl(π). We bound the degree of a vertex in G.Let τj be a heavy stalling transposition. If pj ∈ L0 (the ase pj ∈ R0 is equivalent),then τj is a k-transposition. Beause pj moves to the right exatly w(τj) > n − 2k − 1 − spositions within Bj(π), it follows that the k-enter right before τj+1 ours (i.e., the k-enterof πij+1−1) has at most n − 2k − 1 − w(τj) < s points of C0 to the right of pj. Also, sine τjis stalling, the next time that pj leaves the k-enter is by a k-transposition τj+a. This meansthat the k-enter right before τj+a ours (i.e., the k-enter of πij+a−1) has at least s points of

C0 to the right of pj . Thus, between τj and τj+a there must be at least s−(n−2k−1−w(τj))arriving (n−k)-transpositions τl suh that pl remains to the right of pj in Bl(π), i.e., pl doesnot swap with pj in Bl(π). These transpositions are adjaent to τj and thus the degree of τjin G is at least w(τj) − (n − 2k − 1 − s). Hene,
|E(G)| ≥

∑

τj heavy stalling (w (τj) − (n − 2k − 1 − s)) ,8



where E(G) is the set of edges of G.Let τl be an m-augmenting transposition. Sine pl ∈ C0, and weights do not ounttranspositions between two elements of C0, then at most n−2k−m−w(τl) points in L0∪R0do not swap with pl in Bl(π). Only these points are possible pjs suh that τj is adjaent to
τl. Thus the degree of τl in G is at most n − 2k − m − w(τl) ≤ n − 2k − 1 − s − w(τl).Note that there is at least one m-augmenting transposition for eah s + 1 ≤ m ≤ n− 2k.This is beause the k-enter of at least one permutation of π ontains exatly s elementsof C0 (by de�nition of s), and the k-enter of π(n

2)
ontains exatly n − 2k elements of C0(sine it oinides with C0). Then the number of elements in the k-enter must be eventuallyinremented from s to n−2k. For eah s+1 ≤ m ≤ n−2k, we use n−2k−m−w(τl) to boundthe degree of one m-augmenting transposition. For all other augmenting transpositions weuse the bound n − 2k − 1 − s − w(τl). Hene

|E (G)| ≤
∑

τj augmenting ((n − 2k − 1 − s) − w (τj)) −
n−2k∑

m=s+1

(m − s − 1)

=
∑

τj augmenting ((n − 2k − 1 − s) − w (τj)) −
(

n − 2k − s

2

)
.The previous two inequalities imply that

∑

τj augmenting w (τj)+
∑

τj heavy stallingw (τj) ≤ (n − 2k − 1 − s) (A + Sheavy)−(n − 2k − s

2

)
. (7)Final alulationsWe use inequalities (5) and (7) to bound ∑K

i=1 w(τi) − N .
K∑

j=1

w (τj) − N =
∑

τj utting w (τj) +
∑

τj augmenting w (τj) +
∑

τj heavy stallingw (τj)

+
∑

τj light stalling w (τj) +
∑

τj returning w (τj) +
∑

τj neutral w (τj) − N

≤ (n − 2k − 1)C + (n − 2k − 1 − s) (A + Sheavy) − (n − 2k − s

2

)

+ (n − 2k − 1 − s) (Slight + R) + (n − 2k − s) N − N

≤ sC + (n − 2k − 1 − s) K −
(

n − 2k − s

2

)
.By Inequality (4),

E≥k (Π) ≤
(

n − 2k

2

)
−
(

n − 2k − s

2

)
+ sC + (n − 2k − 1 − s) K

= (n − 2k − 1) K − s

2
(2K − 2n + 4k + 1 + s − 2C) .9



Finally, by Inequality (6),
E≥k (Π) ≤ (n − 2k − 1)K − s

2
(K − n + 1) .4 New exat values for n ≤ 27In this setion, we give exat values of h(n) and h̃(n) for n ≤ 27. We start by stating arelaxed version of Theorem 1, whih we use in the speial ase when k = ⌊n/2⌋ − 1.Corollary 1. Let Π be a simple allowable sequene on [n] and π any halfperiod of Π. If

s = s(k, π), then
E≥k (Π) ≤ (n − 2k − 1) Ek−1 (Π) +

(
s

2

)
≤ (n − 2k − 1) Ek−1 (Π) +

(
n − 2k − 1

2

)
.Proof. There are at least n−2k−s elements of C0 that leave the k-enter, so there are at least

n−2k−s arriving transpositions. In addition, there are at least 2k departing transpositions,one per element not in C0. It follows that Ek−1(Π) ≥ 2k + (n − 2k − s) = n − s. The �rstinequality now follows diretly from Theorem 1. Finally, s ≤ n−2k−1 for all halfperiods of
Π whih yields the seond inequality. Another onsequene is that Ek−1(Π) ≥ n−s ≥ 2k+1,whih is in fat the minimum possible value of Ek−1 (f. [LV*04℄).The previous orollary implies the following result for halving lines.Corollary 2. If Π is a simple allowable sequene on [n] and n ≥ 8, then

h (Π) ≤
{ ⌊

1
24

n(n + 30) − 3
⌋ if n is even,

⌊
1
18

(n − 3)(n + 45) + 1
9

⌋ if n is odd.Proof. If k = ⌊n/2⌋ − 1 on Corollary 1, then E≥⌊n/2⌋−1(Π) = h(Π) and thus h(Π) ≤ (n −
2⌊n/2⌋ + 1)E≥⌊n/2⌋−2(Π) +

(
n−2⌊n/2⌋+1

2

), that is,
h (Π) ≤

{
En/2−2 (Π) if n is even,
2E(n−1)/2−2 (Π) + 1 if n is odd.Moreover, beause E≤⌊n/2⌋−3(Π) + E⌊n/2⌋−2(Π) + h(Π) =

(
n
2

), it follows that
h (Π) ≤

{ ⌊
1
2

(
n
2

)
− 1

2
E≤n/2−3 (Π)

⌋ if n is even,
⌊

2
3

(
n
2

)
− 2

3
E≤(n−1)/2−3 (Π) + 1

3

⌋ if n is odd.The bound in Inequality (2) is also valid in the more general ontext of allowable sequenes[AB*06℄. Using this bound for E≤k(Π) when k = ⌊n/2⌋−3, and onsidering all residue lassesof n modulo 18 with n ≥ 8, it follows that ⌊1
2

(
n
2

)
− 1

2
E≤n/2−3(Π)⌋ ≤ ⌊n(n+30)/24−3⌋ when

n is even, and ⌊2
3

(
n
2

)
− 2

3
E≤(n−1)/2−3(Π)+ 1

3
⌋ ≤ ⌊(n−3)(n+45)/18+1/9⌋ when n is odd.10



Beause h(n) ≤ cn4/3, the inequality in Corollary 2 is only useful for small values of n.However, even with the urrent best onstant c = (31287/8192)1/3 < 1.5721 [AA*98, PR*06℄,our bound is better when n is even in the range 8 ≤ n ≤ 184.The exat values of h(n) were previously known only for even n ≤ 14 or odd n ≤ 21[AA*98, BR02℄. The exat values of r(n) were previously known only for even n ≤ 18 orodd n ≤ 21 [AG*07B℄. The values in Table 1 orrespond to the upper bounds obtained byCorollary 2 when n is even, 14 ≤ n ≤ 26 or n is odd, 23 ≤ n ≤ 27. We also obtained newlower bounds for ̃r(n) in this range of values of n. The identity E≤⌊n/2⌋−2(Π) =
(

n
2

)
− h(Π)together with Corollary 2 give a new lower bound for E≤⌊n/2⌋−2(Π). Using this bound for

k = ⌊n/2⌋ − 2 and the bound in Inequality (2) for k ≤ ⌊n/2⌋ − 3 in Identity (3) yieldsthe values in Table 1 for ̃r(n). For example, if n = 24 then E≤10(Π) =
(
24
2

)
− h(24) ≥

276 − 51 = 225 and by Inequality (2), the vetor (E≤0(Π), E≤1(Π), E≤2(Π), . . . , E≤9(Π))is bounded below entry-wise by (3, 9, 18, 30, 45, 63, 84, 108, 138, 174), so Identity (3) impliesthat ̃r(24) =
∑10

k=0(21 − 2k)E≤k(Π) − 3
4

(
24
3

)
≥ 3699.All the bounds shown in Table 1 are attained by Aihholzer's et al. onstrutions [A℄,and thus Table 1 atually shows the exat values of h̃(n), h(n), ̃r(n), and r(n) for n in thespei�ed range.For 28 ≤ n ≤ 33, Table 2 shows the new redued gap between the lower and upperbounds of h(n) and h̃(n).

n 28 29 30 31 32 33

h (n) ≥ 63 105 69 115 73 126

h̃ (n) ≤ 64 107 72 118 79 130Table 2: Updated bounds for 28 ≤ n ≤ 335 New lower bound for the number of (≤ k)-edgesIn this setion, we obtain a new lower bound for the number of ≤k-edges. Our emphasis ison �nding the best possible asymptoti result as well as the best bounds that apply to thesmall values of n for whih the exat value is unknown. Theorem 2 provides the exat resultthat an be applied to small values of n, whereas Corollary 3 is suitable enough to give thebest asymptoti behavior.Let m = ⌈(4n − 11)/9⌉. For eah n, de�ne the following reursive sequene.
um−1 = 3

(
m + 1

2

)
+ 3

(
m + 1 − ⌊n/3⌋

2

)
− 3

(
m −

⌊n

3

⌋)(n

3
−
⌊n

3

⌋) and
uk =

⌈
1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)⌉ for k ≥ m.The following is the new lower bound on E≤k(n). It follows from Theorem 1.11



Theorem 2. For any n and k suh that m − 1 ≤ k ≤ (n − 3)/2,
E≤k(n) ≥ uk.Proof. We need the following two lemmas to estimate the growth of the sequene uk withrespet to n and k. For presentation purposes, we defer their proofs to the end of the setion.Lemma 1. For any k suh that m − 1 ≤ k ≤ (n − 5)/2,

3

√
1 − 2k + 9/2

n
<

(
n
2

)
− uk(

n
2

)
− um−1

≤ 3

√
1 − 2k + 2

n
. (8)Lemma 2. For any k suh that m ≤ k ≤ (n − 5)/2,

3

√
1 − 2k + 9/2

n

((
n

2

)
− um−1

)
≥ (n − 1) (n − 2k − 3) .We prove the stronger statement Ẽ≤k(n) ≥ uk. Let Π be an allowable sequene on [n]and π any of its halfperiods. We proeed by indution on k. If k = m−1 the result holds byInequality (2), proved in the more general ontext of allowable sequenes [AB*06℄. Assumethat k ≥ m and E≤k−1(Π) ≥ uk−1. Let s = s(k + 1, π); by Theorem 1,

E≥k+1 (Π) ≤ (n − 2k − 3)Ek (Π) − s

2
(Ek (Π) − (n − 1)) .If s = 0 or Ek(Π) ≥ n − 1, then E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π). Thus

(
n

2

)
− E≤k(Π) ≤ (n − 2k − 3) (E≤k(Π) − E≤k−1(Π)) ,and by indution

E≤k(Π) ≥ 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)E≤k−1 (Π)

)

≥ 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)
,whih implies that E≤k(Π) ≥ uk by de�nition of uk. Now assume s > 0 and Ek(Π) < n − 1.Beause Ek(Π) ≥ 2k + 3 (see the proof of Corollary 1), it follows that k ≤ (n − 5)/2. ByTheorem 1,

E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π) − s

2
(Ek(Π) − (n − 1))

= (n − 2k − 3 − s

2
)Ek(Π) +

s

2
(n − 1) .Reall that s = s(k + 1, π) ≤ n − 2k − 3. Beause Ek(Π) < n − 1, it follows that

E≥k+1(Π) ≤ (n − 2k − 3 − s

2
)(n − 1) +

s

2
(n − 1)

= (n − 1) (n − 2k − 3) .12



Therefore
E≤k(Π) =

(
n

2

)
− E≥k+1(Π) ≥

(
n

2

)
− (n − 1) (n − 2k − 3) .By Lemma 2,

E≤k(Π) ≥
(

n

2

)
− 3

√
1 − 2k + 9/2

n

((
n

2

)
− um−1

)
,and by Lemma 1, E≤k(Π) ≥ uk for all allowable sequenes Π on [n]. Therefore E≤k(n) ≥

Ẽ≤k(n) ≥ uk.Corollary 3. For any n and k suh that m − 1 ≤ k ≤ (n − 2)/2,
E≤k(n) ≥

(
n

2

)
− 1

9

√
1 − 2k + 2

n

(
5n2 + 19n − 31

)
.Proof. Let Π be an allowable sequene on [n]. If k = ⌊n/2⌋ − 1, then E≤⌊n/2⌋−1(Π) =

(
n
2

).For k < ⌊n/2⌋ − 1, it follows that n ≥ 3 and from Theorem 2 and Lemma 1,
E≤k(Π) ≥ uk ≥

(
n

2

)
− 3

√
1 − 2k + 2

n

((
n

2

)
− um−1

)
.Considering the possible residues of n modulo 9, it an be veri�ed that for n ≥ 3,

um−1 ≥
17

54
n2 − 65

54
n +

31

27
(equality if n ≡ 3 (mod 9)).Therefore E≤k(n) ≥ Ẽ≤k(n) ≥

(
n
2

)
− 1

9

√
1 − 2k+2

n
(5n2 + 19n − 31).Proofs of the LemmasProof of Lemma 1. The integer range [m − 1, (n − 5)/2] is empty for n ≤ 5. Assume n ≥ 6and proeed by indution on k. If k = m−1, then 3
√

1 − (2m + 5/2)/n ≤ 1 ≤ 3
√

1 − 2m/nis equivalent to ⌈(4n−11)/9⌉ ≤ 4n/9 ≤ ⌈(4n−11)/9⌉+5/4 whih holds in general. Assumethat k ≥ m and that (8) holds for k − 1. From the de�nition of uk and the indutionhypothesis,
(

n

2

)
− uk ≤

(
n

2

)
− 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)

=
n − 2k − 3

n − 2k − 2

((
n

2

)
− uk−1

)
≤ 3

((
n

2

)
− um−1

)
n − 2k − 3

n − 2k − 2

√
1 − 2k

n
,and (n− 2k − 3)

√
1 − 2k/n /(n− 2k − 2) ≤

√
1 − (2k + 2)/n beause k ≤ (n− 5)/2, whihproves the seond inequality in (8). Similarly, from the de�nition of uk and the indutionhypothesis,

(
n

2

)
− uk ≥

(
n

2

)
− 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)
− 1

=
n − 2k − 3

n − 2k − 2

((
n

2

)
− uk−1

)
− 1 ≥ 3

((
n

2

)
− um−1

)
n − 2k − 3

n − 2k − 2

√
1 − 2k + 5/2

n
− 1.13



Hene, to prove the seond inequality in (8), it is enough to show that 3(
(

n
2

)
−um−1)d > 1,where

d =
n − 2k − 3

n − 2k − 2

√
1 − 2k + 5/2

n
−
√

1 − 2k + 9/2

n
(9)is always positive beause k ≤ (n − 5)/2. First note that

um−1 ≤ 3

(
m + 1

2

)
+ 3

(
m + 1 − ⌊n/3⌋

2

)
≤ 3

(
(4n + 6)/9

2

)
+ 3

(
(n + 10)/9

2

)
,whih implies that

3

((
n

2

)
− um−1

)
≥ 1

9

(
5n2 − 25n + 4

)
. (10)Multiplying the easily-veri�ed inequality

1 >
(n − 2k − 3)

√
n − 2k − 5/2 + (n − 2k − 2)

√
n − 2k − 9/2

(2n − 4k − 5)
√

n − 2k − 5/2by Identity (9), yields
d >

n − 2k − 9/4

(n − 2k − 2)2
√

n (n − 2k − 5/2)
· 2n − 4k − 4

2n − 4k − 5

>
n − 2k − 9/4

(n − 2k − 2)2
√

n (n − 2k − 5/2)

=

(
1 − 1

4 (n − 2k − 2)

)
1

(n − 2k − 2)
√

n (n − 2k − 2 − 1/2)
.Sine (4n − 11)/9 ≤ k ≤ (n − 5)/2, then 3 ≤ n − 2k − 2 ≤ (n + 4)/9. Thus

d >

(
1 − 1

12

)
27

(n + 4)
√

n (n − 1/2)
=

99

4 (n + 4)
√

n (n − 1/2) .This inequality, together with Inequality (10), imply that for all n ≥ 6,
3

((
n

2

)
− um−1

)
d >

11

4

(
5n2 − 25n + 4

(n + 4)
√

n (n − 1/2)

)
> 1.Proof of Lemma 2. For eah n ≤ 40 the integer range [m, (n − 5)/2] is either empty orontains only k = ⌊(n−5)/2⌋. For these ases, the inequality an easily be veri�ed. Assume

n ≥ 41, it follows from Inequality (10) that
9

(
1 − 2k + 9/2

n

)((
n

2

)
− um−1

)2

≥ (n − 2k − 9/2) (5n2 − 25n + 4)
2

81n
.Sine k ≤ (n − 5)/2, then

n − 2k − 9/2 ≥ (n − 2k − 3)2

n − 2k + 3
.14



Also k ≥ m ≥ (4n − 11)/9 implies n − 2k + 3 ≤ (n + 49)/9 and thus
(n − 2k − 9/2) (5n2 − 25n + 4)

2

81n
≥ (n − 2k − 3)2 (5n2 − 25n + 4)

2

9n (n + 49)
.Finally, for n ≥ 41,

(5n2 − 25n + 4)
2

9n (n + 49)
≥ (n − 1)2,and onsequently

9

(
1 − 2k + 9/2

n

)((
n

2

)
− um−1

)2

≥ (n − 1)2(n − 2k − 3)2.6 New lower bound on r(n)In this setion, we use Corollary 3 to get the following new lower bound on r(n).Theorem 3. r(n) ≥ 277
729

(
n
4

)
+ Θ(n3) > 0.379972

(
n
4

)
+ Θ(n3).Proof. We atually prove that the right hand side is a lower bound on ̃r(n). Aording to(3), if Π is an awollable sequene on [n], then

cr (Π) =

(
n

4

)
24

⌊n/2⌋−1∑

k=0

1

n

(
1 − 2k

n

)
E≤k (Π)

n2


 + Θ

(
n3
)
.Using Inequality (2) for 0 ≤ k ≤ m − 1 gives

E≤k (Π)

n2
≥ 3

2

(
k

n

)2

+
3

2
max

(
0,

k

n
− 1

3

)2

− Θ

(
1

n

)
.Similarly, if m ≤ k ≤ ⌊n/2⌋ − 1, then by Corollary 3,

E≤k (Π)

n2
≥ 1

2
− 5

9

√
1 − 2k

n
+ Θ

(
1

n

) .Therefore,
cr (Π) ≥

(
n

4

)(
24

∫ 4/9

0

3

2
(1 − 2x)

(
x2 + max

(
0, x − 1

3

)2
)

dx

)

+

(
n

4

)(
24

∫ 1/2

4/9

(1 − 2x)

(
1

2
− 5

9

√
1 − 2x

)
dx

)
+ Θ(n3)

≥
(

n

4

)(
86

243
+

19

729

)
+ Θ(n3) =

277

729

(
n

4

)
+ Θ(n3).15



The following is the list of best lower bounds for ̃r(n) in the range 28 ≤ n ≤ 99 thatfollow from using Identity (3) with the bound in either Inequality (2) or the new bound fromTheorem 2.
n ̃r (n) ≥ n ̃r (n) ≥ n ̃r (n) ≥ n ̃r (n) ≥ n ̃r (n) ≥ n ̃r (n) ≥
28 7233 40 33048 52 99073 64 234223 76 475305 88 866947
29 8421 41 36674 53 107251 65 249732 77 501531 89 907990
30 9723 42 40561 54 115878 66 265888 78 528738 90 950372
31 11207 43 44796 55 125087 67 282974 79 557191 91 994394
32 12830 44 49324 56 134798 68 300767 80 586684 92 1039840
33 14626 45 54181 57 145030 69 319389 81 617310 93 1086725
34 16613 46 59410 58 155900 70 338913 82 649190 94 1135377
35 18796 47 65015 59 167344 71 359311 83 682308 95 1185551
36 21164 48 70948 60 179354 72 380531 84 716507 96 1237263
37 23785 49 77362 61 192095 73 402798 85 752217 97 1290844
38 26621 50 84146 62 205437 74 425980 86 789077 98 1346029
39 29691 51 91374 63 219457 75 450078 87 827289 99 14029327 A point-set with few (≤ k)-edges for every k ≤ 4n/9− 1Combining Inequality (2) and Theorem 2, we obtain the best known lower bound for E≤k(n).If n is a multiple of 9 and k ≤ (4n/9) − 1, then this bound reads

E≤k(n) ≥





3
(

k+2
2

) if 0 ≤ k ≤ n/3 − 1,
3
(

k+2
2

)
+ 3
(

k−n/3+2
2

) if n/3 ≤ k ≤ 4n/9 − 2,
3
(
(4n/9−1)+2

2

)
+ 3
(
(4n/9−1)−n/3+2

2

)
+ 3 if k = 4n/9 − 1. (11)Our aim in this setion is to show that this bound is tight for n ≥ 27. This improves onthe onstrution in [AG*07A℄, where tightness for Inequality (11) is proved for k ≤ (5n/12).We reursively onstrut, for eah integer r ≥ 3, a 9r-point set Sr suh that for every

k ≤ (4n/9) − 1, E≤k(Sr) equals the right hand side of (11).Construting the sets SrIf a and b are distint points, then ℓ(ab) denotes the line spanned by a and b, and ab denotesthe losed line segment with endpoints a and b, direted from a towards b. Let θ denote thelokwise rotation by an angle of 2π/3 around the origin. At this point the reader may wantto take a sneak preview at Figure 2, where S3 is skethed.For eah r ≥ 3 the set Sr is naturally partitioned into nine sets of size r: Ar = {a1, . . . , ar},
A′

r = {a′
1, . . . , a

′
r}, A′′

r , and their respetive 2π/3 and 4π/3 rotations around the origin. Theelements of A′′
r are not labeled beause they hange in eah iteration. For i = 1, . . . , r, welet bi = θ(ai), b

′
i = θ(a′

i), ci = θ2(ai), and c′i = θ2(ai). Thus if we let Br = {b1, . . . , br},
B′

r = {b′1, . . . , b′r}, B′′
r = θ(A′′

r), Cr = {c1, . . . , cr}, C ′
r = {c′1, . . . , c′r}, and C ′′

r = θ2(A′′
r),16



then we obtain Br ∪B′
r ∪B′′

r (respetively, Cr ∪C ′
r ∪C ′′

r ) by applying θ (respetively, θ2) to
Ar ∪ A′

r ∪ A′′
r . We refer to this property as the 3-symmetry of Sr.As we mentioned before, the onstrution of the sets Sr is reursive. For r ≥ 3, we obtain

Ar+1 and A′
r+1 by adding suitable points ar+1 to Ar and a′

r+1 to A′
r. Keeping 3-symmetry,this determines Br+1, B′

r+1, Cr+1, and C ′
r+1. However, the set A′′

r+1 is not obtained by addinga point to A′′
r , but instead is de�ned in terms of Br+1, B

′
r+1, Cr+1, and C ′

r+1; this explainswhy we have not listed the elements in A′′
r , B

′′
r , and C ′′

r .Before moving on with the onstrution, we remark that the sets Sr ontain subsets ofmore than two ollinear points. As it will beome lear from the onstrution, the pointsan be slightly perturbed to general position, so that the number of (≤ k)-edges remainsunhanged for every k ≤ 4n/9 − 1.

Figure 2: The 27-point set S3. The points a∞, a′
∞, b∞, b′∞, c∞, and c′∞ do not belong to S3.We start by desribing S3, see Figure 2. First we expliitly �x A3 and A′

3: a1 =
(−700,−50), a2 = (−410, 150), a3 = (−436, 144), a′

1 = (−1300, 20), a′
2 = (−1200,−10),17



and a′
3 = (−1170,−14). Thus B3, B

′
3, C3, and C ′

3 also get determined. For the points in A′′
3we do not give their exat oordinates, instead we simply ask that they satisfy the following:all the points in A′′

3 lie on the x-axis, and are su�iently far to the left of A3 ∪ A′
3 so thatif a line ℓ1 passes through a point in A′′

3 and a point in S3 \ (B′′
3 ∪ C ′′

3 ), and a line ℓ2 passesthrough two points in S3 \A′′
3, then the slope of ℓ1 is smaller in absolute value than the slopeof ℓ2, i.e., ℓ1 is loser (in slope) to a horizontal line, than ℓ2.

Figure 3: br+1 is plaed in between br and b∞, above the line ℓ(a′
ra2).We need to de�ne six auxiliary points not in Sr : a∞ = ℓ(a2a3) ∩ ℓ(c2c3) and a′

∞ =
ℓ(a′

2a
′
3)∩ ℓ(a2a3). As expeted, let b∞ = θ(a∞), c∞ = θ2(a∞), b′∞ = θ(a′

∞), and c′∞ = θ2(a′
∞).We now desribe how to get Sr+1 from Sr. The ruial step is to de�ne the points br+1and a′

r+1 to be added to Br and A′
r to obtain Br+1 and A′

r+1, respetively. Then we onstrut
A′′

r+1 and applying θ and θ2 to Br+1, A′
r+1, and A′′

r+1, we obtain the rest of Sr+1.Suppose that for some r ≥ 3, the set Sr has been onstruted so that the followingproperties hold for t = r (this is learly true for the base ase r = 3):(I) The points a2, . . . , at appear in this order along a2a∞.(II) The points a′
2, . . . , a

′
t appear in this order along a′

2a
′
∞.(III) For all i = 2, . . . , t − 1 and j = 2, . . . , t, ℓ(a′

iaj) intersets the interior of bibi+1.(IV) For all j = 2, . . . , t, ℓ(a′
taj) intersets the interior of btb∞.Now we add br+1 and a′

r+1. Plae br+1 anywhere on the open line segment determined by
b∞ and the intersetion point of ℓ(a′

ra2) with brb∞. (The existene of this intersetion point is18



guaranteed by (IV), see Figure 3). Plae a′
r+1 anywhere on the open line segment determinedby a′

∞ and the intersetion point of ℓ(br+1a∞) with a′
ra

′
∞. (This intersetion exists beause

a′
∞, a∞, a2, and b∞ are ollinear and appear in this order along ℓ(a′

∞b∞), the line ℓ(a′
∞b∞)separates br+1 from a′

r, and the line ℓ(a′
ra2) separates br+1 from a∞, see Figure 4). Thus Br+1and A′

r+1 and onsequently Ar+1, Cr+1, B
′
r+1, and C ′

r+1, are de�ned. It is straightforward tohek that (I)�(IV) hold for t = r + 1.

Figure 4: a′
r+1 is plaed in between a′

r and a′
∞, below the line ℓ(a∞br+1).It only remains to desribe how to onstrut A′′

r+1. As we mentioned above, this set is nota superset of A′′
r , instead it gets de�ned analogously to A′′

3: we let the points in A′′
r+1 lie onthe x-axis, and su�iently far to the left of Ar+1 ∪A′

r+1, so that if ℓ1 passes through a pointin A′′
r+1 and through a point in Sr+1 \ (B′′

r+1 ∪ C ′′
r+1), and ℓ2 spans two points in Sr+1 \A′′

r+1,then the slope of ℓ1 is smaller in absolute value than the slope of ℓ2.Calulating E≤k(Sr)We �x r ≥ 3, and proeed to determine E≤k(Sr) for eah k, 0 ≤ k ≤ 4r − 1. It is nowonvenient to label the elements of A′′
r , B

′′
r , and C ′′

r . Let a′′
1, a

′′
2, . . . , a

′′
r be the elements of

A′′
r , ordered as they appear from left to right along the negative x-axis. As expeted, let

b′′i = θ(a′′
i ) and c′′i = θ2(a′′

i ), for i = 1, . . . , r. 19



We all a k-edge bihromati if it joins two points with di�erent label letters (i.e., if it isof the form ab, bc, or ac); otherwise, a k-edge is monohromati. A monohromati edge is oftype aa if it is of the form ℓ(aiaj) for some integers i, j; edges of types aa′, aa′′, a′a′, a′a′′, a′′a′′(and their ounterparts for b and c) are similarly de�ned. Finally, we say that an edge of anyof the types aa, aa′, aa′′, a′a′, a′a′′, or a′′a′′ is of type A; edges of types B and C are similarlyde�ned. We let Ebi
≤k (respetively, Emono

≤k ) stand for the number of bihromati (respetively,monohromati) (≤ k)-edges, so that E≤k(Sr) = Ebi
≤k(Sr) + Emono

≤k (Sr).We say that a �nite point set P is 3-deomposable if it an be partitioned into threeequal-size sets A, B, and C satisfying the following: there is a triangle T enlosing P suhthat the orthogonal projetions of P onto the three sides of T show A between B and C onone side, B between A and C on another side, and C between A and B on the third side(see [AC*10℄). We say that {A, B, C} is a 3-deomposition of P . It is easy to see that if welet A := Ar ∪ A′
r ∪ A′′

r , B := Br ∪ B′
r ∪ B′′

r , and C := Cr ∪ C ′
r ∪ C ′′

r , then {A, B, C} is a
3-deomposition of Sr: indeed, it su�es to take an enlosing triangle of Sr with one sideorthogonal to the line spanned by the points in A′′, one side orthogonal to the line spannedby the points in B′′, and one side orthogonal to the line spanned by the points in C ′′. Thus,it follows from Claim 1 in [AC*10℄ (where it is proved in the more general setting of allowablesequenes) that

Ebi
≤k(Sr) =





3
(

k+2
2

)
, if 0 ≤ k ≤ 3r − 1;

3
(
3r+1

2

)
+ (k − 3r + 1)9r, if 3r ≤ k ≤ 4r − 1. (12)We now ount the monohromati (≤ k)-edges. By 3-symmetry, it su�es to fous onthose of type A.It is readily heked that for all i and j distint integers, ℓ(aiaj), ℓ(a

′
ia

′
j), and ℓ(a′′

i a
′′
j ) are

k-ritial edges for some k > 4r − 1. The same is true for ℓ(aia
′
j) whenever i and j are notboth equal to 1 (when i 6= 1 and j 6= 1 this follows from (III) and (IV) ), while ℓ(a1a

′
1) isa (4r − 1)-edge. Now, for eah i, j, 1 ≤ i ≤ r, 2 ≤ j ≤ r, ℓ(a′′

i a
′
j) is a (4r + i − j)-edge,while a′′

i a
′
1 is a (4r + i − 2)-edge. Finally, if 1 ≤ i ≤ r and 2 ≤ j ≤ r, then ℓ(a′′

i aj) is a
(3r + i+ j−3)-edge, and ℓ(a′′

i a1) is a (3r+ i−1)-edge. In onlusion (to obtain (i), we reallthat a k-edge is also a (9r − 2 − k)-edge):(i) for 1 ≤ s ≤ r, the number of (3r − 1 + s)-edges of types a′a′′ or aa′′ is 2s;(ii) there is exatly one (4r − 1)-edge of type aa′; and(iii) all other edges of type A are k-ritial edges for some k > 4r − 1.It follows that the number of (≤ k)-edges of type A is(a) 0, for k ≤ 3r − 1;(b) 2
∑k−(3r−1)

s=1 s = 2
(

k−3r+2
2

), for 3r ≤ k ≤ 4r − 2;() 1 + 2
∑(4r−1)−(3r−1)

s=1 s = 2
(

r+1
2

)
+ 1, for k = 4r − 1.20



By 3-symmetry, for eah integer k there are exatly as many (≤ k)-edges of type A asthere are of type B, and of type C. Therefore
Emono

≤k (Sr) =





0 if 0 ≤ k ≤ 3r − 1,
6
(

k−(3r−2)
2

) if 3r ≤ k ≤ 4r − 2,
6
(

r+1
2

)
+ 3 if k = 4r − 1. (13)Beause E≤k(Sr) = Ebi

≤k(Sr) + Emono
≤k (Sr), it follows by identities (12) and (13) that

E≤k(Sr) equals the right hand side of (11).8 Conluding remarksThe Inequality in Theorem 1 is best possible. That is, there are n-point sets P whose simpleallowable sequene Π gives equality in the Inequality of Corollary 1:
E≥k(Π) = (n − 2k − 1)Ek−1(Π) +

(
s

2

)
.We present two onstrutions. The �rst has s = n−2k−1 and onsists of 2k+1 points whihare the verties of a regular polygon and n − 2k − 1 entral points very lose to the enterof the polygon. This onstrution was given in [LV*04℄ to show that Ek−1 ≥ 2k + 1 is bestpossible. Indeed, note that the (k − 1)-edges of P orrespond to the larger diagonals of thepolygon, and so Ek−1(Π) = 2k + 1; moreover, any edge formed by two points in the entralpart or one point in the entral part and a vertex of the polygon determine a (≥ k)-edge.Thus E≥k(Π) =

(
n−2k−1

2

)
+ (2k + 1)(n − 2k − 1), whih ahieves the desired equality.The seond onstrution has s = 0 and thus it an only be ahieved when k ≥ n/3.Consider a (2t + 1)-regular polygon where eah vertex is replaed by a set of m pointson a small segment pointing in the diretion of the enter of the polygon. Let Π be theallowable sequene orresponding to this point-set, n = (2t + 1)m, and k = tm. It isstraightforward to verify that Ek−1(Π) = (2t + 1)m and E≥k(Π) = 2(2t + 1)

(
m
2

). Thus
E≥k(Π) = (m − 1)Ek−1(Π) = (n − 2k − 1)Ek−1(Π).Prior to this work, there were two results that provided a lower bound for E≤k(P ) basedon the behavior of values of k lose to n/2. First, Welzl [We96℄ as a partiular ase of a moregeneral result proved that E≤k(P ) ≥ F1(k, n), where

F1(k, n) =

(
n

2

)
− 2n




n/2∑

j=k+1

k




1/2

<

(
n

2

)
−

√
2

2
n3/2

√
n − 2k.Seond, Balogh and Salazar [BS06℄ proved that E≤k(P ) ≥ F2(k, n), where F2(k, n) is afuntion that, for n/3 ≤ k ≤ n/2, satis�es that

F2(k, n) <

(
n

2

)
− 13

√
3

36
n3/2

√
n − 2k + o(n2).21



By diret omparison, it follows that both F1(k, n) and F2(k, n) are smaller than the boundin Corollary 3. Thus our bound is better than these two previous bounds.A nie feature of Theorem 1 is that it an give better bounds for E≤k(n) and k largeenough, and for r(n), provided someone �nds a better bound than Inequality (2) for E≤k(n)when 4n/9 < k < n/2. For example, Ábrego et al. [AF*07℄ onsidered 3-regular point sets
P . These are point-sets with the property that for 1 ≤ j ≤ n/3, the jth depth layer of P hasexatly 3 points of P . A point p ∈ P is in the jth depth layer if p belongs to a (j − 1)-edgebut not to a (≤ j − 2)-edge of P . If n is a multiple of 18, they proved the following lowerbound:

E≤k(P ) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − n/3

2

)
+ 18

(
k + 2 − 4n/9

2

)
. (14)This is better than the bound in Theorem 2 for k > 4n/9, however using Theorem 1 it ispossible to �nd an even better lower bound when k ≥ 17n/36. We onstrut a new reursivesequene u′ starting at m = 17n/36 given by

u′
m−1 = 3

(
m + 1

2

)
+ 3

(
m + 1 − ⌊n/3⌋

2

)
+ 18

(
m + 1 − ⌊4n/9⌋

2

) and
u′

k =

⌈
1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)u′

k−1

)⌉ for k ≥ m.The value of m = 17n/36 is the smallest possible for whih u′
m is greater than the right-sideof Inequality (14). Following the proof of Theorem 2 it is possible to show that E≤k(P ) ≥ u′

kfor 17n/36 ≤ k < n/2. Thus, if we ould show that Inequality (14) holds for arbitrary pointsets P , then we know that bound will no longer be tight for k ≥ 17n/36. From equivalentstatements to lemmas 1 and 2, it follows that u′
k ∼

(
n
2

)
− (7

√
2n2/18)

√
1 − 2k/n. This inturn improves the rossing number of 3-regular point-sets P to r(P ) ≥ 0.380024

(
n
4

)
+Θ(n3).In [AC*10℄ we onsidered other lass of point-sets alled 3-deomposable. These arepoint-sets P for whih there is a triangle T enlosing P and a balaned partition A, B, and

C of P , suh that the orthogonal projetions of P onto the sides of T show A between Band C on one side, B between A and C on another side, and C between A and B on thethird side. For 3-deomposable sets P we were able to prove a lower bound onsisting of anin�nite series of binomial oe�ients:
E≤k(P ) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − n/3

2

)
+ 3

∞∑

j=2

j(j + 1)

(
k + 2 − cjn

2

)
, (15)where cj = 1/2 − 1/(3j(j + 1)).Our main result does not improve this lower bound, however it gives an interesting heuris-ti that provides some evidene about the potential truth of this inequality for unrestritedpoint-sets P . If we assume that the sum of the �rst t+1 terms in the right-side of Inequality(15) is a lower bound for E≤k(P ), then, just as we outlined in the previous paragraph for

t = 2, Theorem 1 gives a better bound when k is big enough. This happens to be preiselywhen k ≥ ct+1n, whih is also the value of k for whih the next term in the sum of Inequality(15) gives a nonzero ontribution. 22



It was also shown in [AC*10℄ that Inequality (15) implies the following bound for 3-deomposable sets P :r(P ) ≥ 2

27
(15 − π2)

(
n
4

)
+ Θ(n3) > 0.380029

(
n
4

)
+ Θ(n3). (16)Theorem 1 does not improve the (n

4

) oe�ient, but it improves the speed of onvergene.For instane, using Theorem 1 together with the �rst 30 terms of Inequality (15) gives abetter bound than the one obtained solely from the �rst 101 terms of Inequality (15).Finally, we reiterate our onjetures from [AC*10℄ that inequalities (15) and (16) aretrue for unrestrited point-sets P . We in fat onjeture that for every k and n, the lass of
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