Improved lower bounds on book crossing numbers of K_{n}

B. M. Ábrego, J. Dandurand ${ }^{\dagger \ddagger}$, S. Fernández-Merchant* ${ }^{* \ddagger}$ E. Lagoda ${ }^{\S}$ Y. Sapozhnikov ${ }^{\dagger}$
California State University, Northridge

Abstract

A k-page book drawing of a graph G is a drawing of G on k halfplanes in the space with common boundary l, a line, where the vertices are on l and the edges cannot cross l. The k-page book crossing number of G, denoted by $\nu_{k}(G)$, is the minimum number of edge-crossings over all k-page book drawings of G. We improve the lower bounds on $\nu_{k}(G)$ for all $k \geq 15$ and determine $\nu_{k}(G)$ whenever $2<n / k \leq 3$. Our proofs rely on bounding the number of edges in convex graphs with small local crossing numbers.

1 Introduction

In a k-page book drawing of a graph, the vertices are placed on a line l and each edge is completely contained in one of k fixed halfplanes in the space whose boundary is l. The k-page book crossing number of a graph G, denoted by $\nu_{k}(G)$, is the minimum number of edge-crossings over all k-page book drawings of G. Book crossing numbers have been studied in relation to their applications in VLSI designs. We are concerned with the k-page book crossing number of the complete graph K_{n}. In 1964, Blažek and Koman [2] described k-page book drawings of K_{n} with few crossings. They described their construction in detail only for $k=2$, explicitly computed its crossing number for $k=2$ and 3 , and implicitly conjectured that generalizations of these constructions to larger values of k achieved $\nu_{k}\left(K_{n}\right)$. In 1994, Damiani et al. [3] described constructions using adjacency matrices, and in 1996, Shahrokhi et al. [5] provided a geometric description of similar k-page book drawings of K_{n}. In 2013, de Klerk et al. [4] gave another construction whose number of crossings is
$Z_{k}(n):=r \cdot F\left(\left\lfloor\frac{n}{k}\right\rfloor+1, n\right)+(k-r) \cdot F\left(\left\lfloor\frac{n}{k}\right\rfloor, n\right)$

[^0]where $F(q, n)=q\left(q^{2}-3 q+2\right)(2 n-3-q) / 24$ and $r=(n \bmod k)$. Then
$\nu_{k}\left(K_{n}\right) \leq Z_{k}(n)=\left(\frac{2}{k^{2}}\left(1-\frac{1}{2 k}\right)\right)\binom{n}{4}+O\left(n^{3}\right)$.
All the constructions in [3], [5], and [4] generalize the original Blažek-Koman construction but are slightly different. They are widely believed to be asymptotically correct giving rise to the following conjecture.

Conjecture 1. For any positive integers k and n, $\nu_{k}\left(K_{n}\right)=Z_{k}(n)$.

Ábrego et al. [1] proved this conjecture for $k=2$. The only other previously known values of $\nu_{k}\left(K_{n}\right)$ are $\nu_{k}\left(K_{n}\right)=0$ for $k>\lceil n / 2\rceil$ and a few sporadic values for $n \leq 15$ and $k \leq 5$ [4]. We prove the conjecture for any k and n such that $2<n / k \leq 3$ (Theorem 5), and give improved lower bounds for $n / k>3$ (Theorem 4). Shahrokhi et al. [5] proved the lower bound
$\nu_{k}(n) \geq \frac{n(n-1)^{3}}{296 k^{2}}-\frac{27 k n}{37}=\frac{3}{37 k^{2}}\binom{n}{4}+O\left(n^{3}\right)$,
which was later improved by de Klerk et al. [4] to
$\nu_{k}\left(K_{n}\right) \geq\left\{\begin{array}{l}\frac{3}{119}\binom{n}{4}+O\left(n^{3}\right) \text { if } k=4, \\ \frac{2}{(3 k-2)^{2}}\binom{n}{4} \text { if } k \text { even, } n \geq \frac{k^{2}}{2}+3 k-1, \\ \overline{(3 k+1)^{2}}\binom{n}{4} \text { if } k \text { odd, } n \geq k^{2}+2 k-\frac{7}{2} .\end{array}\right.$
Using semidefinite programming, they further improved the lower bound for several values of $k \leq 20$. We improve their bounds for $15 \leq n \leq 20$ as well as the asymptotic bound (1) for every k (Theorem $6)$.

2 Maximum number of edges

Our results heavily rely on a different problem on convex graphs. Let G_{n} be the rectilinear drawing of K_{n} whose vertices are the vertices of the regular n-gon. A convex graph can be defined as any subdrawing of G_{n}. To study crossings, it is convenient to disregard the sides of the polygon as edges. Let
D_{n} be obtained form G_{n} by removing the sides of the polygon. Let $e_{\ell}(n)$ be the maximum number of edges over all convex subgraphs of D_{n} such that each edge is crossed at most ℓ times. Brass et al. studied the problem of maximizing the number of edges over convex graphs satisfying certain crossing conditions. Functions equivalent to $e_{\ell}(n)$ for general drawings of graphs in the plane were studied by Ackerman, and Pach et al. We determined the exact values of $e_{\ell}(n)$ for $\ell \leq 3$ and any n.

Theorem 2. For any $n \geq 3$,

$$
\begin{aligned}
& e_{0}(n)=n-3, \\
& e_{1}(n)=\frac{3}{2}(n-3)+\delta_{1}(n), \\
& e_{2}(n)=2(n-3)+\delta_{2}(n), \\
& e_{3}(n)=\frac{9}{4}(n-3)+\delta_{3}(n),
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{1}(n)= \begin{cases}1 / 2 & \text { if } 2 \mid n, \\
0 & \text { otherwise },\end{cases} \\
& \delta_{2}(n)= \begin{cases}1 & \text { if } 3 \mid(n-2), \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

and

$$
\delta_{3}(n)=\left\{\begin{array}{lll}
-1 / 4 & \text { if } n \equiv 0 & (\bmod 4) \\
1 / 2 & \text { if } n \equiv 1 & (\bmod 4) \\
5 / 4 & \text { if } n \equiv 2 & (\bmod 4) \\
0 & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

3 Crossings in k-page books

For any integers $k \geq 1, n \geq 3$, and $m \geq 0$, define $L_{k, n}(m)=\frac{m}{2} n(n-3)-k \sum_{\ell=0}^{m-1} e_{\ell}(n)$.

Theorem 3. Let $n \geq 3$ and $k \geq 3$ be fixed integers. Then, for all integers $m \geq 0, \nu_{k}\left(K_{n}\right) \geq L_{k, n}(m)$. The value of $L_{k, n}(m)$ is maximized by the smallest m such that $e_{m}(n) \geq \frac{n(n-3)}{2 k}$.

We explicitly state the best bounds guaranteed by Theorem 3 and the values of $e_{\ell}(n)$ in Theorem 2.

Theorem 4. For any $k \geq 3$ and $n \geq 2 k$,
$\nu_{k}\left(K_{n}\right) \geq\left\{\begin{array}{c}\frac{1}{2}(n-3)(n-2 k) \text { if } 2 k<n \leq 3 k, \\ (n-3)\left(n-\frac{5}{2} k\right)-\delta_{1}(n) k \\ \text { if } 3 k<n \leq 4 k, \\ \frac{3}{2}(n-3)(n-3 k)-\left(\delta_{1}+\delta_{2}\right)(n) k \\ \text { if } 4 k<n \leq\left\{\begin{array}{c}\lceil 4.5 k\rceil-1 \text { if } 4 \mid n, \\ \lfloor 4.5 k\rfloor \text { otherwise },\end{array}\right. \\ 2(n-3)\left(n-\frac{27}{8} k\right)-\left(\delta_{1}+\delta_{2}+\delta_{3}\right)(n) k \\ \text { otherwise. }\end{array}\right.$
The first part of Theorem 4 settles Conjecture 1 when $2<\frac{n}{k} \leq 3$.

Theorem 5. If $2<\frac{n}{k} \leq 3$, then $\nu_{k}\left(K_{n}\right)=\frac{1}{2}(n-$ 3) $(n-2 k)$.

The bound in Theorem 4 becomes weaker as n / k grows. We use a different approach to improve this bound when n is large with respect to k. Using Theorem 3, for fixed k and for all $n \geq n^{\prime} \geq 4$,

$$
\frac{\nu_{k}\left(K_{n}\right)}{\binom{n}{4}} \geq \frac{\nu_{k}\left(K_{n}\right)}{\binom{n^{\prime}}{4}} \geq \max _{\substack{1 \leq m \leq 4 \\ n^{\prime} \geq 2 k}} \frac{L_{k, n^{\prime}}(m)}{\binom{n^{\prime}}{4}} .
$$

We use $n^{\prime}=\left\lfloor\frac{81}{16} k\right\rfloor$, which optimizes the previous lower bound when $k \equiv 3,11,15,18,22,30,37$, $41,48,56,60(\bmod 64)$ and is close to optimal for all other values of k. The universal bound given in Theorem 6 is obtained when $k \equiv 29(\bmod 64)$ and it is the minimum of the maxima over all classes $\bmod 64$. This result improves the asymptotic bound (1) for every k. In fact, the ratio of the lower to the upper bound on $\lim _{n \rightarrow \infty} \frac{\nu_{k}\left(K_{n}\right)}{\binom{n}{4}}$ is improved from approximately $\frac{1}{9} \approx 0.1111$ to $\frac{2024}{81^{2}} \approx 0.3089$.
Theorem 6. For any $k \geq 3$ and $n \geq\lfloor 81 k / 16\rfloor$, $\nu_{k}(n) \geq\left(\left(\frac{8}{9}\right)^{4} \frac{1}{k^{2}}+\left(\frac{2}{3}\right)^{15} \frac{118}{k^{3}}+\Theta\left(\frac{1}{k^{4}}\right)\right)\binom{n}{4}$.

Finally, using $n^{\prime}=\left\lfloor\frac{81}{16} k\right\rfloor$, we improved the bounds in [4] (Table 4.3) for $15 \leq k \leq 20$.

Acknowledgments. We thank John Cajahuaringa, Sangman Lee, Susan Milne, and Robert Morris for rich and helpful discussions during our CSUN Crossing Numbers Research Group meetings.

References

[1] B. M. Ábrego, O. Aichholzer, S. FernándezMerchant, P. Ramos, and G. Salazar. The 2Page Crossing Number of K_{n}. Disc. and Comp. Geom., 49 (4) 747-777 (2013).
[2] J. Blažek and M. Koman, A minimal problem concerning complete plane graphs, In: Theory of graphs and its applications, (M. Fiedler, editor) Czech. Acad. of Sci. 1964, 113-117.
[3] E. Damiani, O. D'Antona, and P. Salemi. An upper bound to the crossing number of the complete graph drawn on the pages of a book. J. Comb. Inform. Syst. Sci., 19:75-84, 1994.
[4] E. de Klerk, D. V. Pasechnik, and G. Salazar. Improved lower bounds on book crossing numbers of complete graphs. SIAM J. Discrete Math., 27 (2012), 619-633.
[5] F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrt'o. The book crossing number of a graph. J. Graph Th., 21 (1996) 413-424.

[^0]: * [bernardo.abrego, silvia.fernandez]@csun.edu.
 ${ }^{\dagger}$ [julia.dandurand.7, yakov.sapozhnikov.473]@my.csun.edu
 ${ }^{\ddagger}$ Supported by the NSF grant DMS-1400653.
 §evgeniya.lagoda@gmail.com

