Solution by the organizers. Since the five points A, B, C, D, E are on a circle then, to prove that $ABCDE$ is a regular pentagon, it is enough to show that all sides have the same length.

The triangles ABC and BCD have the same area and they share BC, thus the heights from A and D to the side BC have the same length. Therefore the line AD is parallel to BC. Thus $\angle DBC = \angle BDA$. On the other hand, by the Central Angle Theorem, we have that $\angle DBC = \angle DAC$. Then $\angle BDA = \angle DAC$ which proves that $ADBC$ is an isosceles trapezoid and consequently $AB = CD$. Similarly, starting with the pairs of triangles $(BCD, CDE), (CDE, DEA), (DEA, EAB), (EAB, ABC)$ we get $BC = DE$, $CD = EA$, $DE = AB$, and $EA = BC$. Thus $AB = CD = EA = BC = DE$ as we wanted to prove.

Would the conclusion still hold if the five points are not on a circle but they form a convex polygon? If not, How can these pentagons be characterized?