1. (20 points) Consider V the subset of P_2 defined by

$$V = \left\{ p(t) : \int_0^1 p(t) \, dt = 0 \right\}$$

a. Show that V is a subspace of P_2.

b. Find a basis for V.

2. (30 points) Let V be the set of 3×3 matrices A such that the vector

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

is in the kernel of A. Is V a subspace of $\mathbb{R}^{3 \times 3}$?

3. (20 points) Find the QR factorization of the matrix

$$A = \begin{bmatrix} 4 & 25 \\ 0 & 0 \\ 3 & -25 \end{bmatrix}$$

4. (30 points) Consider the linear system

$$\begin{cases} x + y - z & = 2 \\ x + 2y + z & = 3 \\ x + y + (k^2 - 5)z & = k \end{cases}$$

where k is an arbitrary constant.

a. For which value(s) of k does this system have a unique solution? Find the solution.

b. For which value(s) of k does this system have infinitely many solutions? Find all the solutions.

c. For which value(s) of k is the system inconsistent?
5. (20 points) Consider the transformation \(T(f(t)) = t(f'(t)) \) from \(P_2 \) to \(P_2 \).

a. Show that the transformation \(T \) is linear.

b. Find the kernel and the nullity of the transformation \(T \).

c. Use part (b) to find the rank of the transformation \(T \).

d. Is the transformation \(T \) an isomorphism?

6. (20 points) Consider the matrix
\[
A = \begin{bmatrix}
-3 & 0 & 4 \\
0 & -1 & 0 \\
-2 & 7 & 3
\end{bmatrix}
\]

a. Find all real eigenvalues of \(A \) with their algebraic multiplicities.

b. Find an eigenvector corresponding to the eigenvalue \(\lambda = 1 \)

7. (40 points) Consider a linear transformation \(T \) from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \). We are told that the matrix of \(T \) with respect to the basis \(\begin{bmatrix} 3 \\ 5 \end{bmatrix} \), \(\begin{bmatrix} 5 \\ 8 \end{bmatrix} \) is \(\begin{bmatrix} 1 & 9 \\ 9 & 7 \end{bmatrix} \).

Find the standard matrix of \(T \).

8. (20 points) Consider two distinct numbers, \(a \) and \(b \). We define the function
\[
f(t) = \det \begin{bmatrix}
1 & 1 & 1 \\
1 & b & t \\
1 & b^2 & t^2
\end{bmatrix}
\]

a. Show that \(f(t) \) is a quadratic function. What is the coefficient of \(t^2 \)?

b. Explain why \(f(a) = f(b) = 0 \). Conclude that \(f(t) = k(t-a)(t-b) \), for some constant \(k \). Find \(k \), using your work in part (a).

c. For which values of \(t \) is the matrix is invertible?