1. (20 points) Suppose that f is differentiable on \mathbb{R}.

 a. If $f'(x) = 0$ for all $x \in \mathbb{R}$, prove that $f(x) = f(0)$ for all $x \in \mathbb{R}$

 b. If $f(0) = 1$ and $|f'(x)| \leq 1$ for all $x \in \mathbb{R}$, prove that $|f'(x)| \leq |x| + 1$ for all $x \in \mathbb{R}$

2. (20 points) Evaluate the following limits

 a. $\lim_{x \to \infty} \sqrt{x + \sqrt{x} + \sqrt{x} - \sqrt{x}}$

 b. $\lim_{x \to 0^+} x \log x$

 c. $\lim_{x \to \infty} x^2 \left(e^{\frac{1}{x}} - e^{\frac{x}{x+1}} \right)$

 d. $\lim_{x \to a} \frac{x^\frac{1}{n} - a^\frac{1}{n}}{x - a}$; where $a > 0$ and $n \in \mathbb{N}$

3. (30 points) Assume that f is a continuously differentiable function on \mathbb{R}.

 a. Let $a \in \mathbb{R}$ and $h > 0$. Show that
 \[\exists \mu \in (0, 1) : f(a + h) - 2f(a) + f(a - h) = h \left[f'(a + \theta h) - f'(a - \theta h) \right] \]

 b. Let c be a real number. Find the following limit
 \[\lim_{h \to 0} \frac{f^2(c + 3h) - f^2(c - h)}{h} \]

4. (30 points) Prove that
 \[\sin x > x - \frac{x^3}{6}; \forall x \in (0, 2\pi] \]

5. (Bonus Question.) (10 points) Let f and g be real functions. Assume that f is differentiable at a and g is differentiable at $f(a)$. Prove that $g \circ f$ is differentiable at a and
 \[(g \circ f)'(a) = g'(f(a))f'(a) \]