1. (15 points) Find a basis for the space of all lower triangular 2×2 matrices.

2. (25 points) Consider V the subset of P_2 defined by

$$V = \left\{ p(t) : \int_0^1 p(t) \, dt = 0 \right\}$$

a. Show that V is a subspace of P_2.

b. Find a basis for V.

3. (30 points) Consider the linear transformation

$$T(M) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} M \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

from $U^{2 \times 2}$ to $U^{2 \times 2}$, where $U^{2 \times 2}$ is the space of upper triangular 2×2 matrices.

a. Show that T is linear.

b. Find the matrix of T with respect to the basis $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

4. (30 points) Consider the transformation $T(f(t)) = t(f'(t))$ from P_2 to P_2.

a. Show that the transformation T is linear.

b. Find the kernel and the nullity of the transformation T.

c. Use part (b) to find the rank of the transformation T.

d. Is the transformation T an isomorphism?