1. (20 points) Suppose that \(f : [a, b] \rightarrow [a, b] \) is continuous. Prove that

\[\exists c \in [a, b], \quad f(c) = c \]

Note that \(c \) is called a fixed point.

2. (20 points) Decide which of the following limits exist and which do not. Prove that your answer is correct.

a. \(\lim_{x \to 0} \frac{|x|}{x} \)

b. \(\lim_{x \to 0^+} x^\alpha \cos \frac{1}{x}; \) where \(\alpha \in \mathbb{R} \)

c. \(\lim_{x \to \frac{\pi}{2}^-} \frac{\tan x}{x} \)

d. \(\lim_{x \to -\infty} x^2 \sin x \)

3. (20 points) State whether each of the following statements are TRUE or FALSE. You do need to show your work when your answer is FALSE only.

a. \(f : [a, b] \rightarrow \mathbb{R} \) such that \(f(a)f(b) < 0 \). Then, there is necessarily \(c \in (a, b) \) such that \(f(c) = 0 \).

b. A uniform continuous function \(f \) on a bounded interval \(I \) is necessarily bounded.

c. Let \(I \) be an interval and \((x_n) \) be a convergent sequence in \(I \). If \(f : I \rightarrow \mathbb{R} \) is a function, then \((f(x_n)) \) is necessarily a convergent sequence.

d. A polynomial of degree \(n \) \((n \geq 0) \) is uniformly continuous on any bounded interval.

Hey, there’s more—turn the page over!
4. (20 points) Let E be a nonempty subset of \mathbb{R} and $f : E \to \mathbb{R}$ is uniformly continuous. Assume (x_n) is Cauchy. Prove that $(f(x_n))$ is Cauchy. What happens if f is continuous only?

5. (20 points) Let I be a bounded interval and $f : I \to \mathbb{R}$. Prove that if f is uniformly continuous on I, then f is bounded on I. What happens if I is unbounded?

6. (Bonus Question.) (10 points) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and satisfies

\[\forall x, y \in \mathbb{Q}, \quad f(x + y) = f(x) + f(y) \]

Prove that

\[\exists a \in \mathbb{R} \text{ such that } \forall x \in \mathbb{R}, \quad f(x) = ax \]